
Author: Kay KÜHNE

Supervisor 1: Prof. Dr. Andreas KERREN

Supervisor 2: Dr. Rafael M. MARTINS

Examiner: Prof. Dr. Welf LÖWE

Semester: VT2018
Course code: 4DV50E
Subject: Computer Science

Master Thesis Project

Interactive Multiscale Visualization
of Large, Multi-dimensional
Datasets



Abstract

This thesis project set out to find and implement a comfortable way to explore vast, multi-
dimensional datasets using interactive multiscale visualizations to combat the ever-growing
information overload that the digitized world is generating. Starting at the realization that
even for people not working in the fields of information visualization and data science
the size of interesting datasets often outgrows the capabilities of standard spreadsheet
applications such as Microsoft Excel. This project established requirements for a system to
overcome this problem. In this thesis report, we describe existing solutions, related work,
and in the end designs and implementation of a working tool for initial data exploration
that utilizes novel multiscale visualizations to make complex coherences comprehensible
and has proven successful in a practical evaluation with two case studies.

Keywords: Data Exploration, Visual Analytics, Multiscale Visualization, Focus+Context,
Overview+Detail



Acknowledgements

I would like to thank my two supervisors, Prof. Dr. Andreas Kerren and Dr. Rafael M.
Martins, for providing this fascinating topic, and their help and guidance along the whole
project. I also would like to thank all attendees of my expert interview for sharing some
of their precious time with me and helping me in drawing a conclusion for this project.
Last but not least I want to thank my two opponents for giving me valuable feedback to
improve my thesis report and my examiner for taking the time to evaluate it.



Contents

List of Figures I

List of Tables II

List of Abbreviations III

1. Introduction 1
1.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1. Visual Analytics . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2. Multiscale Visualizations . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3. Spatiotemporal Visual Analytics . . . . . . . . . . . . . . . . . . 2

1.2. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3. Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4. Solution Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5. Contributions and Target Groups . . . . . . . . . . . . . . . . . . . . . . 5
1.6. Report Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2. Background 6
2.1. Foundation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2. Multiscale Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3. Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3. Methodology 10
3.1. Scientific Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2. Method Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3. Reliability and Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4. Ethical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4. Conception 14
4.1. Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2. System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2.1. Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.2. User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2.3. Map Visualization . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.4. Time Series Visualization . . . . . . . . . . . . . . . . . . . . . 21

4.3. Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3.1. Twitter Language Usage . . . . . . . . . . . . . . . . . . . . . . 21
4.3.2. Södra Forestry Yields . . . . . . . . . . . . . . . . . . . . . . . . 22

5. Implementation 23
5.1. Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2. Frontend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2.1. Plain and Category List . . . . . . . . . . . . . . . . . . . . . . . 26
5.2.2. Map Visualization . . . . . . . . . . . . . . . . . . . . . . . . . 27



5.2.3. Time Series Visualization . . . . . . . . . . . . . . . . . . . . . 28
5.3. Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.3.1. Twitter Language Usage . . . . . . . . . . . . . . . . . . . . . . 30
5.3.2. Södra Forestry Yields . . . . . . . . . . . . . . . . . . . . . . . . 32

6. Evaluation 33
6.1. Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.1.1. Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.1.2. Expert Interview . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.2. Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.2.1. Performance Measurements . . . . . . . . . . . . . . . . . . . . 36
6.2.2. User Experience Questionnaire (UEQ) . . . . . . . . . . . . . . . 37
6.2.3. Expert Interview . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7. Conclusion 41
7.1. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.2. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

References 43

A. Configuration Twitter Language Usage A

B. Configuration Södra Forestry Yields C

C. Full Requirement List D



List of Figures

2.1. Fisheye Distortion Example . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2. Poly-linear Axis Example . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1. Research Methods Overview . . . . . . . . . . . . . . . . . . . . . . . . 10

4.1. Architecture Components Overview . . . . . . . . . . . . . . . . . . . . 17
4.2. Architecture Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3. Mockup Category List . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4. Mockup Map Visualization . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.5. Mockup Time Series Visualization . . . . . . . . . . . . . . . . . . . . . 22

5.1. Example Data Compacting . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2. Screenshot Plain List . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3. Screenshot Category List . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.4. Screenshot Map Controls . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.5. Screenshot Map Component . . . . . . . . . . . . . . . . . . . . . . . . 28
5.6. Screenshot Time Series Component . . . . . . . . . . . . . . . . . . . . 30
5.7. Screenshot Presentation Twitter . . . . . . . . . . . . . . . . . . . . . . . 31
5.8. Screenshot Presentation Södra . . . . . . . . . . . . . . . . . . . . . . . 32

6.1. Performance Metrics Overview . . . . . . . . . . . . . . . . . . . . . . . 35
6.2. UEQ Scale Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.3. Dataset Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . 39
6.4. Filtering Time Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

I



List of Tables

6.1. Experiment Client Specifications . . . . . . . . . . . . . . . . . . . . . . 33
6.2. Experiment Server Specifications . . . . . . . . . . . . . . . . . . . . . . 34
6.3. Think-aloud Session Questions . . . . . . . . . . . . . . . . . . . . . . . 36
6.4. Experiment Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

II



List of Abbreviations

API Application Programming Interface
BI Business Intelligence
HASC Hierarchical Administrative Subdivision Codes
JSON JavaScript Object Notation
NTS Nordic Tweet Stream
RQ Research Question
TTI Time-To-Interactive
UEQ User Experience Questionnaire
URL Uniform Resource Locator
UX User eXperience
VA Visual Analytics

III



1. Introduction

The overall goal of this thesis project was to find a comfortable way to explore vast, multi-
dimensional datasets. The target was not to provide a tool exclusively for data scientists,
but a system that can also be used by people unfamiliar with information visualization and
data exploration to conduct initial data exploration. To make the complex coherences in the
datasets comprehensible, the system was required to apply novel multiscale visualization
techniques and a concept to effortlessly filter through different dimensions of a dataset.

The following sections give an introduction to the background of this project, and
explain the motivation behind the project in more detail. The initial problem is stated in
depth and formulated into a research question. The approach to solving this problem and
the expected results are laid out together with the target groups and the overall structure of
this report.

1.1. Background

To understand the targeted problem, one needs to understand the field of visualization. It
is defined as "the activity of forming a mental model of something" by R. Spence [1]. The
field is split into three main areas: (i) Information Visualization, (ii) Scientific Visualization,
and (iii) Visual Analytics.

1.1.1. Visual Analytics

Information Visualization is the visualization of abstract data to reinforce human cogni-
tion, or "the design of visual data representations and interaction techniques that support
human activities where the spatial layout of the visual representation is not a direct mapping
of spatial relationships in the data."1

Scientific Visualization is mainly about the "visualization of three-dimensional phe-
nomena" [2]. As of its nature, it is considered a subset of computer graphics and has, for
example, a large impact in medical research [3].

Visual Analytics (VA) is the science of coupling interactive visual representations
with their underlying analytical processes [4]. The target is to provide technologies to
understand not only the information itself, but also the underlying process that derived
it from the raw data and therefore, to combine the strengths of human cognition and
electronic data processing for the most effective results. This is crucial as the users do not
have to trust the output of a machine blindly; VA enables them to understand the reasoning
behind information and makes it easier to base heavy weighting real-life decisions on it.
To achieve this, VA relies on highly interactive visual interfaces which pose in itself an
important scientific challenge [4, 5]. Due to its interdisciplinary nature, VA also requires a
scientific background in "statistics, mathematics, knowledge representation, management
and discovery technologies, cognitive and perceptual sciences, decision sciences, and

1IEEE, IEEE InfoVis 2017 – Topics and Paper Types, 2017. [Online]. Available:
http://ieeevis.org/year/2017/info/call-participation/infovis-paper-types. [Accessed: 28-Oct-2017]

1



more."2 The whole area is a rather new one [1] and has some overlap with the other
mentioned areas of visualization. In conclusion, VA is turning information overload into
an opportunity and this is precisely the main goal of this project.

1.1.2. Multiscale Visualizations

The centerpiece of the frontend is a collection of interconnected and, when appropriate,
multiscale visualizations. Multiscale visualization is a relatively new research topic,
and the term is not unambiguously defined yet. Related work uses the term mostly for
three different classes of techniques (and often applies more than one of those to the
same visualization): multiresolution, literal multiscale, and non-linear scale. In general,
multiscale visualizations are beneficial for the user experience, because they enable users
to get an overview and, at the same time, gradually focus their view.

The multiresolution approach changes resolution inside a graphic [6]. This requires
hierarchical data to group together in order to lower the resolution, allowing a focused area
to be shown in finer detail without extracting it from its surrounding area. For example,
a stacked area chart would change its granularity for a focused segment and show its
subgroups instead of the overlying category, transitioning back into the category once the
segment selection is over.

A literal multiscale visualization is more common and consists of applying the mul-
tiresolution approach but utilizing multiple graphics. For instance, for a stacked area chart
on a time series scale this would mean having an overview graphic, visualizing the whole
timeframe, and a second graphic visualizing a selected subset of this timeframe in more
detail. A less complex example would be the displaying of different granularities for the
same selection [7]. This technique is also called a multiresolution visualization with an
Overview+Detail approach in related literature [8].

More seldom referenced as multiscale visualization is the approach of using a non-
linear scale. In this approach, the scale changes inside the visualization to display a
segment in more detail by providing it more physical space. One example of this is a
time series graph displaying the means of some measured value for all months per year
for the previous years, and then changing to a direct monthly aggregation for the current
year, avoiding to break the visual flow of the chart by transforming the scale. One way
to achieve this effect dynamically upon user interaction is the so-called Focus+Context
approach [9].

1.1.3. Spatiotemporal Visual Analytics

Spatiotemporal visual analytics is a subset of VA that focuses on the visual analysis of
spatiotemporal data [10], i.e., time-based data with a location dimension. For example,
weather data or movement tracking qualify as spatiotemporal data. Spatiotemporal data is
an interesting use case for multiscale visualization as the location offers a flexible and (for
the user) obvious dimension to group data into different resolutions.

1.2. Motivation

With the rise of the Internet and the digitization of ever more areas, the amount of collected
data is enormous and continually expanding [11]. While the storage capacities kept

2IEEE, VAST Papers, 2016. [Online]. Available: http://ieeevis.org/year/2016/info/call- participation/vast-
papers. [Accessed: 28-Oct-2017]

2



growing with the data generation, the ability to use it could not keep up, leaving us with
vast amounts of raw data with no value on its own [4]. The growing gap between the stored
data and the ability to analyze it is broadly known under the term "information overload"
[12]. As companies discover the value of their aggregated datasets, the economic field
around data science is growing massively. However, there is a high hurdle for initial data
exploration for people who are not proficient in this field. As soon as datasets outgrow
Microsoft Excel’s capacity, they also outgrow the capabilities of most users. Therefore,
from a practical standpoint, there is a significant need for appropriate visualization and
exploration tools by non-data-science users.

From a scientific standpoint, the proposed visualizations and the interconnected filtering
between the different visualizations and dimensions provide novelty as they build upon
current research work and drive the scientific field further. As for the field of multiscale
visualizations, recent publications on the subject, such as an interactive multiscale visual-
ization for streamgraphs by Cuenca et al. [13], show its novelty. As for the system as a
whole, it will provide a stepping stone for further projects that involve large datasets, and
is an integral part to support the visualizations of this project.

The state of the art in the industry regarding data exploration and visualization expanding
over basic Microsoft Excel usage is that companies who have the necessary funding either
keep in-house data-science employees or have custom-tailored solutions developed for their
specific needs. There are multiple companies who specialize in providing such development
and initial exploration to solvent customers. An example of that would be anacision3 and
EXXETA4. Other than that, there are highly specific solutions to problems that are the
same across an industry. A good example here would be the Business Intelligence (BI)
market which utilizes standardized data from so-called Data Warehouses. Data Warehouses
store data that has been standardized by an underlying Integration Layer to provide its
BI software with a solid and already enriched dataset. For the end user, the possibly
best-known tool exceeding the abilities of Microsoft Excel is Tableau5. Tableau is an
award-winning data analytics software with a focus on BI. Especially interesting for end
users is the ability to import data quickly from sources like spreadsheets or relational
databases.

The current state of research regarding multiscale visualization shows some promising
results in the last years. In the mentioned paper from Cuenca et al. [13], the authors
presented a solution to multiscale visualization for streamgraphs (advanced stacked time
series) which uses multiple resolutions to split up the time series into subseries for a limited
time series [13]. Interestingly, the visualization utilized all three techniques labeled under
the term multiscale visualization, but only explicitly mentioned multiresolution in the
associated poster [6]. Further related work is listed and analyzed in Chapter 2.

1.3. Problem Statement

The frontend is supposed to display various interconnected visualizations that adapt to
the dataset, and—if fitting for the visualization—present the data in a multiscale way.
Multiscale visualizations offer the opportunity to enhance the experience for the user
significantly but are harder to develop as they are more complicated than their single-scale
versions. They not only hold more complexity to visualize but also depend on specific
queries and data aggregation in the backend. There already exist specific solutions for

3https://www.anacision.de. [Accessed: 23-Apr-2018]
4https://www.exxeta.com. [Accessed: 23-Apr-2018]
5https://www.tableau.com. [Accessed: 23-Apr-2018]

3



particular types of visualizations, but it is not clear if it is possible to adapt these to integrate
seamlessly into an environment where each visual component influences the data displayed
on the others.

Before the frontend is able to display even the most basic information, there needs to be
a data-providing backend in place. There are three requirements concerning the backend:
(i) the ability to adapt to different datasets, (ii) the ability to handle extensive and complex
datasets, and (iii) to provide all that with a performance that does not break the focus of
the user upon interactions.

To be able to adapt to different datasets, the backend has to be generic enough to deal
with different problems and provide a protocol to communicate with the frontend in a
manner that works with a wide range of different data types. With this ability, the backend
as a whole will qualify as a framework for further projects.

The whole system needs to be able to handle extensive and complex datasets with
a performance that does not interrupt the user. However, not only the large datasets
themselves present a challenge; with the large sets and the high complexity, there is also a
high possible variety of different filters. As it is desirable to provide most of this flexibility
to the user, the system needs to be able to cope with a significant workload. Otherwise,
the user would experience slow response time upon interacting with the frontend which
directly leads to context disruptions that make it harder for the user to understand the
process and the visualized information.

The user is supposed to understand and be part of the information finding process, but
not to feel the workload the system has to handle. Therefore, the efficiency of the backend
has a direct influence on the effectiveness of the whole system.

From these problem statements, we can derive the following central research question:

RQ How can we explore large, multi-dimensional datasets using interactive multi-
scale visualization both efficiently and effectively?

To clearly understand the question, we have to define the terms efficiency and effective-
ness for this context. As a guideline we can look at the definition for both terms in the ISO
standard 9241 [14].

Effectiveness can be defined as the act of providing a truly insightful experience to the
user through interactive visualization. This means enabling the user to explore the dataset
on a level not reasonably achievable before.

Efficiency can be defined as the act of providing the needed performance to adapt to new
filters and react to interactions. The lesser time the tool needs to provide the user with the
requested view, the higher its efficiency. This performance definition can be quantifiably
measured not only objectively with reaction times, but also as a direct influence on the
effectiveness of the system as an unefficient system causes a unpleasant experience for the
user.

1.4. Solution Approach

To find a solution to the stated problems and answer the research question, the project
started based on the findings from research into related work and a collection of require-
ments, coupled with two proposed case studies. A system was designed following the
requirements, implemented, and used to realize the case study. An experiment, a survey
and expert interviews with think-aloud sessions were conducted to secure verification and
validation of the system. As the scope of this project differs from the related projects, a

4



full comparison was not possible, but concluding this report the differences in scope and
resulting divergence were explained in detail.

1.5. Contributions and Target Groups

The main novelty and contribution of this project is the resulting system to explore vast,
multi-dimensional datasets using interactive multiscale visualization. The system can be
used for further projects and the technology and technique trade-off considerations and
evaluation in this report can help to improve following versions and other tools. The system
was designed to be quickly adaptable to new data sources and viewing angles, making
it predestined for further usage. Possible target groups for the system are organizations
interested in a more comfortable exploration of large and complex datasets without dedi-
cated data scientists. Such organizations can span from research institutes to medium-sized
companies. Due to the nature of the software structure and the encapsulated components,
these can be plugged into different systems without any code changes to the component.
This makes the project interesting for developers and software engineers already working
with VA or planning to include VA in a project.

The multiscale visualizations in the frontend also provide scientific novelty. They were
built to improve upon recent publications in this field introduced in Chapter 2 Background.
The combined concept, together with the implementation and the integration into a whole
framework, differentiates this work from previous publications which stand more as a proof-
of-concept. The evaluation provides insight into the human acceptance of the concepts
and offers suggestions for improvements and new concepts. This part is more targeted at
researchers in the field of VA, but also interesting for developers and software engineers
looking to include more complex visualizations into an already existing system.

1.6. Report Structure

The remainder of this report is divided into six chapters. First, related work is listed and
analyzed in Chapter 2 Background. Afterwards, the utilized research methods are explained,
and possible reliability, validity, and ethical considerations are discussed in Chapter 3
Methodology. In Chapter 4 Conception, the requirements of the system, the system
design and the concept of the design behind the case studies are layed out. In Chapter 5
Implementation, the implementation of the system and the case studies are described
and illustrated. The evaluation of the system is described in Chapter 6 Evaluation and
conclusions are discussed in Chapter 7 Conclusion, together with an outlook for possible
future work.

5



2. Background

In this chapter, related work to the topic of this report is listed and analyzed. First, some
necessary foundations are looked into, which are later going to be used and applied.
Then, the field of multiscale visualization is analyzed. Known techniques for multiscale
visualizations are introduced and described and referencing literature is investigated.
Finally, specific implementations are analyzed and their benefits and shortcomings laid
out, which can later be used to improve on them.

2.1. Foundation

A time series is a collection of data points with a temporal dimension [15]. Single time
series often are visualized in line charts, area charts, and scatterplots. Multiple time series
that span an overlapping interval are the topic of various visualization techniques as they
are common in many domains such as medicine, finance, and manufacturing, where they
are used for analytical purposes. Stacked area graphs are a common approach to visualize
such multiple time series [16]. Starting from a straight baseline axis (representing the
time dimension), the time series are stacked on top of each other forming layers. Each
layer is colored representing the series, and the thickness of the layer represents the value
of the time series at each time step (also called tick). The resulting graph presents the
evolution of the time series over time and makes it easy to read both the individual time
series and the aggregated sum at the ticks. ThemeRiver is a technique that builds upon
stacked area graphs but does not use a straight baseline axis [17]. Instead, the time series
are stacked around a central baseline that lays in parallel to the temporal axis which allows
the graph to have smoother transitions between the ticks. The name originates from these
transitions resembling the flow of a river. Streamgraphs are built upon ThemeRiver and
try to improve legibility [18]. Streamgraphs change the transition between ticks and the
displacement of layers to minimize the change in slope thereby providing a more realistic
presentation. The original paper provides graphical examples and detailed explanations
about the difference between ThemeRiver and Streamgraphs [18].

When presenting geospatial data the goal of an intelligible visualization is to bring the
data in relation to its geographic context [19]. Maps that use geographical and political
features only as points of reference in the real world are called thematic maps [20]. These
points have the purpose of making it easier for the spectator to connect the meaning of the
displayed data to locations and regions in the real world. So-called choropleth maps are
thematic maps that overlay the geographical or political map by coloring areas dependent
on the statistical data connected to it [21]. The areas are defined by the map and not by the
data that is attached [22]. The selection and application of color schemes together with
the interval selection in these kinds of visualizations is housing complexity and a field of
research [23, 24].

When building multiresolution maps based on geographical and political features, it is
necessary to depict the given hierarchy in a uniform and structured way. The ISO published
standard 3166 defining codes for countries and partially subdivisions [25]. This standard
bears the problem that it only provides full code coverage on the country level. Expanding
the standard, the Hierarchical Administrative Subdivision Codes (HASC) were published

6



[26]. HASC codes provide full coverage down to the second subdivision level (e.g., in
Sweden this would be municipalities) and are kept up to date by the original publisher. The
codes are uniform with a length of two characters and can be chained together forming a
globally unique identifier. This is important as it enables natural grouping and combining
of areas based solely on their identifier. For example, all areas with an identifier starting
with the code of Sweden (SE) together form the country of Sweden, and all areas with
an identifier starting with the identifier for Kronoberg (SE.KR) together form the county
of Kronoberg. For the municipality of Växjö this would form the identifier SE.KR.VA
(Sweden, Kronoberg, Växjö).

2.2. Multiscale Techniques

In the field of multiscale visualization, different approaches and techniques arer esulting in
substantially different visualizations as outlined in Section 1.1.2 Multiscale Visualizations.
This section looks at different techniques relevant to this project. As the focus of this project
is on techniques that work well for interactive visualizations, the selection is limited to
only interactive techniques. Cockburn et al. published an excellent overview of widespread
interactive multiscale techniques describing differentiations and usage examples [8].

The starting point for the following techniques is the concept of zooming [27]. This
interaction technique is widespread and an easy utility to explore data. The idea is to allow
the user to magnify (zoom in), demagnify (zoom out), and pan (moving the view) the
dataset in place. In a geospatial context, an example would be Google Maps which lets the
user start from an overview perspective of his area and then allows to zoom in and move the
map. This concept is very versatile as it can be applied to most visualizations, for instance,
most PDF-readers enable users to zoom into pages. From a multiscale perspective, this
technique is not sufficient as the different scales or views are temporally separated and not
displayed simultaneously, forcing the user to make the connection mentally. This puts load
on the short-term memory of the user and limits the possible complexity the user is able to
assimilate. The following techniques try to overcome this problem.

The first technique that improves on zooming is called Overview+Detail [8]. The idea
is to provide the user with an overview of the data and, at the same time, a more detailed
view into a subset by displaying two spatially-separated visualizations. One of the most
commonly known examples is the usage of thumbnails. Microsoft PowerPoint, for example,
shows a small list of thumbnails of the slides on the left side of the window, giving the
user an overview of both the content of the slides and his position in the presentation. At
the same time, the central part of the window shows a single slide in full-size giving the
user a detailed view. Providing a clear connection between the overview and detail views,
together with intuitive interaction possibilities, pose the main difficulty in this technique.

The next technique is called Focus+Context [9]. It is a multiresolution approach that
combines focused and contextual information in a single visualization. This technique is in
contrast to the previously presented spatial or temporal separation and has the potential to
reduce the short-term memory load to a minimum. At the same time, such visualizations
encapsulate high complexity making it harder to comprehend initially. This concept even
bears high complexity in non-interactive visualizations, since uneven distortions, such as
non-linear scales, are perceived as unnatural [28]. In the following paragraph, selected
techniques for Focus+Context visualizations are introduced based on the review by Leung
and Apperley [29].

For geospatial visualizations, so-called fisheye distortions [30, 31, 32] are sometimes
used to show certain parts of a map in more detail while keeping the rest of the map un-

7



Figure 2.1.: Illustration of the fisheye distortion effect as a way to achieve a Focus+Context
visualization.

touched. While this approach is applicable for all types of maps without further knowledge
of the structure of the displayed areas, the encompassing problem is that the transitional
part between focus and context is heavily distorted due to the applied polar transforma-
tion. In other words, the transformation of straight lines in the underlying map projection
into curved lines make the resulting distortions hard to comprehend. An illustration of
a 2D fisheye distortion with an underlying grid for better comprehension is provided in
Figure 2.1. However , there is a different approach that overcomes such problems which is
known as the multilevel approach. Here, the map is decomposed into hierarchical levels
that enable the user to split up a logical, political, or geographical area into subareas. For
instance, to split up a country into its composing subdivisions, which for Sweden would
mean to split it up into the counties (landsting). This approach requires more knowledge
about the displayed area but makes for an easier to understand visualization as reference
points in the map are not distorted.

For time series visualizations, the situation is different as only one dimension needs to
be manipulated to provide a focused view. Non-continuous magnification function can be
applied without the side effect of manipulating a second, non-intended dimension. One
technique is the Perspective Wall which provides a focused area—also called a lens—with
a linear scale which is surrounded by two distorted scales that gradually demagnify away
from the focused area [33]. Additionally, there is an adaption called Bifocal Display that
removes the distortion in the context areas [34]. Instead of gradually demagnifying context
areas, these are displayed as their own linear scales. These scales get chained together
forming a poly-linear scale. This technique enables a simple to understand adjustment in
granularity as the linear scales can adjust their granularity independently from each other
as long as the edges follow the same principle, making the connection between scales
seamless. An illustration of a poly-linear time series axis with two nested lenses can be
found in Figure 2.2.

Figure 2.2.: Illustration of a poly-linear time series axis. The composing linear scales in
this example are: 1960 - 1984, 1984 - 1986, 1986 - 1991, 1991 - 1994, 1994 -
2017.

8



2.3. Implementations

In the following section, implementations of novel multiscale visualizations and data
exploration tools relevant to this project are analyzed. The goal is to understand the
concepts they employ and identify the strong points and deficits of their implementation to
improve on them.

MultiStream is a visualization approach to explore hierarchical time series in a multi-
scale way. It was introduced in a recent publication [13] and comes with an implementation
and multiple examples. The approach is streamgraph-based, making it comparable to classi-
cal stacked time series visualizations. Multiple multiscale concepts were combined to form
an intuitive but capable visualization. It features two visualizations in an Overview+Detail
technique, while also utilizing the Focus+Context technique in the detailed visualization.
To achieve this effect, the detailed visualization uses a polylinear scale forming a non-
distorting lens. The centerpiece of the visualization is a multiresolution approach that
splits up the hierarchical dimension inside the lens. The implementation can be found
online together with multiple examples1. The combination of Overview+Detail and Fo-
cus+Context is made intuitive by "projection guidelines" connecting the overview and the
detailed visualization both for the domain of the detailed visualization and the domain of
the lens. Handles on the overview visualization allow for easy manipulation of the domains
but result in a perceivable lag. These controls feel intuitive but do not allow for a change
of the range of the lens. A change in the range is only possible with numerical parameters
outside of the visualization that influences the ratio of the domain (the timeframe) to the
range (the displayed width) and the transitioning areas. Furthermore, the approach allows
for only a single lens. The resolution changes only apply to the hierarchical dimension and
not to the time dimension which could cause scalability issues on larger timespans. Overall
the concept and implementation are intuitive and powerful, but the focus on hierarchical
dimensions cause some deficits for more generic applications.

StanceXplore is a recently presented exploration tool for Digital Humanities [35] that
enables multi-dimensional analysis [36]. While the goal was to develop a tool for an
"interactive exploration of stance in social media" [36] the resulting frontend is a more
generic framework for analyzing multi-dimensional datasets. This tool is particularly
interesting for this project as it has the same target group. The core concept of the
presentation is the usage of coordinated views. Every view represents a dimension and
offers filtering options that are reflected in the other views. This concept allows the user to
filter in multiple dimensions while keeping an overview over all dimensions. The concept
also includes views for geographical and temporal distribution and the time series features
an Overview+Detail technique. The geographical view includes a multiresolution map
that uses temporal separation. The map view enables both the visualization of the county
and the municipalities level. However, this multiresolution approach is only available for
all counties at once. The coordinated views make interacting with the data intuitive, but for
the web unusual key combinations could cause context disruptions. The multiscale time
series has no option to filter the dataset, and the selection of the domain for the detailed
visualization is unprecise hindering the usability and utility of the view. An implementation
with the example of stances in Twitter data that runs in the browser exists online2, and an
official demonstration video was published3.

1http://advanse.lirmm.fr/multistream/ [Accessed: 23-Apr-2018]
2http://sheldon.lnu.se/stancexplore/ [Accessed: 22-May-2018]
3https://vimeo.com/230334496 [Accessed: 23-Apr-2018]

9



3. Methodology

This chapter describes the research methods used to find answers to the research question.
First, the used methods are listed and introduced. Then, the reliability and validity of both
the methods and the project as a whole are discussed, and finally, ethical considerations
are laid out.

3.1. Scientific Approach

A combination of different research methods was applied to draw scientific conclusions
and find valid answers to the research question. As an overall strategy, the method of
Verification and Validation was used. This structured the project in three phases: (i) the
requirement collection and conception of the system, (ii) the implementation phase, and
(iii) the evaluation phase, consisting of a verification and a validation part.

Other methods were used inside this structure such as a case study, an experiment, and a
survey and open expert interview. A more detailed explanation of these methods and the
way they were performed can be found in the next section. An illustration of the applied
methods structured under the overall strategy can be found in Figure 3.1.

Figure 3.1.: Overview of the structure of research methods applied in the thesis. Research
methods are highlighted in blue, while method parts are in grey.

3.2. Method Description

The first step in the chosen strategy is to perform a comprehensive requirement collection
for the planned system. The goal is to make sure that all aspects of the research question are
met, and nothing important is forgotten along the way. The list of requirements, together

10



with justifications and clarifications for every requirement, can be found in Section 4.1.
In the evaluation phase, the Section 6.3 ties everything together by going over every
requirement again and making sure they were fulfilled.

To be able to evaluate the work and to conduct the following research methods, the
system had to be implemented in specific scenarios. For this reason, two case studies were
conducted.

The first case study was designed with the purpose of showing the extent of the work
within a realistic scenario, based on an existing system, and was therefore used for all
evaluation processes and presentations. This scenario was built on top of a collection of
Scandinavian Tweets. A tweet is a public message on the short messaging platform Twitter.
This dataset can provide insights into the usage of language in Tweets from a timespan of
over a year which could be of interest to humanity researchers. A detailed description of
the scenario can be found in Section 4.3.1, and the work necessary for the implementation
within the system is described in Section 5.3.1.

The second case study was designed with the purpose of highlighting the ease with
which new datasets and scenarios can be plugged into the system. Therefore, a dataset
from Södra–one of the largest forestry companies in the south of Sweden–was chosen
which has the potential to provide insight into forestry yields of different woodlands they
cultivate. The full description of the case study can be found in Section 4.3.2, and the
implementation in Section 5.3.2.

In the evaluation phase, at first, the results were verified to check if the requirements
were met. To come to a scientific conclusion, two different quantitative research methods
were used in the verification part: an experiment and a survey.

An experiment was conducted to measure the performance of the system in different
aspects and for different data sizes and tasks. The target was to check if the system can
handle high loads and how it performs with generic tasks. The setup of the experiment is
described in Section 6.1.1, and the findings are reported in Section 6.2.1. The measured
metrics include, among others, the Time-to-Interactive, transmitted dataset size, and
the memory usage in the browser. Additionally, the performance of StanceXplore was
measured for specific tasks, and a rough comparison was drawn between the performance
of both systems. Together with a feature comparison in regards to the scope of the system,
this allowed for an overall comparison between the systems.

A survey was conducted with all attendees of the later on described expert interviews
and consisted of a single questionnaire, the User Experience Questionnaire (UEQ). It is a
widely used questionnaire to measure user experience (UX) that was initially created in
2005 by researchers at the SAP AG [37]. Today the UEQ is available in multiple languages
and comes with prepared analysis tools, and a large comparison dataset. The consistency of
the scales and their validity was confirmed in multiple studies and the comparison dataset
contains reference values from over 160 studies with over 4800 polled individuals [38].

In 26 contrastive pairs, the survey tries to measure the general impression of a user
regarding his interactions with an interactive product [37]. The 26 items are seven-stage
Likert scales between semantic differentials which can be grouped up to the six scales:
(i) attractiveness, (ii) perspicuity, (iii) efficiency, (iv) dependability, (v) stimulation, and
(vi) novelty. Perspicuity, efficiency, and dependability describe pragmatic qualities, while
stimulation and novelty describe hedonic qualities. Attractiveness exists independently
as a pure valence dimension. The structure of the questionnaire makes it easy to spot
inconsistent and suspicious answers while showing strengths and weaknesses of the system
thanks to the reference values.

The second part of the evaluation phase is the validation, where the overall concept and

11



the chosen solutions were checked against the expectations of possible users and people
with domain knowledge. To get this qualitative feedback, an open expert interview was
conducted with five experts in the field of data visualization and data exploration. In this
process, the interviewee was given a short introduction to the system and its usage, and
then he was asked to perform a few tasks with the system in a recorded think-aloud session.
At this point, the user was asked to fill out the previous mentioned UEQ. After that, an
open interview was conducted to get feedback on the used concepts, the usability and
understandability, and generic improvement possibilities. The exact procedure and its
results can be found in Chapter 6.

3.3. Reliability and Validity

Some aspects of the project make it necessary to discuss validity and reliability. Regarding
reliability, the measured metrics in the experiment relied heavily on many factors of the
test environment, from operating system to clock speed, both on the client and on the server.
These factors were locked down and documented, which made the experiment reproducible.
Another less-important factor was the fragmentation of the dataset concerning specific
filters and test set sizes. This influence was smoothed out by the newly-shuffled test
set in every iteration. All details regarding the setup of the experiment are explained in
Section 6.1.1.

In the aspect of validity, there were the results of the experiment, survey, and the expert
interview to consider. The experiment results should be considered valid since they only
compared own measurements from the same system and do not draw any conclusion based
on outside measurements, and only support observations made from the interview and
survey. The survey and the expert interview might be prone to problems with internal and
external validity. Internal validity is about drawing the right conclusions from the collected
data and external validity is about the extent to which a result can be generalized to more
generic conclusions. The survey and the expert interview were conducted with only five
participants of which none were in any way connected to the project, but all of them came
from (or are very familiar with) the field of visualization. To overcome these problems
Chapter 7 makes extensive efforts to clarify that the results from these two methods are not
universal, only providing initial and implementation-specific insights and feedback.

3.4. Ethical Considerations

It is important to keep ethical considerations in mind when dealing with human subjects in
any project. In this project, the only ethical considerations come from privacy and data
protection originating from the datasets used in the case studies and the recorded data from
the expert interviews.

While the dataset from Södra does not contain any personal information, the dataset
from Twitter does contain public data from users, and the pseudonymized usernames and
the contents of the tweets themselves may possibly contain personal data. In their privacy
regulations and developer guidelines1, Twitter specifies that the data associated with tweets
are free to use as long as the guidelines are followed. The end user has the possibility
to opt-out of this data sharing, and has to opt-in for location sharing as a unique form of
personal data sharing.

1https://developer.twitter.com/en/developer-terms

12



For the interviews, the participants were informed that no private personal information
was recorded and all of the findings would only be published independently from their
person, and on an aggregated basis. With the agreement of the interviewees, the whole
process of software trial and the interview itself was recorded to ensure that nothing
important was lost in the process. These recordings were only stored for this process and
without any personal pieces of information attached (although a connection could be made
through the interviewer because of the small sample size). After the evaluation process
ended, all recordings and raw notes on specific interviews were destroyed.

13



4. Conception

In this chapter, the concept of the system is described. First, the requirements collected for
the system are detailed and discussed. Building upon these requirements, the design of the
system is described and, finally, two case studies are conceived and explained.

4.1. Requirements

The first step in the Verification and Validation method is to compile a list of both functional
and non-functional requirements as explained in Section 3.1. The following requirements
are built around the idea of a hierarchical organization, beginning with a few high-level
non-functional requirements that dictate how we want the final system to behave. Under
these main requirements are the sub-requirements that, when fulfilled, should satisfy
their parent requirement. This way, low-level sub-requirements can be formulated more
technically, making them clearer to implement, while we still maintain the high-level view
of the main requirements.

To make the system practically usable, we wanted to make it as accessible as possible.
This required: (i) keeping the initial setup for new users as easy as possible, (ii) decoupling
the presentation from the dataset, and (iii) making the presentation accessible with tools
that most users are expected to be familiar with.

Requirement 1 (Accessibility)
The system has to enable multiple users/researchers to look into the same dataset at the
same time, without having to set up the system multiple times.

Requirement 1.1
The presentation has to be accessible across different devices without unnecessary over-
head.

Requirement 1.2
The presentation has to be decoupled from the data source.

One of the key features of the system was defined to be the adaptability to different
datasets, providing an added benefit that exceeds its usage in a single installation. To
achieve this, we had to require adaptability both in regards to data sources, data structures,
and viewing angles, while keeping the effort to set these up to a minimum.

Requirement 2 (Adaptability)
The system has to be easily adaptable to different datasets regarding structure, data source,
and viewing angle.

Requirement 2.1
The presentation has to be easily configurable to provide different views into a dataset.

Requirement 2.2
The system has to be easily adaptable to handle new data sources and data structures.

14



Requirement 2.3
The user has to be able to quickly swap between different setups.

When providing different viewing angles into a dataset, it is important to bind them
together to make a single, conform presentation. Therefore all viewing angles were
required to be filterable while keeping them connected and making the connection apparent
to the user.

Requirement 3 (Filterability)
The user must be able to filter the dataset from a selected viewing angle in the presentation,
according to the view’s unique presentation features.

Requirement 3.1
A filter applied in one viewing angle must be broadcasted directly to all other viewing
angles.

Requirement 3.2
The user has to be able to filter the dataset down to a single event.

One key research focus of this project was to bootstrap the underlying framework for the
creation of meaningful multiscale visualizations in multiple views of a multi-dimensional
dataset, and embed them seamlessly in a presentation.

Requirement 4 (Multiscale)
The presentation has to provide the possibility of visually exploring datasets in multiple
scales in every viewing angle that would benefit from it.

Requirement 4.1
The presentation has to provide a map view that employes multiscale techniques.

Requirement 4.2
The presentation has to provide a stacked time series view that employes multiscale
techniques.

ISO 9421 Ergonomics of Human System Interaction [39] in its 2018 revision split up
part 11 which previously defined specifications and measurements of usability. As this
project and the requirement collection began before the publishing of the 2018 revision,
the requirements were designed along the previous versions part 11, Guidance on usability
[14]. Research suggests that creating requirements along the guidelines and definitions of
this standard is effective, but very hard to do if the requirements are applied in details [40].
Therefore, the derived requirements only take the standards as guidelines, and not as strict
rules. Although most previously described requirements can be factored into the usability
of the system, some additional requirements were needed.

Requirement 5 (Usability)
The system has to follow general guidelines for usability.

ISO 9421-11 defines three guiding criteria for the usability of software: the effectiveness
of task completion, the efficiency of usage, and the satisfaction of the users. The standard
defines efficiency as "the resources expended in relation to the accuracy and completeness
with which users achieve goals." [14] This means that the user has to be able to solve a task

15



with a system with as little effort as possible. To achieve this, the user interface should be
kept as straightforward as possible to keep the focus on the data and its expressed meaning.

Requirement 5.1
The presentation shall not include any unnecessary information or possibilities of interac-
tion.

Additionally, it is important to keep the user focused on his tasks without breaking
his “train of thoughts”. To achieve a context-disruption-free presentation, an important
requirement is to keep the amount of data showed in the presentation itself to a minimum.

Requirement 5.2
The presentation shall avoid context disruption on interactions as much as possible.

Requirement 5.3
The amount of transfered data from the data source to the presentation shall be kept as
light as possible.

Effectiveness is defined as "the accuracy and completeness with which users achieve
specified goals" by the ISO standard, which means that the system should provide the
possibility to solve tasks as completely and correctly as possible [14]. Effectiveness is
linked to the satisfiability of the previous requirement. Lastly, satisfaction is defined as the
"freedom from discomfort and positive attitude to the use of the product." It is the most
comprehensive criteria and includes points such as learnability, perspicuity, and general
attractiveness. The target was to project on the user a coherent, pleasant overall impression
that illustrates the utility and added benefit of the system.

Requirement 5.4
The presentation shall employ different, clear to understand colorschemes.

Requirement 5.5
The added value of the system as a whole for the data exploration shall be clear to users.

Requirement 5.6
The added value of the employed multiscale techniques shall be clear to users.

To guarantee an apparent learning curve and perspicuity of the users’ own actions, some
additional requirements were necessary.

Requirement 5.7
The basics of interacting with the data through the presentation shall be easy to learn.

Requirement 5.8
Every possible action by the user shall be reproduceable for him.

Requirement 5.9
The user shall be enabled to solve possible tasks with the system after a short introduction
into the presentation.

A full list of all requirements can be found in Appendix C.

16



4.2. System Design

In this section, the design of the system itself is described (not its implementation, which
is described in Chapter 5). It incorporates the requirements into an overall structure
geared towards their realization. At first, the architecture is described with all of its
components and their connections and couplings. Next, the user interface and in particular
the visualizations are looked into in more detail as the emphasis of this project is on the
multiscale data visualization.

4.2.1. Architecture

To make the system conform to the accessibility requirements (Req. 1) a classical client-
server architecture was chosen. The server-side handles the datasets, configurations, and
data preparations, while the client takes care of the presentation (Req. 1.2). To make the
presentation accessible on most devices without any further installations the browser was
chosen as a client (Req. 1.1).

The adaptability requirements also heavily influenced the overall architecture. To make
new datasets and viewing angles easy to set up without setting up the whole service the
server-side had to be split up into the main backend service and connectors querying the
data source representing use cases.

Figure 4.1.: High-level overview of the components of the system.

This leaves the system split up into (i) the frontend, (ii) the main backend service, and
(iii) connectors as visualized in Figure 4.1.

The backend service (Figure 4.2, middle) is designed to function as a server for the
frontend and as an application programming interface (API) gateway between presentation
and data source. The central component has to be the configuration controller that handles
the configuration of every view into the corresponding dataset. When a request reaches the
backend service, it shall resolve the origin of the request and look up the corresponding
configuration file. If there is a valid configuration for that host, the request itself is looked
at. If it a request to serve a presentation the static frontend is served. If it is a configuration
request from a presentation, the configuration is pulled from the internal configuration
store and served. If it is a request for data, the service queries the connector and then
aggregates and compresses the data to transmit as little to the presentation as possible
(Req. 5.3).

The frontend (Figure 4.2, left) is providing the presentation, and the design is described
in detail in the following subsection. The frontend was designed to be completely static,
meaning that the same frontend is used for all presentations regardless of dataset and
viewing angles. Only after the frontend is served, it shall request its configuration and
adapt the presentation accordingly. Not having to adapt the frontend also helps with the
adaptability requirements.

By having a single backend service and a static frontend utilized in all use cases, the
user is able to switch between already set up presentations by simply navigating to the
Uniform Resource Locator (URL) that hosts the desired presentation (Req. 2.3).

17



The core of every use case has to be the configuration. The connectors register them-
selves at the backend service by submitting their configuration. The configuration was
designed to always provide the following information: (i) the URL of the connector, (ii)
the name, (iii) the hostname, (iv) the dimensions of the dataset and their type, (v) starting
filters, and (vi) the presentation blocks setup. The URL is needed for the backend to reach
the connector upon queries and the hostname is required to identify the corresponding
connector upon requests. The name is thought of as an identifier in the presentation and is
passed to the frontend together with initially applied filters and the setup of the presentation
blocks. Every block configuration has to include a title, the type of the block and a width.
Additionally, further information may be required depending on the type of the block.
At a minimum, this includes the displayed field. The presentation blocks themselves are
described in the next subsection. The backend shall store all registered configurations
locally for quick access and maps the incoming requests to connectors using the hostname
in the configurations. By changing the configuration or submitting a new configuration
using an already existing connector, it should be easy to set up new viewing angles into a
dataset (Req. 2.1).

The connectors (Figure 4.2, right) are the only part of the system that has to be adapted
to new data sources and structures. Their only required function is to query their data
source when the backend service requests a set of data. To connect backend and connector,
an endpoint is required that takes in a set of filters and fields. In the first iteration, these
filters are defined as startsWith, between, excludes, and includes. These filters are known
in most database querying languages and should be easy to implement for the specific data
source. The main idea behind the connectors is that most of the calculation effort is taken
care of by the database which is optimized to do exactly such tasks. This design keeps
the required code to set up a new data source and structures to a minimum as required by
Req. 2.2.

In conclusion, the architecture consists of a single static frontend and a backend service
that are populated by the data provided by connectors that are purpose build to handle their
data source (Figure 4.2). By quickly adapting the connector a researcher is able to set up a
new data source and by changing a simple configuration providing different views into
this dataset. Once this is done the presentation is accessible to everyone with access to the
hosted service by using their browser.

Figure 4.2.: Illustration of the components and subcomponents of the system.

4.2.2. User Interface

The frontend was designed to be static so that it could be used for all use cases and only
adapts at runtime to the configuration of the current presentation. To achieve this, the
frontend shall provide multiple components that can be used to provide a viewing angle into

18



the data. The components shall be easily adaptable in order, size and of course displayed
dimension of the dataset by the configuration of the presentation.

For the prototype, the following components were conceived: (i) a plain list, (ii) a
category list, (iii) a time series, and (iv) a map.

The plain list was thought of as the simplest component that only takes a dimension
of the dataset and asynchronously loads a configured amount of entries to display. Filters
shall be applied, but the component itself shall not provide any mean to filter.

The category list has the purpose of filtering the dataset in a categorical dimension
while visualizing the magnitude of events between the categories. In contrast to the plain
list the data is not separately loaded, but a dimension of the global dataset is used. Every
list entry shall represent a category and consist of a tick box for filtering, the title of the
entry, a bar representing the percentage of events to the biggest category, and the total
event amount. To make the list easier to scan the categories shall be color-coded following
Req. 5.4. Additionally, the list shall be ordered descending by the number of events. A
mockup can be seen in Figure 4.3.

Figure 4.3.: Mockup of the category list component.

The next component is the time series component, designed to display event an event
count split into a categorical dimension over a time dimension. The component shall
enable the user to filter the dataset in the time dimension and provide a seamless multiscale
experience over the same dimension. The multiscale concepts chosen for this are described
in more detail in Section 4.2.4. As this is visually a very complex component, it was
important to keep Req. 5.1 in mind to avoid context disruptions through confusion as
required by Req. 5.2. By displaying categories which are possibly already displayed in a
category list, it was important to remember to keep the used color-coding for the categories
consistent. Apart from the multiscale visualization, this component was not designed to
feature any other functionalities.

The map component is the second component featuring a multiscale visualization.
This component shall take a single hierarchic categorical dimension to aggregate and
display the event count in the provided map material. Based on this approach of utilizing
custom map material, not only geographical maps but also thematic or abstract maps are
possible, making this component highly flexible and powerful. A detailed description
of the multiscale approach for this visualization can be found in the next subsection
(Section 4.2.3). Similarly to the time series component, this component was designed to
only feature a single visualization to keep the complexity low (Requirements 5.1 and 5.2).

To tie all designed components together in a presentation and provide meaningful
exploration functionalities, it was necessary to come up with a combined filtering concept
that can handle the multi-dimensional nature of the datasets (as required by Req. 3). The
goal was to provide filtering options in one dimension while reflecting the applied filters
in all other dimensions in the visualization of the current dimension. For example, only
showing categories that have events in the current selection, and omitting categories that

19



have no events, since filtering on these would have no impact on the other dimensions. To
achieve this, all filtering components shall propagate filtering events to the central data
store which then shall apply the filter (and fracture the dataset) to all other dimensions. This
is necessary because we also want to show the excluded values in our filtering dimension.
This approach ensures that a filter applied in one viewing angle is directly propagated
to all other viewing angles as required in Req. 3.1. Moreover, the overlapping filtering
across dimensions, enables the user to filter down to a single event if it is unique in its
combination of used dimensions (Req. 3.2).

4.2.3. Map Visualization

The map component shall feature a single multiscale map as required by Req. 4.1. To make
the map flexible, the configuration has to provide links to map material, which includes the
shapefiles plus level identifiers. Shapefiles contain the necessary contours of the areas and
the level identifier make these areas destinctly identifiable.

The basic concept of this visualization is a choropleth map, i.e., to draw the shapes
of areas and to fill it with color based on the count in this area on a quantized scale.
To map entries to areas, it was required to map the areas into hierarchical levels. For
example, Växjö is a municipality in the county of Kronoberg, which is part of the country
of Sweden. The multiscale approach is not to display just one level (i.g., municipalities,
counties, or countries) at a time, but to give the user the possibility to split up specific
areas into its subareas. To come back to the example, this would mean that the user can
look at Växjö and all other municipalities in Kronoberg while, at the same time, compare
them to the surrounding counties. A mockup of this example can be seen in Figure 4.4.
This hierarchical approach allows the visualization to combine subareas to larger areas
(i.e., municipalities to counties) by summing up all subareas contained in the area. It is
important to note that this visualization is not limited to geographical maps but can also be
used in abstract maps as the shapefiles are provided by the configuration.

Figure 4.4.: Mockup of the map visualization showing the county of Kronoberg split into
municipalities, while the surrounding counties are intact.

Additionally, the map needs further features such as a color legend, zoom and pan
controls to navigate through the map easily, and controls to filter for specific areas.

20



In conclusion, the map visualization was designed to be a choropleth map that allows
the user to split up areas into subareas and thus change the granularity of specific regions
while keeping the rest unmodified at an overview level.

4.2.4. Time Series Visualization

The time series component shall feature a stacked time series visualization as required by
Req. 4.2. To accomplish that, the visualization shall consist of three parts: (i) an overview
time series, (ii) a detailed time series, and (iii) a control layer connecting the two time
series.

The overview time series shall be a small stacked area chart over the full timespan
of the targeted time dimension. The purpose was, as the name suggests, to provide an
overview over the whole timespan and enable the selection of the domain of the timespan
of the detail view. As the y-Axis stacks counts of categorical data, it is important to keep
color-coding consistent not only with the detailed time series but also to possible other
representations of this dimension in the current overall presentation. Because the purpose
of this time series is only to provide an overview, the granularity in the time dimension is
only of little importance and can be as fine as the data is compacted, to keep calculation
overhead low.

The detailed time series shall visualize the selected domain in more detail. This shall be
achieved by stretching the domain (the timespan) over the full width of the visualization
giving it a wider range (the displayed width). Additionally, a Focus+Context approach
shall be embedded, allowing the user to go into even more detail without losing the context
of the rest of the detailed domain. Furthermore, the user shall be able to add lenses with
both a variable domain and range. This enables the user to dynamically focus on a specific
timespan and stretching it to a width that allows the granularity he desires. As this approach
makes the horizontal axis polylinear, without any restrictions on how far a timespan will
be stretched or squeezed, the granularity of every stretch of the axis has to dynamically
adapt based on its range.

The control layer shall connect the two time series and give the user the handles to select
the detailed domain, add lenses, and manipulate their domain and range. To achieve this,
the control layer shall add handles to both time series which are visually connected to their
counterpart on the other time series. The handles on the detailed time series shall enable
the user to adjust the range of a lens and the handles on the overview time series to adjust
the domain.

In conclusion, the time series visualization is a combination of the Overview+Detail
and the Focus+Context technique with a dynamic selection and focus, as illustrated in
Figure 4.5. This concept was influenced by the MultiStream visualization introduced
in Chapter 2 Background while introducing more intuitive and dynamic controls and a
changing granularity not in the category dimension but the time dimension.

4.3. Case Studies

For the evaluation, the system was implemented for specific scenarios. Hence, these two
scenarios are explained and discussed.

4.3.1. Twitter Language Usage

The scope of the first case study was to embed the system in a realistic scenario. For that
purpose, the following scenario was chosen: As a researcher, I want to investigate the

21



Figure 4.5.: Mockup of the time series visualization showing a detailed view from June to
September and a focus lens for the month of July.

usage of different languages in Tweets in the different regions of Scandinavia and how
they develop over time.

This case study is based on the Nordic Tweet Stream (NTS) [41]. The dataset includes
11 million Tweets from Denmark, Finland, Iceland, Norway, and Sweden over a timeframe
of 15 months starting in November 2016. For this case study only the origin, the timestamp,
language, and content of the Tweet are of relevance. Additionally, the dataset contained
mostly meta data about the poster and the location.

Based on this dataset there already was a tool with a similar use case developed, which
was introduced in Chapter 2 Background. This tool was adopted as a benchmark with the
goal of comparing to the system conceived here regarding performance and general feature
richness. The comparison is captured in an experiment that is detailed in Section 6.1.1
Experimental Setup.

To realize this scenario, the system shall be configured to display the following compo-
nents with their respective dimensions. Firstly, a category list representing the language
dimension enabling the user to compare used languages in a fixed timeframe and filter
down on specific languages. Next, a plain list of Tweet contents to get a feeling of the
Tweets themselves. Then, a map component with the Scandinavian countries and their
different administrative levels to compare and filter down on regions. Lastly, a time series
component visualizing the development of the languages over time.

4.3.2. Södra Forestry Yields

The second case study has the goal of highlighting the ease with which new datasets and
scenarios can be plugged into the system, as required by Req. 2.

To achieve this, the case study was based on a different dataset. The utilized dataset
comes from Södra1 and reports the yield of harvested trees including timestamp, location,
and species. The chosen scenario is the following: As an operator, I want to know how
many trees per species were cut down in different areas over time.

For this scenario, the presentation shall be configured to display the species in a category
view, and the positions on a map of the south of Sweden. Furthermore, the time series
component had to display the species over time. The data source for this scenario should be
different from the previous one to give another example implementation and demonstrate
the ease of adaption.

1https://www.sodra.com/en/ [Accessed: 06-Mai-2018]

22



5. Implementation

After the conception phase, the concept had to be implemented to prove its viability and
enable the testing of the case studies and further evaluations. In the following sections, the
implementation of the backend service, the frontend, the visualizations, and finally the con-
nectors for the two case studies are briefly described, and problems during implementation
are laid out. The source code of all components can be found online in their corresponding
repositories 1.

5.1. Backend

The backend service was implemented in JavaScript utilizing the node.js2 runtime, which
is powered by Google’s V8 engine3 that also powers the Google Chrome browser. Node.js
is available for all major server operating systems and enables researchers to painlessly
set up their own instance locally or on a server. By using JavaScript in all components of
the system, it was possible to share code between the components and lower the hurdle
for further development. The backend service utilizes the lightweight express framework4

to provide a server and handle requests. Node.js is a JavaScript runtime that elevates the
language from a purely browser based one to a language that is able to produce standalone
applications and webservers. The express framework is a wrapper around the node.js
webserver protocols that aides in routing and request handling. All used technologies and
tools are open-source and freely available.

The backend service requires three controllers: (i) a server controller, (ii) a configuration
controller, and (iii) a data controller.

The server controller serves the files of the static frontend in production mode or
functions as a proxy in development mode. With only 12 lines of code, this is by far the
smallest controller.

The configuration controller takes care of registering and unregistering use cases and
their connectors. To do this, it provides two endpoints: (i) a registration endpoint and
(ii) an unregistration endpoint. The former takes the submitted configuration and looks
up if the use case is already registered by checking the hostname, and either updates the
entry or adds a new one. The latter does exactly what the name says and discards the
matching entry in the local store. Furthermore, this controller provides functionalities to
the other controllers by providing wrappers around finding and listing stored configurations.
The configurations themselves are JavaScript Object Notation (JSON [42]) objects that
implement the schemata introduced in Section 4.2.1 Architecture. An example of a
configuration can be found in Appendix A.

The data controller takes care of data requests from the frontend. To achieve this,
it looks up the configuration file for the requested hostname and then queries the corre-
sponding connector with the required fields, filters, and limit. The returned events are
then compacted and compressed before they are sent back to the requesting client. The

1https://gitlab.com/isovis/stancexplore
2https://nodejs.org/ [Accessed: 06-Mai-2018]
3https://developers.google.com/v8/ [Accessed: 06-Mai-2018]
4https://expressjs.com/ [Accessed: 06-Mai-2018]

23



compacting of the data is achieved by building a cross product of all requested dimensions
and counting the events for each combination. This splits up the response in (i) a definition
collection, listing all dimensions with their type and all occurring unique values in an
array, and (ii) a value part, listing all occurring combinations together with their absolute
frequency. Each value entry is an array, with the last index being the count. Each entry in
this array is mapped by its index to the dimension in the definition part, and its numeric
value to the index in the value list of the dimension definition. An example is illustrated
in Figure 5.1. This way the dataset is compressed for transmission without losing any
important information. This self-defined concept could be further improved by adapting
the definition part of dimensions based on their type. For example, a time dimension could
provide its starting interval, and the referenced index could be calculated by counting the
intervals after that without the need to explicitly list them.

Figure 5.1.: An example of the output of the data compacting algorithm. The first line
in the points array expresses that there are 75 entries with 2016-11-06, en,
SE.VG.GB.

In conclusion, the backend service is lean and easily extendible to provide additional
features down the line. It needs no code changes to serve any use cases and in theory, can
facilitate unlimited use cases. As the only calculation heavy functionality is the compacting
of requested datasets, scalability on a single process should be secured even under heavy
usage. Extending this usage barrier the service is also able to seamlessly run in a cluster
mode managed by an external process manager like pm25 making it as scalable as the
environment it is hosted on by spreading requests between multiple instances.

5http://pm2.keymetrics.io/ [Accessed: 06-Mai-2018]

24



5.2. Frontend

The frontend is also a JavaScript project that relies heavily on build tools to provide the
best cross-browser compatibility and smallest file size while using the newest language
features. Babel6 and webpack7 are used in the build process while the bundled output
only packs six external libraries. Vue.js8 is used as a reactivity and display framework
with Vuetify9 as component and styling framework on top. This makes clean, encapsulated
components possible helping with code sanity, extendability, and maintainability. Axios10

is used as an HTTP client for asynchronous requests and lodash11 as a high performant
utility library. Additionally, the visualizations are built upon D3[43] and TopoJSON12

which enable building powerful visualizations from scratch. Again all used technologies
and tools are open-source and freely available.

The structure of the frontend is straightforward. The core takes care of the configuration
and data fetching and storing while all other functionalities are encapsulated in separate
files. Apart from the different components, there is a parser taking care of all data crunching
and a profiler for evaluation reasons.

Upon loading, the core requests the configuration and initial dataset from the backend
service. Once the configuration is loaded, the presentation is built by appending the defined
components to the component list. The components are provided with their configuration
and the linked data collection. Additionally, the title of the presentation is inserted and the
initial filters are set. When the dataset is loaded, the parser builds a full collection out of
the compacted data and defines the colors of every category across all dimensions. After
the data is loaded and transformed, the collection is split up into its dimensions and filtered
according to the set filters. The filtered collections are then fed to their linked components
which update their visualization.

To set up the components, the order in the definition is used to sort them and the provided
width is projected on a grid of 12 units. The list is wrapped, forcing components in a
new row once all 12 units of a row are filled, resulting in a distribution of the components
across the screen that is easy to define and understand.

When a component registers a filter change by the user, the new filter is propagated
to the core which applies the new filter to all other filtered collections, resulting in their
displaying components to dynamically update their visualization.

The components are split and encapsulated in their own directories and files, making
them easily modifiable and extendable without influencing any other component. While
the data transformation is taken care of in the parser, minor adjustments that are not
generalizable are housed in their component, keeping the parser clean. All components
take their title, linked field, filtered collection, and applied filter as properties, making them
fully reactive to changes applied by the core.

In conclusion, the structure of the frontend is highly abstracted and encapsulated,
making it easily extendable with additional components and making the components
flexible to handle different datasets. With the configuration file, the presentation is easily
configurable by chaining components together and binding them to their data dimension.
The whole frontend project is static and can be used for all presentations as it adapts to the

6https://babeljs.io/ [Accessed: 06-Mai-2018]
7https://webpack.js.org/ [Accessed: 06-Mai-2018]
8https://vuejs.org/ [Accessed: 06-Mai-2018]
9https://vuetifyjs.com/ [Accessed: 06-Mai-2018]

10https://github.com/axios/axios/ [Accessed: 06-Mai-2018]
11https://lodash.com/ [Accessed: 06-Mai-2018]
12https://github.com/topojson/topojson/ [Accessed: 06-Mai-2018]

25



configuration at runtime.

5.2.1. Plain and Category List

The plain list component was implemented as straightforward as designed. The component
expects a title, the field to display, and the full set of filters. If the filters change, the
component asynchronously queries the backend service and displays a loading state. Once
the backend service returns the entries, they are displayed. A screenshot of the finished
component can be found in Figure 5.2. This component could be easily extended to fit
further purposes by expecting a template literal and a field list instead of just a single field
to display custom results for each entry. For the prototype this was not done as there would
be no benefit for the two case studies.

Figure 5.2.: Screenshot of the plain list component filled with case study data.

The category list was also precisely implemented as the design suggested. It takes as
input a title, the connected field, the filtered collection, the applied filter, and the color
mapping. The filtered collection is ordered by count and rendered as a list with checkboxes
corresponding to the filter state of the item. The included bar chart is maxed at the first
item and displays the absolute count of the item. Upon filters or collection changes the list
automatically re-renders. If checkboxes are changed, the new filter list is calculated and
propagated to the core, which in turn applies it to all other collections. A screenshot of the
component can be found in Figure 5.3.

26



Figure 5.3.: Screenshot of the category list component filled with case study data and
applied filters for en, fi, and sv.

5.2.2. Map Visualization

The map component was implemented closely to the design, but was extended with two
minor improvements. The visualization was built upon the visualization library D3 and
the topoJSON shapefile handler. The component takes not only the filtered collection and
the targeted field as a parameter, but also the source of the topoJSONs and the identifying
property field in the shapefile. Once the shapefiles are loaded, the shapes are mapped to
the collection. The different levels were achieved by merging shapes together until the
desired layer is achieved. This allows for quick changes in layers without recomputing and
rendering all shapes.

The color-coding of the shapes is achieved by mapping the counts of the rendered,
visible shapes on a quantized, six-step color scale. A blue color scheme is used by default
because it is differentiated clearly from all colors used in the schemes for categorical data.
With every change in the collection, the color-coding is recalculated and reapplied without
a need to rerender the shapes. Over the visualization, a legend was added that displays
the color-coding intervals and highlights the corresponding shapes upon hovering, thereby
making the colors easier distinguishable.

The controls of the visualization were kept to a minimum. Every displayed shape offers
a tooltip on hovering, providing the exact name of the shape and its parents (i.e., Sweden
- Kronoberg - Växjö) together with the absolute amount of events for this shape. Once
clicked, every shape displays a context menu offering to add or remove the corresponding

27



region to the filter. Additionally, the context menu provides the possibilities to split a
region up in its subregions and merge all regions of its parent region together, if the map
material provides the needed levels. This allows the user to split specific regions into
subregions while keeping others untouched and vice versa. Regions that are included in
the current filter are recognizable by the shape having a red stroke around it. As an added
feature, a button is floating in the upper right corner that resets the pan and zoom to the
starting position. A screenshot of the menu controls can be found in Figure 5.4 while the
whole component can be seen in Figure 5.5.

Figure 5.4.: Screenshot of the menu controls in the map component.

Figure 5.5.: Screenshot of the map component filled with case study data and filtered
for Växjö. Zoomed in to show Kronoberg split up into municipalities while
keeping the surrounding counties untouched.

5.2.3. Time Series Visualization

The time series component was also built with D3 and was set up to take not only the com-
ponent title, the filtered collection, and the filters together with the displayed dimensions
as parameters, but also requires the color-coding information for the category dimension
and the extent of the time dimension. The visualization encapsulated its logic into the three

28



parts outlined by the conception: (i) the overview time series, (ii) the detailed time series,
and (iii) the control layer connecting the two time series.

Upon the initial rendering, the visualization sets up the three parts and binds event
handlers. These are reported back to the containing component to enable triggers from
outside. This way, changes in the collection or changed filters do not require a full re-render
of the visualization, but can be displayed by transitioning the already rendered parts. To
generate the stacked time series, the collection is stacked by the parser. For that, the parser
first builds a data structure spanning the whole timeframe that is provided by the extent
parameter. This way missing days in the collection are automatically filled. After that, the
different groups are summed up, descendingly ordered by total counted, and then their
stacked values for each timeslot are calculated by summing up all smaller groups count in
that timeslot.

The overview time series was implemented in a straightforward manner. The stacked
groups are rendered in their corresponding color in the highest provided granularity. To
prevent a changing extent on the x-axis when changing filters, and thereby possibly
removing outer timeslots, the extent of the axis is set to the supplied parameter.

The detailed time series is a more complex adaptation of the overview time series. The
extent is set by the user selection in the overview time series. To provide a more meaningful
view of the displayed data, the granularity is dynamically calculated. To achieve this, the
physical width of the visualization is split to achieve a tick approximately every 50 pixels.
In every tick, the nearest timeslots are aggregated by displaying the mean over all included
values for every group. The lenses that are added by the Focus+Context approach split this
time series up into multiple strung-together time series, applying the same principle for
granularity. The values are split up into the selected domains and calculated and rendered
independently. This leaves the problem that where the time series connect the values differ
and there is a visible jump in the visualization. To overcome this problem, the outermost
ticks were not displayed as the means of all their values, but as the exact values at the
specific timeslot.

The control layer binds the two time series together and provides all the controls to the
user. To select the detailed domain, the user can drag a so-called brush over the overview
time series. A brush consists of two draggable handles. When dragging a handle, only
the corresponding side of the extent changes, and when dragging the transparent area
between the two handles, both handles and extent move in parallel. To hint the user at
this functionality, the handles over the overview time series were connected to the edges
of the detailed time series by dashed lines. To provide the Focus+Context functionality,
two buttons were added right under the detailed time series. One button adding a lens
when enough space is left and one button removing the innermost lens. The lens’ controls
extend the detail selection by providing a brush over the overview time series to control the
domain of the length (from which date to which date) and a brush right under the detailed
time series to control the range of the lens (how much space the lens domain shall take
up). A dashed line also connects the two brushes, and the brushes are limited in their
movement by their adjacent brushes. For every further lens, this approach is repeated.
When moving a brush over the overview time series, the exact timeslots of this brush are
displayed underneath the brush. The innermost domain, being a lens or just the detail
selection, represents the filter that is applied to all other components. This is clarified by
changing the brush and dashed line color and always displaying the selected timeframe in
the upper right corner of the component. A screenshot of the component can be found in
Figure 5.6.

29



Figure 5.6.: Screenshot of the time series component filled with case study data and filtered
for July 2017, showing four stacked languages and two lenses focusing in with
the whole year 2017 as context.

5.3. Connectors

The concept of the connectors was designed to be as easy to implement as possible,
enabling researchers to add new data sources and viewing angles quickly. Therefore, the
only requirement necessary for connectors was to provide an HTTP API endpoint that
queries the data source and returns results based on a provided filter, requested fields, and
an optional limit. In the following sections, the work that was necessary to implement the
Twitter Language Usage and the Södra Forestry Yields case study connectors is described.

5.3.1. Twitter Language Usage

The map visualization was built using the visualization library D3 and the shapefile handler
TopoJSON. At first, the dataset had to be prepared for usage in the connector. The NTS
dataset came in separate JSON files totaling 9.7 million Tweets and a size of 12.4 GB. The
Tweets had to be parsed, filtered for sparse entries, and only the relevant fields picked. This
boiled the dataset down to 2 million entries and a size of 413 MB. The steep reduction of
Tweets came from the fact that most Tweets did not provide coordinates, as this is an opt-in
feature, but is necessary to visualize the entries on the map. The picked fields were the ID,
the timestamp, used language, coordinates, and the text of the Tweet, which reduced the
size of the data considerably.

In the next step, the entries had to be enriched. For this use case, this meant to map the
coordinates to a geographical region. The already introduced HASC was chosen, and map
material searched that provided shapes for the Nordic countries down to the lowest possible
level and included their HASC codes. Some research turned out sufficient map material
that mapped Norway, Sweden, and Denmark down to municipalities 13. For Finland, only
maps on the county level could be found as Finnish subdivisions changed over half a dozen
times this decade alone 14. Iceland was included in the dataset but was not included in
the map materials as the subdivision structure differs significantly from other countries.
The dataset entries were mapped directly to the lowest possible level in the selected map
material, and the HASC code was appended. Entries that could not be matched were
discarded, which brought the total amount down to 1.7 million entries while not noticeably
changing the size, due to the added field equalizing the missing entries.

These steps resulted in a dataset consisting of 1.7 million Tweets stored as JSON arrays
in JSON files split for each day. This situation resembled the provided raw dataset very
13https://github.com/deldersveld/topojson [Accessed: 06-Mai-2018]
14http://www.statoids.com/yfi.html [Accessed: 06-Mai-2018]

30



closely, and was not optimized with a real database to keep the use case simple and
highlight what the system is capable of achieving even without an optimized data source.

The implementation of the connector was also kept as simple as possible and resulted in
a node.js script adapting the filter implementation of the frontend to work on the JSON
files and provide the server endpoint via express. Additionally, the connector provided
an endpoint that takes the URL of a backend service and takes care of registering itself at
the provided backend service. As the most common request scenario is the default filter
set that is defined in the configuration, the connector was built to precalculate and cache
the answer to this query, which greatly improved initial loading time for the frontend.
The whole connector consisted of less than 100 lines of code, and the performance was
analyzed in Chapter 6 Evaluation.

The configuration that was registered to the backend service defines the URL on the
localhost, since the connector is deployed to the same machine as the backend service
and defines the fields date (type: time), language (type: categorical) and hasc2 (type:
categorical). Additionally, the starting filters were defined with a preset for language and
date. For the frontend, the configuration defined a category list for the field language, a
map for the field hasc2 with the selected maps, and a plain list for the field text in the first
row. The second row was defined to only include a time series with the field language over
the field date filling the whole row. The full configuration can be found in Appendix A.

The complete resulting frontend is displayed in Figure 5.7 and was used for the experi-
ment and the expert interviews described in Chapter 6. A working instance of the system
with the presentation of this case study can be found online 15.

Figure 5.7.: Screenshot of the complete frontend with the configuration and dataset of the
Twitter Language Usage case study.

15https://twitter.multiscale-explorer.de/

31



5.3.2. Södra Forestry Yields

The Södra dataset came in the form of a 29 MB comma separated values file (CSV-file)
and contained over 345.000 entries. Every entry represented a cut-down tree and consisted
of a timestamp, three-dimensional coordinates, some measurements of the tree, and the
species name. The dataset did not show any sparse entries or inconsistencies. To make
the dataset ready for exploration, only the coordinates needed to be mapped to a map of
Sweden as already described in the previous case study. Finally, the enriched dataset was
saved back to a CSV-file.

The connector was implemented as lightweight as possible and loads the data source
into memory at startup for better performance. Due to the small size of the dataset, this
resulted in under 20 MB of additional RAM usage by the connector. Upon queries, the
connector iterates over the whole dataset in memory and applies the queried filters. The
whole connector was written in node.js and copies the filter implementation of the frontend.

As for the configuration, the case study featured a category list for the species, a map for
the coordinates, and a time series displaying the species over time. Additionally, a further
category list was added displaying the number of logs generated from a tree by treating the
numerical dimension as a categorical one. For future presentations, additional components
for numerical dimensions could be added, such as, for example, a histogram of scatter
plots. The complete resulting frontend is displayed in Figure 5.8 and the configuration can
be found in Appendix B.

Figure 5.8.: Screenshot of the complete frontend with the configuration and dataset of the
Södra Forestry Yields case study.

32



6. Evaluation

The evaluation phase was the final phase of the project. In this chapter, first, the design
of the experiment and the expert interview are described. After that, the findings of the
experiment, the questionnaire, and the interviews are reported and explained. Lastly, they
are interpreted and put into the context of the requirements.

6.1. Design

This section describes the setup of the experiment and the expert interview sessions to
make them reproducible and help to make the concluding findings intelligible.

6.1.1. Experimental Setup

The goal of the experiment was to capture reproducible, quantitative metrics of the perfor-
mance of the system under a realistic deployment situation and expected load and tasks.
As the performance of such a data-intensive distributed system relies heavily on the many
factors of the used environment, these variables have to be locked down and documented
to make sure the experiments with the system are reproducible.

On the client-side, the target was to simulate a consumer laptop. The experiment setup
was running an up-to-date Ubuntu 16.10 LTS operating system and featured a single
CPU core of an Intel(R) Core(TM) i7-6500U at 2.50GHz. The system also included a
GM108GLM Quadro K620M GPU and 8 GB of DDR3 RAM. The amount of RAM was
high enough that no swap needed to be used, leaving the HDD as a non-factor. The browser
Chromium 66 was used which comes bundled with v8 6.6. The connection between server
and client was throttled to a symmetric 10mbps connection. A full specification list for the
client setup can be found in Table 6.1.

OS Ubuntu 16.10 LTS
CPU single 500MHz core
GPU NVIDIA Quadro K620M
Runtime Chromium 66.0.3359.139
JS engine v8 6.6.346.26
Connection 10mbps symmetric

Table 6.1.: The specifications of the client used in the experiment.

On the server-side, an expectable virtual machine instance on a data center cluster was
remodeled. It was also running an up-to-date Ubuntu 16.10 LTS operating system and was
housing both the connector and the backend service, as intended by design. Hardware-wise,
the experimental setup included two cores of an Intel(R) Xeon(R) CPU E3-1245 V2 @
3.40GHz, 32 GB DDR3 RAM and a SSD capable of a mean sequential read speed of
around 500M/B. Again, the RAM capacity was large enough for both services and no swap
usage was needed. As a runtime environment for the services, the current node.js LTS
version was used, which packs node v8 6.0. A full list of all specifications of the server
environment used in the system can be found in Table 6.2.

33



OS Ubuntu 16.10
CPU 2x cores @ 3.40GHz
SSD ca 500M/B sequential read
Runtime node.js v8.4.0
JS engine v8 6.0.286.52

Table 6.2.: The specifications of the server used in the experiment.

The experiment consisted of two parts: (i) a basic performance testing for an instance
of StanceXplore, and (ii) an in-depth performance testing of the first case study. The
performance test of StanceXplore consisted of measuring the resources needed to load
the frontend, memory usage, and the necessary scripting time to render the presentation.
The dataset used had the same source as the case study but only included Tweets from
May 2016 in Sweden. The restriction on the collected metrics was because replicating
StanceXplore in the same environment as the case study and filling it with the same dataset
was not feasible. The metrics were supposed to give a rough comparison to the new system
while keeping the differences in functionality in mind.

The performance measurements on the Twitter Language Usage case study included
more metrics and was conducted on different samples of the dataset. All measurements
were taken for different sample sizes of the dataset defined by the number of entries:
100k, 500k, 1m, and 1.5m samples were selected. For every sample size, there were 100
iterations conducted with each shuffling the dataset and randomly picking its entries before
injecting the subset into the connector.

The first set of metrics was the resources needed to be loaded by the frontend. This in-
cluded the dataset with the defined amount of entries and the resulting size, plus the loaded
dependencies. These dependencies include the HTML, CSS, and JS files necessary for
the presentation. They can be categorized in one-time downloads, which are subsequently
loaded from cache, and recurring downloads.

The second set of metrics captured were centered on timing. The loading times of
the configuration and the topoJSONs for the map component were measured as dataset-
size-independent metrics. In all cases, the loading times include not only the theoretical
transmission time, but also the connection overhead, the lookup time on the server, and the
browser internal parsing to an object. Depending on the size and sample of the dataset,
the Time-to-Interactive (TTI), the loading, and the parsing of the dataset itself were also
measured. TTI describes the time a website needs from the initial call until the user can
make the first meaningful interaction. In the case of the frontend, this means until all
visualizations and components are rendered, and the loading state is removed.

Additionally, the memory usage of the presentation was measured. This was done after
the initial dataset has been loaded and the presentation was waiting for user interactions.
At this point, the dataset was already parsed, filtered, and the filtered collections passed
and rendered in all components. It is important to measure this metric as the RAM usage
takes a toll on power usage and, in combination with other tools running on the client
environment, clock up the system, forcing the use of swap storage and thereby slowing the
whole environment down.

Lastly, the time needed to interact with the system depending on the size of the dataset
had to be measured. To achieve this, three different filtering times were captured. These
results would rely heavily on the picked sample because, for example, whole categories
could be missing from a dimension. As in every iteration the sample entries were chosen
randomly, possible outliers were balanced out. The first measurement was the addition of

34



Sweden to the map filter. The second measurement was filtering the time series for the
month July 2017. And lastly, the toggling of the largest category in the language category
list was measured. All these filter changes were made independently of each other and on
the preset default filters. An overview of the collected metrics for the case study and the
process can be found in Figure 6.1.

Figure 6.1.: Overview of the collection process and the collected metrics for the experi-
ment.

6.1.2. Expert Interview

The expert interview consisted of five parts and was conducted with five experts in the field
of data visualization and data exploration. All experts were male and ranged from Ph.D.
students to senior researchers and lecturers from the Department of Computer Science and
Media Technology of Linnaeus University. The selection and invitation were organized by
the supervisors of this thesis project to ensure a level of independence.

At first, the interviewee was given an introduction to the system. The creation of the tool
was shortly motivated, and the case study data and scope was explained. A quick privacy
notice was given, and the interviewee was asked if he consents to a temporary recording of
the following conversations to record all findings. At this point, the functionalities of the
system were explained and presented. All of these steps were performed in-person by the
interviewer with the help of the demonstration system. Next, the interviewee was given
five minutes of trial time to play around with the tool to get a grip and feel comfortable
utilizing the different components. After that, the interviewee was asked to answer five
questions with the tool in a think-aloud session. These questions were designed to reveal
if the interviewee understood the concept behind the connected filters and the multiscale
visualizations. The full set of questions is listed in Table 6.3.

Q1 was designed to set the basis for the following questions. The interviewee had to
adjust the detail timeframe on the time series view and navigate through the map to reach
the municipality of Stockholm. The answer could then be found in the tooltip of the shape.
Q2 checked the understanding of the connected filters and the handling of the category list.
The interviewee had to set Stockholm as a filter in the map visualization and then simply
read the displayed number of the Swedish entry in the category list. Q3 was designed to
again check the understanding of the category list component. The answer could be given
by simply comparing the displayed bars visualizing the amount of Tweets without any

35



Q1 How many Tweets were created in 2018 in the municipality of Stockholm for
the preset languages?

Q2 How many of those were in Swedish?
Q3 How does this roughly compare to Tweets in other languages?
Q4 How does this roughly compare to the surrounding municipalities?
Q5 How does the month July 2017 roughly compare to the rest of the year in the

municipality of Stockholm for the languages English and Swedish?

Table 6.3.: List of questions asked in the think-aloud session.

interactions with the tool. Q4 had the goal of checking if the interviewee could apply the
same thought process to the map component by reading the color-coding of the surrounding
municipalities without any interactions. The last question (Q5) stood alone as it did not
build upon the setup provided by the first question and had the purpose of providing
insights into the handling of the multiscale aspects in the time series visualization. To
answer the question the interviewee had to set the language filters, then set the detail view
of the time series to include the whole year 2017, and add a lens providing a focus on the
month July while keeping the context of the rest of the year.

After answering all questions, the interviewee was asked to fill out the UEQ. The UEQ
itself and the idea behind it is described in Section 3.2.

The last part of the interview sessions was the actual interview. They were conducted
as open interviews with the main purpose of getting feedback on the used concepts, the
usability and understandability, and generic improvement possibilities. Directions the
interviewee was asked about were the concepts of the connected filters, multiscale in the
time series visualization, and multiscale in the map visualization.

6.2. Findings

In this section, the findings of the measurements taken in the experiment, the results of
the survey and the findings in the expert interview are laid out. Any interpretations and
implications for the requirements are deferred to the next section.

6.2.1. Performance Measurements

The measurements done for StanceXplore showed that the selected dataset contained over
118.000 entries. The transmitted dataset took up 21.3 MB, as every entry was included as a
separate object with a selection of fields. Additionally, 800 KB of additional resources were
loaded which would be cached for further visits. This brings the total required resources
for the presentation up to 22.1 MB. The presentation and, specially, the visualizations, took
up 2,168 ms of scripting time resulting in 85.3 MB of memory usage.

The measurements done for the case study can be separated into two categories: (i) the
static metrics, and (ii) the sample dependent category.

The static category consists of metrics that stay the same independently from the sampled
dataset. Nevertheless, all metrics were taken with every sample size and every iteration.
The static metrics included the loading time of the configuration and the topoJSONs and
the size of the dependencies. The configuration is only 756 bytes large and averaged a
loading time of 99 ms. The one-time dependencies consisted of generic dependencies and
fonts. Generic dependencies are HTML, CSS, and JS files while font files are only loaded if
the client environment does not already provide the requested font. Generic dependencies

36



came in at 250.9 KB and all fonts at 93.7 KB, bringing the one-time dependencies to a total
of 344.6 KB. The only recurring dependencies are the topoJSONs of the map component.
These were considered recurring as they are provided by the configuration and could be
hosted externally, leaving the caching policy up to the hosting instance. In the instance of
this case study, the map material for Denmark, Finland, Norway, and Sweden sum up to a
total of 124.5 KB, taking 231 ms as the system downloads them in parallel. The full list of
findings from the sample-dependent metrics are reported in Table 6.4, and the analysis of
these findings can be found in Section 6.3 Results.

sample size 100,000 500,000 1,000,000 1,500,000
cross products 47,422 139,314 212,496 267,957

dataset size (KB) 626 1,762 2,750 3,501
dataset loading (ms) 446 692 892 1,075
dataset parsing (ms) 81 162 328 438

TTI (ms) 3,311 4,675 5,862 6,247
filter map (ms) 123 301 451 527

filter category (ms) 170 293 423 457
filter time series (ms) 38 72 98 126

memory (MB) 56.3 68.4 83.3 93.1

Table 6.4.: Findings of the sample-dependent metrics captured in the case study.

6.2.2. User Experience Questionnaire (UEQ)

The UEQ groups its six scales into three groups: hedonic qualities, pragmatic qualities,
and attractiveness. Both for the scales as for the groups, values between -3 and +3 are
calculated. Values between -3 and -0.8 represent negative evaluation, values between
-0.8 and +0.8 evaluate to neutral, and values larger then +0.8 evaluate positively. Due
to the avoidance of extreme values, results outside of a -2 to +2 range are unlikely. The
questionnaire provides an extensive comparison dataset which contains mostly established
systems and only few novel or experimental systems. Expected problems with the results
were discussed in Section 3.3. The mean values per scale were visualized in Figure 6.2.

Attr
ac

tiv
en

ess

Pers
pic

uit
y

Effi
cie

nc
y

Dep
en

da
bil

ity

Stim
ula

tio
n

Nov
elt

y

−2

0

2
2.13

1.6 1.85 1.75 2
1.3

Excellence Threshold

Figure 6.2.: User Experience Questionnaire, mean results per scale.

Overall, all scales and groups scored positively, with novelty being the least performing
scale with a score of 1.3. In the scale of attractiveness, a mean of 2.13 was reached.

37



Compared to the reference dataset, this corresponds to an excellent score, leaving the tool
in the range of the 10% best results.

The pragmatic qualities of the system scored with a mean of 1.73. Efficiency reached a
mean of 1.85, putting it in the top 10% range. Perspicuity had a mean of 1.6, classifying it
in comparison as good, which can be interpreted as lower than the 10% best results but
better than 75% of the comparison results. Dependability reached 1.75, putting it again in
the excellent field.

The hedonic qualities scored 1.65 overall, making it the least performing group. Novelty
had a mean of 1.3, categorizing it as good. Stimulation also reached the excellent field with
a mean of 2.0.

6.2.3. Expert Interview

The expert interviews started with a trial after a short introduction. As the tasks were
explicitly designed to reveal if the user understood the concept behind the connected filters
and the multiscale visualizations, it became clear that all interviewees understood both
concepts and had no problem using the system. All tasks were solved correctly without any
meaningful hurdles, although different approaches to get to the answers were used. Both
in the trial and in the interview part the interviewees stated that they did not encounter any
conscious delay in the system or experienced generic context disruptions.

The multiscale time series component was perceived as complex. Not all interviewees
utilized the full potential of the applied multiscale techniques, but instead used more
profound approaches to solve the tasks. Two users used the Overview+Detail part of the
visualization but did not work with the lenses of the Focus+Context technique as they felt
that the tasks were also solvable by using temporal differentiation: First memorizing the
first timeframe and then comparing that to the second. These interviewees stated that the
Focus+Context technique was not necessary, but could see that there would be specific
tasks where this technique would be of benefit. Overall all interviewees agreed on the
benefit of this multiscale visualization over a simple time series.

The map component was more clearly understood and did not pose a hurdle. The users
were swift to interact with the visualization and liked the possibilities provided by the
multiscale approach. As feedback, it was suggested to add an initial filter on the map to
make it more clear what is filtered and what is not.

Overall the users wished for better information on hover. The tooltips were perceived as
too small and with too little context in both large visualizations. The added benefit of the
system was visible for all interviewees, and they felt confident in their usage of the system.
Asked if they wished for an undo button to make their actions easier to reproduce, every
interviewee declined.

6.3. Results

In comparison with StanceXplore, the system mainly improved on adaptability and per-
formance, since StanceXplore was not designed with these as priorities. Featurewise, the
system added functionality in the frontend regarding interactivity and multiscale capacity
in both the map and time series, while only dropping features such as the hashtag grid
which were out of scope for this project.

Regarding the performance metrics, the experiment revealed that the compacting algo-
rithm provides a clear benefit. While StanceXplore needed to transmit over 20 MB of data
for around 100 thousand entries, the newly developed system only required a mean of 626

38



KB in the comparable case study — a reduction of 97%. With 800 KB for StanceXplore
and 345 KB for the new system, the dependencies are no problem in both cases. With a
memory usage of 85.3 MB, StanceXplore is surprisingly good for the size of the dataset,
but compared with the new system it uses 52% more memory for the same amount of
entries. Concluding these findings, the new system outperforms StanceXplore for the
studied use case.

100 500 1,000 1,500
0

50

100

150

200

250

sample size [k]

un
iq

ue
en

tr
ie

s
[k

]

cross product

100 500 1,000 1,500
0

1

2

3

sample size [k]
da

ta
se

ts
iz

e
[M

B
]

dataset size

100 500 1,000 1,500
0

200

400

600

800

1,000

sample size [k]

tim
e

[m
s]

dataset loading

100 500 1,000 1,500
0

100

200

300

400

sample size [k]

tim
e

[m
s]

dataset parsing

Figure 6.3.: Finding for the metrics directly connected to dataset handling.

By looking at the findings of the sample-dependent metrics, conclusions about scalabil-
ity could be drawn. As the compacting algorithm takes all unique values in a dimension
and later aggregates entries into their dimension combination, data points are more likely to
be already fitting into an existing combination the more data points are already aggregated.
This should result in a smaller than linear growth of the cross product. As seen in Fig-
ure 6.3, this is indeed the case, with all other metrics tied to the cross product following the
same trend. Parsing the transmitted dataset showed a jump between 500.000 and a million
data points in the sample which later could be confirmed in a smaller experiment that was
conducted with more sample sizes. It seems like this performance loss is originating from
hitting the CPU limit, but no conclusive reason could be found.

Looking at the interaction delays represented in the experiment by the filtering times,
it became clear that for all chosen sample sizes the delay should not be noticeable. As
seen in Figure 6.4, only the map filtering broke the half-a-second mark with the largest
sample size. For interactions on the map and category list component, the needed time
is growing slower than linear, which could be explained by the same reason that also

39



100 500 1,000 1,500
0

100

200

300

400

500

sample size [k]

tim
e

[m
s]

filtering time

map
category

time series

Figure 6.4.: Findings for the filtering time metrics.

explains the substantially smaller linear filtering time for the time series component: The
stacking algorithm that is required to visualize the stacked area chart is comparably slow
and mainly growing based on the extent of the time dimension. Stacking many layers is
not as calculation-heavy as filling all gaps in the time span. As filtering in the time series
component does not trigger a refiltering and rerender of the same component, this action is
considerably faster than all others.

The UEQ showed clear strengths in pragmatic qualities and attractiveness, while overall
turning out a satisfying image. These findings should be taken as preliminary results due
to the small number of participants.

With all findings concluded, the requirements needed to be checked. The accessibility
requirements (Requirement 1) were met in the conception phase with the design decision to
use a distributed architecture with the browser as the client for the enduser. The adaptability
requirements of Requirement 2 were the main driving points behind the component concept
of the architecture and the additional implementation of the second case study proved the
fulfillment of all sub-requirements. Requirement 3 sets full filterability as a requirement,
which was met in the conception phase by the combined filtering concept linking all
components together. The multiscale requirement of Req. 4 expected a multiscale map and
multiscale time series component, which were subsequently designed and implemented.
The usability requirements of Req. 5 were more numerous and partly had to be checked
by the expert interview. Requirement 5.1 and Req. 5.2 were taken into account in both
conception and implementation phase and were confirmed in the trial and task phase of
the expert interviews. Requirement 5.3 was met with the design and implementation of
the compaction and compression algorithm, which was also tested and confirmed in the
experiment. Requirement 5.4 required a clear to understand and differentiate usage of
color schemes which was taken into account in the implementation, but turned out to be
non-optimal as the repetition of colors in large categorical dimensions could lead to similar
colors in the same proximity. This did not lead to confusion for the interviewees but was
noted by multiple interviewees. Requirement 5.5 to Req. 5.9 were tested in the expert
interview and either confirmed by the interviewees or proven in the trial and task phase.

40



7. Conclusion

This chapter discusses the results of the project, draws conclusions from the findings,
and analyzes if the designed system answered the initial research question. At the end
of the chapter, an outlook is provided by looking into possible future work and further
opportunities for the evolution and usage of the system.

7.1. Discussion

The project turned out a working system for effective and efficient exploration of large
multi-dimensional datasets. Additionally, two new multiscale visualizations were con-
ceived, implemented, and evaluated for a map and a time series view. The evaluation of the
system showed that all set requirements were met and the practical usability was proven
by two case studies. The performance of the system turned out to be sufficient and scaled
well, but not only regarding the compacting algorithm small improvement possibilities
came up during the project. All improvement possibilities and ideas were documented
both in this report and the source code of the tool itself, so that they may be addressed
in future iterations. From this standpoint, it was shown that the design conceived in the
conception phase provided a sufficient answer to the research question.

In comparison to previous work, the system improved in many points but left some
features behind that were out of scope for this project. In comparison with StanceXplore,
the system featured significantly-improved performance and scalability. Additionally, the
functionality of the presentation was enhanced, and the focus moved to support higher
adaptability. This focus change resulted in small missing features that are highly specific
like the hashtag grid StanceXplore provided. However, the component structure of the new
system allows for easy additions of new components and the inclusion of such in new or
existing presentations. The time series visualization was influenced by the MultiStream
concept, but differs in significant points. While the MultiStream concept used steamgraphs
to visualize time series, the new system utilized less-complex stacked area graphs. One of
the reasons for this move was that the focus of this visualization was not on the visualization
of hierarchical time series, but instead on providing a more complete interactive multiscale
experience. This focus also lead to the absence of granularity changes in the categorical
dimension. Instead, the system improved on the concept with a flexible granularity in the
time dimension providing better scalability for vast time spans. Additionally, the system
provides improved controls over the detailed domain and full control over flexible lenses
providing a focus into the data. One final big step is the integration of the visualization
into a full system which is moving the implementation away from a pure proof-of-concept
like MultiStream.

7.2. Outlook

For the future, there are two topics covered in this project. The first one is the resulting
system and its further development and usage, and the second one is the research done in
the field of multiscale visualizations.

41



The system was designed to be used for initial data exploration by non-data scientists
and easy adaption to new data sources and viewing angles. The implementation of the
case studies and the evaluation showed that the system is capable of fulfilling this job.
StanceXplore was developed to answer a very similar question as the first case study tried
to answer. For further projects like this, no new system would need to be developed, but
instead, only a connector would need to be set up. If particular visualizations would be
required, these could be included in the frontend, and all further projects could also benefit
from it. Regarding further development, there are many options for additional components
that would add more benefit to the system. For example, handling of numerical dimensions
with visualizations for histograms or scatterplots. Also, the steps taken by the first case
study connector implementation could be improved: a caching of the already compacted
and compressed default filter result could be held at the backend service, greatly improving
the initial performance of presentations of static datasets.

As for the research into multiscale visualizations in this project, a few conceptual
improvements and further research possibilities emerged. Firstly, the Focus+Context
approach inside an Overview+Detail approach showed promising results as already shown
in previous work. But the addition of dynamic focusing lenses went one step further and
improved the usability and possibilities of the visualization. In the evaluation and during
implementation, it became clear that further conceptual improvements could yield great
benefits. For example, better handling of granularity changes and interaction with the lens
handles. Secondly, the evaluation showed that some users did not use the functionalities
provided by the Focus+Context approach, but instead preferred to build an image in their
mind by comparing temporally-separated visualizations using a zooming approach. To
determine a use case for the Focus+Context approach and differentiation from use cases
for other similar approaches like the one used by these users would be interesting.

In summary, there are promising possibilities for both the system and the research done
that hopefully will be picked up in the future.

42



Bibliography

[1] R. Spence, Information visualization: An introduction, 3rd ed. Springer Publishing
Company, Inc., 2014.

[2] M. Friendly and D. J. Denis, Milestones in the history of thematic cartography,
statistical graphics, and data visualization: An illustrated chronology of innovations.
Statistical Consulting Service, York University, 2008.

[3] K. W. Brodlie, L. A. Carpenter, R. A. Earnshaw, J. R. Gallop, R. J. Hubbold, A. M.
Mumford, C. D. Osland, and P. Quarendon, Scientific visualization: Techniques and
applications. Springer Science & Business Media, 2012.

[4] D. Keim, G. Andrienko, J.-D. Fekete, C. Görg, J. Kohlhammer, and G. Melançon,
“Visual analytics: Definition, process, and challenges,” Lecture Notes in Computer
Science, vol. 4950, pp. 154–176, 2008.

[5] A. Kerren and F. Schreiber, “Toward the role of interaction in visual analytics,” in
Simulation Conference (WSC), Proceedings of the 2012 Winter. IEEE, 2012, pp.
1–13.

[6] E. Cuenca, A. Sallaberry, F. Wang, and P. Poncelet, “Visualizing hierarchical time
series with a focus+context approach,” in IEEE VIS–Posters, 2017.

[7] A. Kerren, I. Jusufi, and J. Liu, “Multi-scale trend visualization of long-term tempera-
ture data sets,” in Proceedings of SIGRAD 2014, Visual Computing, June 12-13, 2014,
Göteborg, Sweden, no. 106. Linköping University Electronic Press, Linköpings
universitet, 2014, pp. 91–94.

[8] A. Cockburn, A. Karlson, and B. B. Bederson, “A review of overview+detail, zoom-
ing, and focus+context interfaces,” ACM Computing Surveys, vol. 41, no. 1, pp.
2:1–2:31, 2009.

[9] M. Hasan, F. F. Samavati, and C. Jacob, “Interactive multilevel focus+context visual-
ization framework,” The Visual Computer, vol. 32, no. 3, pp. 323–334, 2016.

[10] E. Hadjidemetriou, M. D. Grossberg, and S. K. Nayar, “Spatial information in mul-
tiresolution histograms,” in Computer Vision and Pattern Recognition. Proceedings
of the 2001 IEEE Computer Society Conference on, vol. 1. IEEE, 2001, pp. I–I.

[11] L. Heide, Punched-card systems and the early information explosion, 1880–1945.
JHU Press, 2009.

[12] D. A. Keim, F. Mansmann, J. Schneidewind, J. Thomas, and H. Ziegler, “Visual
analytics: Scope and challenges,” in Visual data mining. Springer, 2008, pp. 76–90.

[13] E. Cuenca, A. Sallaberry, F. Y. Wang, and P. Poncelet, “MultiStream: A multiresolu-
tion streamgraph approach to explore hierarchical time series,” IEEE Transactions on
Visualization and Computer Graphics, pp. 1–1, 2018.

43



[14] ISO, “ISO 9241-11: Ergonomic requirements for office work with visual display ter-
minals (VDTs),” International Organization for Standardization, Geneva, Switzerland,
Tech. Rep., 2000.

[15] W. Aigner, S. Miksch, H. Schumann, and C. Tominski, Visualization of time-oriented
data. Springer Science & Business Media, 2011.

[16] R. L. Harris, Information graphics: A comprehensive illustrated reference. Oxford
University Press, 2000.

[17] S. Havre, E. Hetzler, P. Whitney, and L. Nowell, “ThemeRiver: Visualizing thematic
changes in large document collections,” IEEE Transactions on Visualization and
Computer Graphics, vol. 8, no. 1, pp. 9–20, 2002.

[18] L. Byron and M. Wattenberg, “Stacked graphs–geometry & aesthetics,” IEEE Trans-
actions on Visualization and Computer Graphics, vol. 14, no. 6, 2008.

[19] N. Thrower, Maps and Civilization: Cartography in Culture and Society, Third
Edition. University of Chicago Press, 2008.

[20] A. H. Robinson, Early Thematic Mapping in the History of Cartography. University
of Chicago Press, 1982.

[21] J. K. Wright, Notes on Statistical Mapping: With Special Reference to the Mapping
of Population Phenomena. American Geographical Society, 1938.

[22] B. D. Dent, J. S. Torguson, and T. W. Hodler, Cartography: Thematic map design.
WCB/McGraw-Hill Boston, 1999, vol. 5.

[23] R. M. Smith, “Comparing traditional methods for selecting class intervals on choro-
pleth maps,” The Professional Geographer, vol. 38, no. 1, pp. 62–67, 1986.

[24] C. A. Brewer, A. M. MacEachren, L. W. Pickle, and D. Herrmann, “Mapping
mortality: Evaluating color schemes for choropleth maps,” Annals of the Association
of American Geographers, vol. 87, no. 3, pp. 411–438, 1997.

[25] ISO, “ISO 3166: Codes for the representation of names of countries and their
subdivisions,” International Organization for Standardization, Geneva, Switzerland,
Tech. Rep., 2013.

[26] G. Law, Administrative subdivisions of countries: a comprehensive world reference,
1900 through 1998. McFarland, 1999.

[27] J. J. Van Wijk and W. A. Nuij, “Smooth and efficient zooming and panning,” in
Information Visualization, 2003. INFOVIS 2003. IEEE Symposium on. IEEE, 2003,
pp. 15–23.

[28] H. Hauser, “Generalizing focus+context visualization,” in Scientific visualization:
The visual extraction of knowledge from data. Springer, 2006, pp. 305–327.

[29] Y. K. Leung and M. D. Apperley, “A review and taxonomy of distortion-oriented pre-
sentation techniques,” ACM Transactions on Computer-Human Interaction (TOCHI),
vol. 1, no. 2, pp. 126–160, 1994.

44



[30] G. W. Furnas, “The fisheye view: A new look at structured files,” Citeseer, Tech.
Rep., 1981.

[31] M. Sarkar and M. H. Brown, “Graphical fisheye views,” Communications of the ACM,
vol. 37, no. 12, pp. 73–83, 1994.

[32] G. W. Furnas, Generalized fisheye views. ACM, 1986, vol. 17, no. 4.

[33] S. K. Card, G. G. Robertson, and J. D. Mackinlay, “The information visualizer, an
information workspace,” in Proceedings of the SIGCHI Conference on Human factors
in computing systems. ACM, 1991, pp. 181–186.

[34] R. Spence and M. Apperley, “Data base navigation: an office environment for the
professional,” Behaviour & Information Technology, vol. 1, no. 1, pp. 43–54, 1982.

[35] S. Schreibman, R. Siemens, and J. Unsworth, A companion to digital humanities.
John Wiley & Sons, 2008.

[36] R. M. Martins, V. Simaki, K. Kucher, C. Paradis, and A. Kerren, “StanceXplore: Vi-
sualization for the interactive exploration of stance in social media,” in 2nd Workshop
on Visualization for the Digital Humanities (VIS4DH’17), October 2017, Phoenix,
Arizona, USA, 2017.

[37] M. Kleppmann, Designing Data-Intensive Applications: The Big Ideas Behind
Reliable, Scalable, and Maintainable Systems. O’Reilly Media Inc., 2017.

[38] B. Laugwitz, T. Held, and M. Schrepp, Construction and evaluation of a user
experience questionnaire. Springer, 2008.

[39] ISO, “ISO 9241: Ergonomics of Human System Interaction,” International Organiza-
tion for Standardization, Geneva, Switzerland, Tech. Rep., 2018.

[40] T. Jokela, N. Iivari, and V. Tornberg, “Using the ISO 9241-11 definition of usability
in requirements determination: Case study,” in HCI, 2004, pp. 155–156.

[41] M. Laitinen, J. Lundberg, M. Levin, and R. M. Martins, “The nordic tweet stream:
A dynamic real-time monitor corpus of big and rich language data,” in Digital
Humanities in the Nordic Countries (DHN 2018), 3rd Conference, 2018.

[42] “The JavaScript Object Notation (JSON) data interchange format,” RFC 7159, 2015.
[Online]. Available: https://rfc-editor.org/rfc/rfc7159.txt

[43] M. Bostock, V. Ogievetsky, and J. Heer, “D3 data-driven documents,” IEEE trans-
actions on visualization and computer graphics, vol. 17, no. 12, pp. 2301–2309,
2011.

45

https://rfc-editor.org/rfc/rfc7159.txt


A. Configuration Twitter Language Usage

1 {
2 url: ’localhost:11219’,
3 name: ’Twitter Explorer’,
4 host: ’twitter.multiscale-explorer.de’,
5 fields: [
6 { name: ’date’, type: ’time’ },
7 { name: ’language’, type: ’categorical’ },
8 { name: ’hasc2’, type: ’categorical’ }
9 ],

10 filter: {
11 hasc2: { type: ’startsWith’, domain: [] },
12 language: { type: ’includes’, domain: [’en’, ’sv’, ’no’, ’fi’] },
13 date: { type: ’between’, domain: [+new Date(2017, 0, 1), +new Date

(2017, 11, 31)] }
14 },
15 frontend: [
16 {
17 title: ’Language’,
18 widget: ’categories’,
19 width: 3,
20 field: ’language’
21 },
22 {
23 title: ’Origin’,
24 widget: ’map’,
25 topos: [
26 ’https://glcdn.githack.com/KRKnetwork/maps-scandinavia/raw/

master/sweden-municipalities.json’,
27 ’https://raw.githubusercontent.com/deldersveld/topojson/master/

countries/norway/norway-municipalities.json’,
28 ’https://glcdn.githack.com/KRKnetwork/maps-scandinavia/raw/

master/denmark-municipalities.json’,
29 ’https://glcdn.githack.com/KRKnetwork/maps-scandinavia/raw/

master/finland-regions.json’
30 ],
31 levels: [],
32 width: 6,
33 field: ’hasc2’
34 },
35 {
36 title: ’Tweets’,
37 widget: ’list’,
38 width: 3,
39 field: ’text’
40 },
41 {
42 title: ’Timeline’,
43 widget: ’timeline’,
44 width: 12,
45 field: ’language’,
46 over: ’date’,
47 extent: [+new Date(2016, 10, 06), +new Date(2018, 1, 1)]

A



48 }
49 ]
50 }

B



B. Configuration Södra Forestry Yields

1 {
2 url: ’localhost:11219’,
3 name: ’Soedra Explorer’,
4 host: ’localhost:11218’,
5 fields: [
6 { name: ’time’, type: ’time’ },
7 { name: ’speciesGroupName’, type: ’categorical’ },
8 { name: ’numberOfLogs’, type: ’categorical’ },
9 { name: ’hasc’, type: ’categorical’ }

10 ],
11 filter: {
12 hasc: { type: ’startsWith’, domain: [] },
13 speciesGroupName: { type: ’includes’, domain: [’Spruce’, ’Pine’, ’

Birch’] },
14 numberOfLogs: { type: ’excludes’, domain: [] },
15 time: { type: ’between’, domain: [+new Date(2017, 1, 1), +new Date

(2017, 2, 1)] }
16 },
17 frontend: [
18 {
19 title: ’Species’,
20 widget: ’categories’,
21 width: 3,
22 field: ’speciesGroupName’
23 },
24 {
25 title: ’Logs per Tree’,
26 widget: ’categories’,
27 width: 3,
28 field: ’numberOfLogs’
29 },
30 {
31 title: ’Area’,
32 widget: ’map’,
33 topos: [
34 ’https://glcdn.githack.com/KRKnetwork/maps-scandinavia/raw/

master/sweden-municipalities.json’
35 ],
36 levels: [],
37 width: 6,
38 field: ’hasc’
39 },
40 {
41 title: ’Timeline’,
42 widget: ’timeline’,
43 width: 12,
44 field: ’speciesGroupName’,
45 over: ’time’,
46 extent: [+new Date(2016, 10, 1), +new Date(2017, 4, 1)]
47 }
48 ]
49 }

C



C. Full Requirement List

Requirement 1 (Accessibility)
The system has to enable multiple users/researchers to look into the same dataset at the
same time, without having to set up the system multiple times.

Requirement 1.1
The presentation has to be accessible across different devices without unnecessary over-
head.

Requirement 1.2
The presentation has to be decoupled from the data source.

Requirement 2 (Adaptability)
The system has to be easily adaptable to different datasets regarding structure, data source,
and viewing angle.

Requirement 2.1
The presentation has to be easily configurable to provide different views into a dataset.

Requirement 2.2
The system has to be easily adaptable to handle new data sources and data structures.

Requirement 2.3
The user has to be able to quickly swap between different setups.

Requirement 3 (Filterability)
The user must be able to filter the dataset from a selected viewing angle in the presentation,
according to the view’s unique presentation features.

Requirement 3.1
A filter applied in one viewing angle must be broadcasted directly to all other viewing
angles.

Requirement 3.2
The user has to be able to filter the dataset down to a single event.

Requirement 4 (Multiscale)
The presentation has to provide the possibility of visually exploring datasets in multiple
scales in every viewing angle that would benefit from it.

Requirement 4.1
The presentation has to provide a map view that employes multiscale techniques.

Requirement 4.2
The presentation has to provide a stacked time series view that employes multiscale
techniques.

D



Requirement 5 (Usability)
The system has to follow general guidelines for usability.

Requirement 5.1
The presentation shall not include any unnecessary information or possibilities of interac-
tion.

Requirement 5.2
The presentation shall avoid context disruption on interactions as much as possible.

Requirement 5.3
The amount of transfered data from the data source to the presentation shall be kept as
light as possible.

Requirement 5.4
The presentation shall employ different, clear to understand colorschemes.

Requirement 5.5
The added value of the system as a whole for the data exploration shall be clear to users.

Requirement 5.6
The added value of the employed multiscale techniques shall be clear to users.

Requirement 5.7
The basics of interacting with the data through the presentation shall be easy to learn.

Requirement 5.8
Every possible action by the user shall be reproduceable for him.

Requirement 5.9
The user shall be enabled to solve possible tasks with the system after a short introduction
into the presentation.

E


	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Background
	Visual Analytics
	Multiscale Visualizations
	Spatiotemporal Visual Analytics

	Motivation
	Problem Statement
	Solution Approach
	Contributions and Target Groups
	Report Structure

	Background
	Foundation
	Multiscale Techniques
	Implementations

	Methodology
	Scientific Approach
	Method Description
	Reliability and Validity
	Ethical Considerations

	Conception
	Requirements
	System Design
	Architecture
	User Interface
	Map Visualization
	Time Series Visualization

	Case Studies
	Twitter Language Usage
	Södra Forestry Yields


	Implementation
	Backend
	Frontend
	Plain and Category List
	Map Visualization
	Time Series Visualization

	Connectors
	Twitter Language Usage
	Södra Forestry Yields


	Evaluation
	Design
	Experimental Setup
	Expert Interview

	Findings
	Performance Measurements
	User Experience Questionnaire (UEQ)
	Expert Interview

	Results

	Conclusion
	Discussion
	Outlook

	References
	Configuration Twitter Language Usage
	Configuration Södra Forestry Yields
	Full Requirement List

