

Bachelor Thesis Project

Comparison of Two Eye

Trackers for the Visualization

of Eye Tracking Data in

Node-Link Diagrams

Author: Nazli Bilgic

Author: Sofia Kiriaki Vulgari

Supervisor: Prof. Dr. Andreas

Kerren

Supervisor: Björn Zimmer

Semester: VT 2016

Subject: Computer Science

1

Abstract

The usage of eye trackers is becoming more and more popular in the field of

information visualization. In this project two eye trackers, The Eye Tribe and

Mirametrix S2, are used to obtain eye tracking data for visualizations. It is

planned to use the eye trackers with OnGraX, a network visualization system,

where they will provide data for the implementation of visualizations,

specifically, heatmaps. OnGraX already uses heatmaps to show regions in a

network that have been in the viewport of the user. One aim of this thesis will

be the comparison between the two eye trackers, and if the use of eye

tracking data gives better results than the already existing viewport-based

approach. At the same time, we provide the foundation for adaptive

visualizations with OnGraX. Our research problem is also of interest for

visualization in general, because it will help to improve and develop eye

tracking technology in this context. To support the outcome of our

implementation, we carried out a user study. As a result, we concluded that

one of the two eye trackers appears to have more capabilities than the other,

and that using the eye tracking data is a more preferred way of depicting the

heatmaps in OnGraX.

Keywords: Eye Tracking, Eye Trackers, Visualization, Heatmaps, OnGraX,

The Eye Tribe, Mirametrix S2

2

Acknowledgments

This project would not have been accomplished without the help of certain

people. First of all, we would like to thank our supervisors, Prof. Dr. Andreas

Kerren, head of the ISOVIS Group, and Björn Zimmer, Ph.D. Student and

staff member in the ISOVIS Group, for motivating us to work hard and

guiding us without any discouragement throughout the process of completing

our project. Also, for giving us the opportunity to work with them and the

chance to learn so many things about our thesis topic, but also other subjects

within computer science. We are also grateful to all our family and friends

who supported us from the start of our journey until the end and helped with

keeping our spirits high. Finally, we would like to extend our thanks to all the

people who participated in our user study, that supported us and dedicated

some of their time to help us.

3

Table of Contents

1 Introduction ... 6

1.1 Background .. 6

1.2 Previous Research .. 8

1.3 Problem Formulation .. 10

1.4 Motivation .. 10

1.5 Research Questions .. 10

1.6 Scope/Limitation .. 11

1.7 Target Group .. 12

1.8 Outline .. 12

2 Method ... 13

2.1 Scientific Approach .. 13

2.2 Method Description .. 14
2.2.1 Software Development Methodology .. 14

2.2.2 Brief Explanation of the User Study Structure ... 15

2.3 Reliability and Validity .. 16

2.4 Ethical Considerations .. 16

3 Eye Trackers .. 18

3.1 The Eye Tribe ... 18
3.1.1 Software ... 18

3.1.2 Calibration .. 19

3.2 Mirametrix S2 ... 19
3.2.1 Calibration .. 20

3.2.2 Software ... 20

4 Implementation ... 23

4.1 General Explanation of the System Architecture 23

4.2 Adapting the APIs of the Eye Trackers .. 24
4.2.1 The Eye Tribe Tracker ... 24

4.2.2 Mirametrix S2 Eye Tracker .. 25

4.3 Transmission and Storage of Eye Tracking Data 25
4.3.1 Login Process ... 26

4.3.2 Storing the Eye Trackers Data .. 26

4.3.3 Identifying Focused Graph Objects Based on Tracker Data 28

4.3.4 Basic Heatmap Creation from the Live Tracking Data during a Session

 .. 29

4.3.5 Recording Process of the Eye Tracking Data .. 30

4.4 Eye Tracking Client User Interface Design and General Functionalities

 .. 31

4

4.5 Comparison and Limitations of the Eye Trackers Based on our

Experience .. 33

5 User Study .. 35

5.1 The Task ... 35

5.2 Users Testing with The Eye Tribe and the Mirametrix S2 Eye Trackers

 .. 35

5.3 Results from Questionnaire .. 36

5.4 Analysis of Created Heatmaps ... 39

5.4.1 According to Data Collected from the Eye Trackers 39

5.4.2 According to Data Collected from Viewports 41

6 Discussion ... 43

7 Conclusion ... 44

7.1 Future Research .. 44

References ... 45

Appendix 1 .. 49

Appendix 2 .. 51

5

List of Figures

Fig. 1.1 Commonly used heatmap 8

Fig. 3.1 Cases of good, medium, bad or non-tracking as shown in

the trackbox window 18

Fig. 3.2 Eye Tribe Calibration Screen 19

Fig. 3.3 Results from a Calibration with the Mirametrix Eye Tracker 20

Fig. 3.4 Mirametrix User Interface 21

Fig. 3.5 Tracker Settings window for the Mirametrix S2 eye tracker 21

Fig. 4.1 General architecture of the system 24

Fig. 4.2 Screen points and world points 27

Fig. 4.3 Steps for storage processes of the system 28

Fig. 4.4 Graph object identification 29

Fig. 4.5 Heatmap by tracking data during a graph session 30

Fig. 4.6 Login window 32

Fig. 4.7 Eye tracking client window 32

Fig. 5.1 eRoads map 35

Fig. 5.2 Bar chart of Group 1 38

Fig. 5.3 Bar chart of Group 2 39

Fig. 5.4 Created heatmap according to the MirametrixS2

Eye Tracker data 41

Fig. 5.5 Created heatmap according to The Eye Tribe tracker data 41

Fig. 5.6 Created heatmap according to OnGraX’ viewports 42

Fig. 5.7 Created heatmap according to the Mirametrix S2 tracker data 42

Fig. A.1 First page of the Likert-scale questionnaire 49

Fig. A.2 Second page of the Likert-scale questionnaire 50

List of Tables

Table 5.1 Answers given by each user from Group 1 37

Table 5.2 Answers given by each user from Group 1 37

Table A.2.1 Frequency distribution 51

Table A.2.2 Other statistics 51

Table A.2.3 Frequency distribution 51

Table A.2.4 Other statistics 52

List of Equations

Equation 4.1 Mathematical formula used to check if the tracking points

are inside the nodes 29

6

1 Introduction

Eye tracking is the process of measuring the point of where someone is

looking at. Eye trackers measure fixations of the eye by measuring the

movement of an object—like a special contact lens attached to the eye—by

optical tracking without direct contact to the eye, and by measuring electric

potentials using electrodes placed around the eyes [28]. Eye trackers are

applied in various fields like research on the visual system, psychology,

psycholinguistics, marketing, or as an input device for human-computer

interaction. For collecting data, eye trackers will be used in this project with a

new web-based system called OnGraX. It is a system for the visual analysis

of large networks, and this system provides an environment for drawing and

visualizing graphs as “interactive node-link diagrams” [15]. Also, it provides

us with user views/viewports that are areas the users are viewing for a

number of seconds seconds [3]. After collecting eye tracking data and user

view-based data, heatmaps are used as the visualization technique for

visualizing data. Heatmaps are basically the graphical representation of

numerical data (Fig. 1.1). They help users to gain a quicker understanding of

information by giving them the opportunity to see a large amount of data in a

single view.

Heatmaps, OnGraX and the eye trackers are the main components of this

project. We implement a software prototype including a user interface in

order to control the flow of the eye tracking data between the eye trackers

and OnGraX. With the help of the eye trackers, we collect eye gaze data that

can be used to better visualize regions or graph objects that a user is focused

on. Finally, we compare the final heatmaps that are produced and the

heatmap that OnGraX has implemented with the data collected from user

views during a graph session.

1.1 Background

Information visualization is a way of reviving abstract data in the human

brain, trying to make an internal mental representation of the information.

This abstract information can be numerical or non-numerical data,

geographic information, or a part of a text. A successful visualization can

help to turn a complex story into an understandable view in the mind. On the

other hand, a badly designed visualization can both confuse and create

misinterpretations [22].

Lately, with the growing evolution of technology, the amount of data

that we have to process has increased a lot. Because of this, we are in need of

effective methods that can help us to handle this enormous amount of data

that we face in our everyday lives. Making visual representations of data is

7

one of the most effective methods that can solve this problem. We should not

forget that the human brain is, in many ways, like a machine, continously

trying to handle and make use of a gigantic amount of information at the

same time. The visualization of a large amount of data makes it easier to

understand complicated systems and gives us a great opportunity to make

better and more reasonable decisions. The usage of color, shapes,

movements, graphs, and so on, gives people the possibility to explain a lot

more with less material [16].

Eye tracking is a way of investigating what people look at, how their

eyes move, and how their visual activities behave. It is basically a way of

observing what people do with their eyes. The devices that measure these eye

activities are called eye trackers. With the results that the eye trackers

provide, researchers can examine what our brains choose to focus on. One of

the most common visualization technique that is used by researchers for eye

tracking studies is a heatmap. It is a very common and popular method,

because it shows the viewing behavior of individual users. By using color

coding (see Fig. 1.1), it provides information about gaze points of users or

duration of fixations [18]. Heatmaps are an arrangement of cells, and each of

these cells is colored by a value of data. Heatmaps help us to get a quick idea

about the data distribution over an object, observed during an experiment

[17].

Due to the large number of scientific fields where eye tracking is being

used, different approaches have been developed for analyzing eye tracking

data. Where some of them mainly provide quantitative results, new

techniques allow the usage of different levels and aspects of the recorded eye

tracking data in visualization systems. The first eye trackers were created in

the late 1800s, and in the mid 1970s several companies started producing and

then distributing them to researchers and others that found interest in their

use. There are applications that provide users with an opportunity to observe

what other users are changing and editing, when working synchronously or

asynchronously on the same document. The network visualization application

that we use in our thesis project is OnGraX [15], which is a web-based

visualization system [2, 3, 15] that supports synchronous, asynchronous and

distributed analysis of graphs. The graphs display a network of nodes and

edges, in which a node “is usually represented by a circle with a label” [34].

An edge “is represented by a line or arrow extending from one node to

another” [34]. A common example of graph visualizations is the visualization

of family trees. A network between family members where each node

represents a member, and in the case of two nodes being related, an edge is

added between them.

8

Fig. 1.1 Commonly used heatmap, marking red the regions of interest. Screenshot taken from

[32].

1.2 Previous Research

Quite a lot of publications focus on visualization and eye tracking. Some of

them are more specific and some look into other aspects of eye tracking.

Steichen et al. [4] provide adaptive information visualizations by the

usage of eye tracking, but also with the help of machine learning to foresee

and adjust to the user, task and visualization characteristics. Ahn and

Brusilovsky [7] discuss how they want to develop systems that provide

helpful personalization for search approaches in search systems. This work

also focuses on making user interactions that raise the chance of more

reliable user modeling. They also present an adaptive visualization system

called Adaptive VIBE [7].

Steichen et al. [5] claim that making user-adaptive studies is better to

improve the visualization performance. We can see, from several different

kinds of research, that eye tracking measurements can be a very important

source for studies of visualization systems [5, 6]. With the measurement of

the results that they got from the tracker, they can see that eye gaze is a very

valuable source to gain information about the characteristics of users and

some visualization tasks [5]. In a similar research by Tomasz and Peter [6],

eye tracking is used in an experiment to examine how students separate their

attention and how eye movements are effected from different adaptations.

Ho et al. [8] investigate the likelihood of applying eye tracking analysis

to assess flow visualization methods and examine how visualization methods

impact on visual behaviors and how different kinds of flow visualization

methods influence the user's performance in doing different tasks with the

help of some experiments.

Research by Conatiet al. [9] is based on a user study where they try to

gather information from different user characteristics, and design user-

9

adaptive visualization tools which can adapt to real time needs. This

characteristic data can affect a user’s visualization experience. Different

types of methods are used for this study. One of them is eye tracking. They

try to find out if characteristics of users can change the behavior of the gaze

during the tasks and which features of the gaze mostly got affected by the

user characteristics.

Toker et al. [10] present a statistical analysis with Mixed Models to

study “how a user’s gaze behavior relates to user characteristics, task

difficulty, and visualization type” [10]. At the same time, they introduce a

new definition of task difficulty, taken from applying Principal Component

Analysis to some objective and subjective performance measures. Also the

results from all these analyses show that the user characteristics are affecting

the user gaze behavior which is detectable from a lot of eye tracking metrics.

A publication of Kaufman et al. [11] talks about a user interface

controlled by eye movement for 2D and 3D interaction, based on electro-

oculography. “They built hardware and software to show the viability of

electro-oculography for human-computer communication” [11]. In addition,

they conducted experiments that show that it is very capable for virtual

reality systems, games and also for handicapped people.

Steichen et al.’s research [12] is about using gaze data in real-time

systems. They explain another architecture, which has more benefits than

other methods used for eye gaze data analysis. This system is used for

developing visualizations by using real-time gaze data. One of the advantages

of their system is that it contains a web-service which takes a continuous

stream of raw gaze data from an eye tracker, and another benefit is that it

combines a wide range of data statistics.

The paper of Kelley is about THOR (“Tool for High-resolution

Observation Review” [13]), and this tool gives an opportunity for the users to

convert a desktop application to an application that can run in web browsers.

With this process, users can visualize large data with a few mouse clicks.

Being so simple, it attracts many researchers that want to adapt their

visualization applications and deploy them online.

To avoid the problems that they had about eye tracking in other studies,

Moro et al. [14] come up with a substructure for gaze tracking, focusing on

dynamic web applications. With this research they introduced an

infrastructure which can do an automatic assessment of the eye gaze data

from multiple users and eye trackers, and it also provides visualization

support for dynamic fields of interest.

All papers previously mentioned research either in visualization or eye

tracking, but they are not exactly in the focus of our work. We provide the

basics for adaptive visualizations (c.f. Section 1.3) by using eye tracking data

and user views on OnGraX. Despite that, they are still a very good and

helpful resource for our research. Also, since they are different, they motivate

10

us to successfully complete our research. So, we can provide substantial

results for other researchers and users in the future.

1.3 Problem Formulation

The use of eye tracking devices is becoming more and more popular in the

research field of information visualization. However, there are differences in

the way of how and why they are used. Mostly, they are used for user studies

in order to see which elements of the visualization are important for the user

in order to solve specific analysis tasks. Very rarely, they are used to

influence the visualization (adaptive visualization), to change a visual

representation (for instance, providing semantic zooming if a graph object,

like a node or an edge, is in the user’s focus) [2, 3], which is why we are

offering the groundwork for it. Our main aim is to also discover if the

heatmaps created with the help of the eye trackers and our software prototype

are showing more accurately the user’s focus in the graphs, than the view

based heatmaps that are currently offered in OnGraX. Also, in our research,

we include a comparison of the two eye trackers based on our experience

with them, in order to see which is better and easier to work with.

1.4 Motivation

Our research problem is of interest to the field of adaptive visualizations,

because it will help in the improvement and the development of the

technology. Major problems here are the understanding of the data, and that

typical visualization tools are not user adaptive. The overall aim is to develop

better visualization tools, make them more efficient, effective, precise and

able to provide better analysis results [2]. Also, as discussed before, to give

the foundation for adaptive visualization, to be able to change the

visualization of a graph object, for instance, to make the characteristics of a

node appear around it, as the user is looking at it.

1.5 Research Questions

RQ1 Which of the two different eye trackers is more effective in our

research context based on our experience with them and on which

ways?

RQ2 Which are, if any, the technical and/or conceptual limitations on the

use of the eye trackers that are faced during our research?

11

RQ3 How can the heatmap quality in OnGraX be improved by the use of the

eye trackers?

RQ4 How can the results be integrated into the OnGraX system application

scenarios?

RQ1: With this question, we want to compare the two trackers in terms of

usability, quality and effectiveness of the APIs. By effectiveness, we mean

how easy it is to complete the calibration, which API is more adaptable and

can be incorporated in our code, and also if the eye tracking data from one

device is more stable and accurate than the other.

RQ2: By including this research question we want to find out about any

problems or limitations that we personally see with the use of the eye trackers

(in relation to our research), to be able to document them and inform future

researchers and users.

RQ3: With the third research question the goal is to see if the quality and

accuracy of the heatmap by the viewports of the user, is improved or not with

the use of the eye trackers.

RQ4: The fourth question is about how we can take the results of our work

and apply them in the OnGraX system. After answering this question, we

should have a visualization of the result.

1.6 Scope/Limitation

One limitation from the start of our thesis is that it is not possible to test and

compare all eye tracking devices that exist. For that reason, we use two of

them, one affordable and economical choice and one that is much more

expensive, to discover the differences between them.

The next limitation is that the work is done for a specific system,

OnGraX, so it cannot be tested directly on other tools without further

development and adjustment.

For our user study, we brought in people from different kinds of study

fields, not only computer science, but we did not include people from an

older age range or scientists related to our subject. We were able to take the

experiment data needed and compare them, but we were not able to test our

work with senior scientists or researchers that might have used the project in

their line of work.

12

1.7 Target Group

The target group interested in this thesis would be scientists, domain experts,

academic staff, teachers and researchers who would like to use the tool for

their own studies and developers who are interested in the same field of eye

tracking and visualization who would like to take some ideas for their own

work or research.

1.8 Outline

The report is structured in 7 chapters. Chapter 1 contains the background, the

description of our subject, the problem, previous research and our motivation.

The next chapter is about the methodology that we use in order to complete

our work, while the 3
rd

 chapter introduces the two eye trackers that are used

in our study. Moving on to Chapter 4, we describe the implementation of our

project while also including the limitations of the two eye trackers, based on

our experience with them. Lastly, follows the description of the user study,

the results (raw data in Appendix 1) and the analysis of the created heatmaps.

Chapters 6 and 7 contain the discussion, the conclusion of our results and

future research.

13

2 Method

In our research work, we are mostly going to use an incremental research

strategy, since we will improve our implementation stepwise based on

observations we have made. We are then going to collect the data which we

will get from both eye trackers and use it to prove some questions like, which

one of the eye tracker is better and what are their limitations. Also, to find out

more about our research questions, we will design experiments/tests

conducted in a controlled environment. In that user study, a number of users

will be asked for their experience with the trackers and the developed

visualizations.

2.1 Scientific Approach

Our research will be inductive since we will observe and collect knowledge

from the implementation and tests that will be done [23]. We will use both

quantitative and qualitative methods in our research.

 To answer the first research question, we will use a qualitative

method as we will describe, according to our experience, in a free text

which one of the two eye tracking devices is more effective for our

purpose.

 The second research question, just like the first will be written in a

free text according to our experience with the trackers, and we will

refer and explain the limitations and problems we had with the use of

the eye trackers. So, the research method for answering this question

will also be qualitative.

 The third research question is about implementing and then testing the

results. More specifically about comparing the experimental heatmaps

from the eye trackers with the heatmaps from OnGraX, all produced

from the experiments with the test subjects. After we obtain the

results, we compare them to see which is better. After the users finish

their task and complete the test, we will give them a questionnaire

with six Likert scale questions and one question to answer with a free

text. So finally for this question, the research methods will be both

qualitative and quantitative.

 To answer the last research question we will use qualitative methods

and discuss how visualizations can be adapted with the help of eye

trackers.

14

2.2 Method Description

This section is on describing the methodology of the project.

2.2.1. Software Development Methodology

Building a software product is a hard and complicated process which consists

of several different stages that are: research, planning, design, development,

testing, setup and maintenance. Rules and guidelines that are used during

these steps are called software development methodologies.

The main idea behind the method that we will use in our system is to

develop the system in repeating cycles and small steps. Design, test and

implementation of this project will be done incrementally. This means that

progress will be gained by adding small things each time to the project. The

project will be separated into different components, and the purpose of those

will be to add more functionality to it. By adding all these separated

components, the project will grow incrementally. One of the most important

phases in our project method is that after the implementation of each different

component, feedback will be taken from our supervisors. After taking the

feedback and everything will be how they want it to be, we will continue to

the next component. This process will be repeated in every single part of the

project.

In the first step of the project, we will do the definition of the system so

general knowledge about the topic is very important here. We will also put

boundaries to the project and do the definition of the risks. Doing the

definition of the risks will help us to take precautions previously. This will

allow us to progress easily in the next steps [19]. Before we will start the

project, we will read related papers to our research to improve our general

knowledge in the field. Also, we will have meetings with our supervisors to

have a general view about the project and discuss every possible fact that can

happen during the implementation part. Generally, how eye trackers work,

what is OnGraX and its working logic and communication basics between

client, server, webpage, MySQL database are discussed during this step.

In the second step, we will form the skeleton of the project. We will try

to understand the system better and in a more detailed way. Baseline

architecture and elimination of critical risks and risk elements will be handled

in this phase [20]. To avoid having problems during the implementation part,

we will create a plan which shows the basic steps of the project. In this step

we will have a more detailed information about how the eye trackers will be

connected to the client, understanding the API’s of the trackers in detail, how

OnGraX will work with the data that will be collected, how a live heatmap

from tracking data will be created, storage steps for the data and how the

visualizations will be used in the project.

15

Thirdly, we will do the implementation of iterations according to the

requirements that are defined in previous steps. Also, we will do the

integration of these iterations to the project. In this step, we will start to

implement everything that we planned and discussed with our supervisors. It

is the phase where all the connections from the eye tracker API’s will be

adapted to the system to be able to get the tracking data. For the transmission

of data connections between eye tracking client, server, MySQL database,

and the OnGraX main client will be created. On the OnGraX main client side

of the project, we will create a live heatmap according to the tracker data and

also change the color of the focused graph objects. For this project these

graph objects will be nodes. The recording process will be implemented on

the server side. Also, we will do the design and implementation of the eye

tracking and login GUI windows in this step.

In the final step, transition of the finished implementation will be done

to the end user. All the previous planned objectives will be met at the end of

this section. For this project, the user study that we will do at the end is

related to this phase. With the user study, we will have the opportunity to

evaluate the finished project. From the results that we will gain, we will have

a chance to see the differences between the two eye trackers and the

limitations that we will face with them. In order to see if the heatmap quality

in OnGraX can be improved by the use of the eye trackers, user heatmaps

will be examined. In this step, in addition to the simple visualization

adaptation that we will do with the focused graph objects, we will see how

the results can be integrated into the OnGraX system application scenarios.

2.2.2 Brief Explanation of the User Study Structure

At the end of our project, we conduct a user study between two groups. Every

group consists of four people. To be able to have better results in our study,

we did not determine a specific subject of study for our participants. A task is

determined for the study, and it is applied by every person that attends the

study. Basically, in the task we ask people to go from Barcelona to Berlin in a

Europe shaped graph which is visualized with OnGraX. This map occurs

from nodes that are connected to each other. Every node represents a city,

and the edges represent euroroads (“a numbering system for roads in Europe

developed by the United Nations Economic Commission for Europe

(UNECE). The network is numbered from E 1 up and its roads cross national

borders. It also reaches Central Asian countries like Kyrgyzstan, since they

are members of the UNECE [29]) between the cities. Every user logs into the

system with their username and password and they start doing the task. The

first group does the task with the Mirametrix S2 eye tracker and the second

group with the Eye Tribe tracker. All the data is saved to the database

according to the user id. After every participant finishes the task, they fill out

16

eight questions. Seven of these questions are in Likert scale, and the last

question is an open question where users write their own opinion about the

experiment. While users do the experiment time is measured for everyone.

Also, we measure the time while the users answer the questions after the task.

2.3 Reliability and Validity

On the subject of reliability and our method of data collection, we believe

that it is quite adequate since we tried to consider everything. We recorded

eight, four for each tracking device and for OnGraX, user tests on camera,

took notes while the users were completing the task about the path they took,

how long it took them to finish (the database also has a timestamp that

measures time) and how long it took them to answer all the questions of the

questionnaire. The participants did not have to stay for a long time doing the

test so they were not affected by hunger or fatigue [26].

If other researchers redo our research, they might not get the same data

since they will probably use different users, but the end result about the eye

tracking heatmap being better or worse than OnGraX’s heat map should be

the same. For some of the implementation parts, developers can of course

choose a couple of different ways to implement some parts of the coding, but

the final result would be the same.

OnGraX has not been tested before with eye trackers for the subject of

this project or similar.

Construct validity should not be a big issue, as all basic terms and

processes are explained.

Internal validity was also avoided by taking into consideration all

variables that might affect our research, like reading all the guidelines for the

correct and uneventful use of the two eye trackers. Also, in our user study

that we carried out after our implementation, we invited people from different

nationalities and gender, different levels of education and different subject of

studies. Some of them were acquaintances while others complete strangers,

so, in the end, their answers were not biased.

The external validity is believed to be avoided too, as we are including

not only students in our user study, but also job holders. Also, regarding the

implementation, the project can run on any operating system that can support

Eclipse IDE and a web browser [27].

2.4 Ethical Considerations

In our user study (Section 5), we used a questionnaire to collect information

about the eye trackers. For that reason, we gathered some people/users to

17

help us compare and rate the two eye trackers with each other and with the

screen views of OnGraX. In the questionnaire given, their names, age, gender

and the subject of their studies are asked to be given. We will mention the

last three parts of that information, leaving out their names for anonymity

reasons.

18

3 Eye Trackers

For our study, we used two different eye trackers. The first is from a

company called The Eye Tribe, and the other one from the Mirametrix. The

Eye Tribe is one of the most affordable eye trackers in the field (about 99

USD), while the Mirametrix S2 eye tracker is a more expensive choice (about

5.000 CAD ≈ 4.000 USD, with conversion rate 1 CAD = 0.788198 USD).

3.1 The Eye Tribe

The Eye Tribe, as a company, has the goal to provide inexpensive eye

tracking for all. Very fast they got distinguished as one of the world leaders

in economical eye tracking [33]. The Eye Tribe software allows eye control,

permitting hands free usage of websites and applications.

The tracking system has to be positioned below the screen that will be

used and the user within the tracker’s Trackbox (the volume in space where

the user can be found by the tracker), so that it can track the eye movement

and calculate the coordinates on the screen. The SDK (software development

kit) of the tracker has a Trackbox sample that demonstrates how the users

should be positioned [21].

3.1.1 Software

The software consists of two parts. First, the Eye Tribe UI, which needs the

second one, the Eye Tribe server, to be running. If the server is not running

first, then the UI (user interface) will try to start it automatically. In the Eye

Tribe UI it is possible to see information about the calibration and the state of

the eye tracking. It also provides the possibility to change the settings

according to the user’s needs. In the UI, we can also see the Trackbox

window, so it informs the user if the position is correct and if the tracking is

working or not. In the image below, we can see the different tracking cases

(see Fig. 3.1) [21].

Fig. 3.1 Cases of good, medium, bad or non-tracking as shown in the trackbox window.

19

3.1.2 Calibration

During the calibration of the system, the software calculates the gaze

coordinates of the user. The average accuracy is around 0.5 to 1º of the visual

angle. If the user is around 60 cm in front of the tracker and the screen, the

accuracy has an average error of 0.5 to 1 cm.

Before the use of the tracker, each user has to undergo a calibration

process so that the software can model the different eye characteristics and

finally be able to estimate the gaze accurately. The API (application program

interface) of the calibration is displayed as a black window with circular

targets that are illustrated in nine different places on the screen. Nine targets

are recommended from Eye Tribe, but there is the option for twelve or

sixteen target locations that will make the tracking results more accurate. The

users have to look at all the targets one by one when they are being displayed

so the calibration can be completed. If the tracker is moved after the

calibration, then the user has to calibrate again: in this way the Eye Tribe

system can update the new parameters [21]. The calibration screen with 9

target points can be seen in Figure 3.2 below.

Fig. 3.2 Eye Tribe Calibration screen.

3.2 Mirametrix S2

The Mirametrix S2 eye tracker adapts to the Open Eye-Gaze Interface [24],

which supports a standardized design and procedure for calibrating and

obtaining the eye-gaze information, allowing developers to use eye gaze in

their applications. In comparison to the previously discussed eye tracker, the

Mirametrix is almost 40 times more expensive.

20

3.2.1. Calibration

The Mirametrix S2 tracker functions as a server. During calibration (see Fig.

3.3), the server will send the results to the client for each point. The

communication is achieved through a TCP/IP connection and provides XML

data output [24]. The tracker should be located beneath the screen of the

computer that is being used, or in front if it is a laptop. For better results and

performance, the tracker should be placed around 65 cm from the user, and it

should be used far away from windows and infrared light [24].

Fig. 3.3 Results from a calibration with the Mirametrix eye tracker.

3.2.2. Software

The software consists of two parts. The Tracker window and the Viewer

window. The Tracker window shows the real-time image of what the device

is recording from its camera, while also identifying the left and right eyes of

the user (see Fig. 3.4). If the tracker operates properly, the left eye is

bordered with a green rectangle, the right with red and both of them have a

little cross in the center of the pupil [25].

21

Fig. 3.4 Mirametrix S2 User Interface.

The bar on the left is estimating the depth that indicates when the head

position of the user is in the perfect place, which is at the green space in the

center of the bar.

Also, there are three buttons on the right of the window. The Calibrate

button on the top begins the calibration process which is necessary once for

every user or if the tracker is moved from its position.

The Move Cursor button can be used when the user wants to connect

the mouse cursor with the user's gaze on the screen so the user can have a

visual feedback [25].

Fig. 3.5 Tracker Settings window for the Mirametrix S2 eye tracker.

22

The Settings button opens up the Tracker Settings window (see Fig.

3.5). Here, there is the Server Configuration section, where we can see the

Port box with the default server port that can also be changed by the user.

Next to the Port box there are the Start and Stop buttons that turn on and off

the TCP/IP server.

 Next, are the Gaze Settings that contain the Cursor Smoothing, which

can be set to Fixation (detects fixations when moving the mouse, and results

in a faster response) or Standard (smoother response but slower) [25]. Also,

there are the Select Monitor and Calibration Ports where the user can choose

the calibration points (the standard is nine, but there is also the option for

five, although it results in loss of accuracy).

 Lastly, the Version Information section shows the tracker’s Hardware

ID and Version.

23

4 Implementation

This part of our thesis explains the implementation process.

4.1 General Explanation of the System Architecture

The main components of our system are the two eye trackers, the eye

tracking client, the Tomcat server, the OnGraX main client, and the MySQL

database (see Fig. 4.1). To be able to obtain data from the trackers, their APIs

were adapted to the system (see Section 4.2). This adapting process is done

on the eye tracking client side of the project, while Java is used for the eye

tracking client and the tomcat server. The OnGraX main client uses WebGL,

JavaScript and HTML5 [15]. Additionally, the visualization of graphs is done

in WebGL which “is a JavaScript API for rendering interactive 3D computer

graphics and 2D graphics within any compatible web browser without the use

of plug-ins” [36]. Our eye tracking client is used to control the eye trackers

and to send the eye tracking data to the Tomcat server.
The server side of the project is implemented in Java and runs on an

Apache Tomcat server. The connections between eye tracking client, server

and OnGraX’ main client are provided through Web-Socket (“a protocol

providing full-duplex communication channels over a single TCP

connection”) [35] endpoints. Through the endpoints, messages are sent as

JSON-strings, and each message contains an integer value to identify the type

of action that was performed. The messages give information about the

operation that the users select to do, and specific data can be associated with

the action which is used for specific events. For example, in order to send the

tracker data, the “tracking data” action is used with an account name, a

session id, and x and y coordinates that represent one tracked point of the

user's eyes. For the login functionality, the login action is used with the

username and password attributes. The login functionality and sending the

session id with every single message are important, as OnGraX can be freely

accessed via the Internet. Thus, we had to implement a login procedure for

our eye tracking client, to be able to connect to OnGraX and send the

tracking data to the correct user and graph session. User id, x/y tracking

coordinates and time data are stored in tables in a MySQL database, once the

user starts recording the data. When the users want to record the data during

the session, a table is created with the graph name that is open during the

session, if it does not yet exist, and the data is saved there.
User id, x/y tracking coordinates and time data are stored in tables in a

MySQL database, once the user starts recording the data. When the users want to

record the data during the session, a table is created with the graph name that is

open during the session; if it does not yet exist, and the data is saved there.

https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/3D_computer_graphics
https://en.wikipedia.org/wiki/3D_computer_graphics
https://en.wikipedia.org/wiki/Web_browser
https://en.wikipedia.org/wiki/Plug-in_(computing)

24

Fig. 4.1 General architecture of the system.

4.2 Adapting the APIs of the Eye Trackers

To be able to obtain data from the eye trackers, we had to access their APIs in

our Java implementation of the eye tracking client. In the current

implementation, the Java class OnGraxEyeTrackingClient.java has been

implemented and includes both communication protocols of The Eye Tribe

tracker and the Mirametrix S2 eye tracker.

4.2.1 The Eye Tribe Tracker

The Eye Tribe tracker provides an easy API for programmers, so they are

able to get the data from the device. In order to use this API, the tracker

device has to be connected with the computer. It has to be correctly

positioned where it can observe the user’s eyes in a good perspective and

obtain a good quality calibration. Of course, the tracker should be running

too. A TCP connection is required between the OnGraxEyeTrackingClient.java

and the localhost, on port 6555. The message system for the API of this

tracker is in JSON format, and it provides the gaze data in pixels. One very

important issue here is that gaze data is only available in a calibrated and

ready system.

One of the steps to start building the communication with The Eye

Tribe tracker is to download TET Java SDK [21] into the Java project. To be

25

able to make the connection with The Eye Tribe tracker, the “GazeManager”

needs to be activated in the main class. During this process The Eye Tribe

server has to be running, otherwise, the system will not continue the process.

Then, the next step is to receive gaze data from the device. To do that,

“IGazeListener” and “GazeManager” have to be implemented [21]. Gaze data

contain the raw coordinates and smoothed coordinates. Raw coordinates are

the coordinates that the tracker sends directly without any process, while the

user is looking somewhere on the computer screen. Most of the time, this

data can be wrong. This can happen because of some calibration errors,

blinking, or the tracker misses a frame during a session, etc. Smoothed

coordinates are the average of the eye gaze data. These values will be filled

once the calibration process is over. The 2D coordinates are taken from the

gaze manager as raw coordinates, and then they are ready to be called by the

“send tracker data” method and sent to the OnGraX server.

 4.2.2 Mirametrix S2 Eye Tracker

The Mirametrix S2 eye tracker provides developers the Open Eye-Gaze

Interface with a simple method for taking the data and starting the calibration

process. Communication between this tracker and the computer is provided

by a TCP/IP connection via passing XML strings. It uses 4242 as the port for

supplying the connection. For this device, the eye tracker runs as the server.

This server replies to all the statements that are coming from the client, which

is connected to it. The tracker provides all points in percentages of the

tracking window, which means that the screen size is needed in order to

convert them into pixels. The OnGraxEyeTrackingClient.java class includes a

method called “getMiraMetrixData” where implementations for the Mirametrix

S2 tracker are done. This method also contains the socket connection, readers

for the XML string data and the queries for providing the tracking data. To

send the best point of the tracker’s gaze data, the “enable_send_pog_best”

variable is used [24]. This variable gives the average of the left and right

point of the gaze data estimates. For this estimation, both left and right eye

data have to be valid. If the data from one of the eyes is not received, then

only the point of the other one is used. The gaze point is converted from

string to double after the message from the tracker is received and the points

are converted to screen size points. The percentage data obtained for the x

and y coordinates are multiplied by the width and height of the screen. At the

end of these changes, the tracking data is ready to be used in our system.

4.3 Transmission and Storage of Eye Tracking Data

In this section, the transmission and storage of the data will be explained in

detail. To be able to apply the data to the visualization, the eye tracking data,

26

which was obtained from the eye trackers, should be sent to the server and

from there it should be sent to the “OnGraX.Web.Client”.

4.3.1 Login Process

The login process is a very important part of this project. To be able to

connect the eye tracking client with the OnGraX web page, the user has to

login from both sides with the same username and password, and to make

sure that he/she entered the correct username and password to the system. If

they do not enter the same login information, errors will occur during the

transmission and storage of the tracking data. For this login operation in

OnGraxEyeTrackingClient.java class, a “login” method is created. This method

contains the appropriate action with the related data that are the name and

password of the users. These data are sent to the server through Web-Sockets

with JSON strings and there, these strings are received in the related

methods. The name and password that are sent to the server are the

information that users enter in the fields of the login window of the eye

tracking client. After the server receives the data of the login, the system will

check if it is a match with the data from the database and on the OnGraX web

page. If it is not, the user will not be allowed to use the other functionalities

of the system. If all the data is correct, the user will be able to open the client

window which contains the start/stop sending data buttons, the start/stop

recording data buttons and the slider. After the connection between this

window and the web page is approved, the users can enter into a graph

session, record their behavior during the session, send data, stop recording

etc.

4.3.2 Storing the Eye Tracker Data

The communication between trackers and the eye tracking client is provided

with the help of the tracker API, and the eye tracking points can be displayed.

Start/stop sending data, start/stop recording and login processes are

implemented on the eye tracking client side of the project. Methods that are

responsible for these transactions send the proper data to the server through

Web-Sockets with JSON strings. These strings contain actions and connect

the data to that operation. For the start sending data method, start sending the

tracking data action is used with the account name and session id. To be able

to transmit a lot of tracking points, a Java thread is created. With the use of

this thread and the tracking data action, the data are sent to the server. A

tracking data action contains the account name, the user session id, x, y, and

the slider information data. A slider is used to show the last x seconds of the

tracker data and to calculate which node is in the focus of the user (see

Section 4.4 for details). On the server side of the project, in

27

EyeTrackerActionHandler.java class, cases are created for all actions. Inside

these cases, appropriate processes are done to be able to complete the

communication process. Data from the client come to the “receive tracking

data” method on the server.
In order to store the eye tracking information that arrives at the server,

the MyBuffer.java class is implemented in the server. The main idea of creating

this class is to be able to store the tracking data that is received from the eye

tracking client (see Fig. 4.2). From this class, “MyBuffer” object is used in

the methods that are connected with the eye tracking client. This class has

connections with the “MyPoint” and “EyeTrackingActionHandler” classes in

the project. Inside the MyBuffer.java class, we insert all points that are coming

from the eye trackers. The points that are received from the trackers are

generated by the current user’s camera position in the graph view. The

storage of the points should be in world coordinates, so whenever a point is

received from the eye trackers, it has to be mapped from screen coordinates

to world coordinates, and then saved temporarily in the buffer array list (see

Fig. 4.3). Figure 4.2 shows from where the screen coordinates and the world

coordinates are starting.

Fig. 4.2 Screen points and World points.

Another step for the data transmission is to transfer the data from the

server to the web content of the project. The communication between server

and OnGraX web client is also provided by Web-Socket endpoints. In the

28

web content of the project, in EyeTrackingHandler.js, we use the tracking data,

start receiving data and stop receiving data functions.

Fig. 4.3 Steps for storage processes of the system.

4.3.3 Identifying Focused Graph Objects Based on Tracker Data

Also, inside the myBuffer.java class, another storage operation is made for the

identification of graph objects. For our prototype implementation, we focus

on identifying the nodes in a graph [34]. It would also be possible to extend

this functionality to the edges. To be able to identify graph objects that are in

the user’s focus, the tracker points from the buffer are used. In this process,

those points that are inside the nodes are stored in an array list, and the node

with the most points changes its color to blue. To be able to calculate which

points are inside the node, width and height of the nodes are taken from the

29

system. To do a correct calculation, width or height, whichever is higher, is

taken as the diameter of the node and is used in the formula. For this

calculation, we use the “inside a circle” mathematical formulation (see

Equation 4.1 and [37]). The basic idea of this formula is that a point will be

inside a circle if its distance from the center is at most the value of the radius.

After the storage of the data, the system will check and find the node that has

the most points inside and then change its color (see Fig. 4.4). This

identifying technique is just the basic foundation for adaptive visualizations

and could, for instance, be extended to show detailed attributes of a focused

node or zoom in on a focused object. It also can be extended to other graph

objects in the graphs, like edges.

Equation. 4.1 Mathematical formula. It is used to check if the tracking points are inside the

nodes. In this formula xc and yc represents the center of the circle, xp, yp are the points and r is

the radius of the circle.0

Fig. 4.4 Graph object identification. Identification of a graph object under user focus. The node

color turns to blue while it is in the user’s focus.

4.3.4 Basic Heatmap Creation from the Live Tracking Data During a

Session

To show users a heatmap based on the live eye tracking data, the heatmap

visualization is implemented in the HeatmapRenderer.js file. Inside this file,

we create a transparent canvas on top of the one in OnGraX. To be able to

draw points on this canvas, x and y coordinates are taken from the “MyBuffer”

30

object, where we store the data for visualization. For convenience, we

decided on the proper inner and outer radius of the points. The gradient of

the points is set and the coloring is done in a grayscale encoding.

When the users start a session with the eye trackers and activate the real

time heatmap option from the website, the system starts to draw a heatmap

with their eyes according to the tracking data. This heatmap is created from

the live data which comes from the eye trackers. Users have the opportunity

to see the points that they are looking at on the screen, during a graph session.

Figure 4.5 shows a real time tracking data visualization during a graph

session.

Fig. 4.5 Heatmap by tracking data during a graph session.

4.3.5 Recording Process of the Eye Tracking Data

In the recording process of the tracking points, tables are created in a MySQL

database according to the graph sessions that users are joining. Inside these

tables, user id, x, y, and time are stored. While a user is in a graph session,

the system will check the graph name that the user is in, and if a table with

the graph name already exists in the database, the data will be stored in that

table. If not, a table with that graph name will be created and the user id,

time, and x/y tracking points will be saved into that table. The current graph

session and graph name are taken from the user’s session object. The

variables that are stored in the database are identified for the insert operation.

The tracking data is acquired through messages that are coming from the eye

tracking client, the user id is taken from the user session and time is provided

from the MySQL timestamp.

31

4.4 Eye Tracking Client User Interface Design and

General Functionalities

In this section, the design and functionality of the eye tracking client will be

explained in detail. The primary goal of the eye tracking client is to give the

users a quick and easy way to control the eye trackers and use them with

OnGraX. In order to enable the users to use the system’s functionalities, we

implemented two different user interface windows.

The first user frame is a login window. A basic design is done by

setting the bounds of each element on the GUI. Basic GUI elements that are

used: button, combo box, text field, password field, and labels. The

implementation of this frame is done in the Firstframe.java class in the

OnGraX eye tracking client. The combo box in this window contains two

options to choose from, which are the Mirametrix S2 and TheEyeTribe

trackers. Username and password are expected to be entered by the users (see

Fig 4.6). The username and password that the user enters have to be the same

as the username and password that is logged in to the OnGraX’ web page. If

they are not the same, the system will not allow the users access to the

program and will not do any actions. After the user presses the login button

with the correct information, according to the device that he/she will use, the

related calibration window opens for that tracker and the second user window

opens.

The second frame, the OnGraX eye tracking client window, opens after

the user logs in successfully from the first one (see Fig 4.7). This window

includes a slider, start/stop sending and star/stop recording buttons with a

white drawing panel which has a cursor on it. In OnGraxEyeTrackingClient.java

class, the functionalities of these GUI elements are implemented. The white

drawing panel’s size is given relative to the aspect ratio of the screen and a

blue rectangle represents the web site from OnGraX. The red cursor which is

on this panel is in the shape of a cross. It moves on the white drawing panel

according to the eye tracking and can be used to see if the calibration process

was successful and that the eye tracker is working properly. The start sending

and stop sending buttons are responsible for sending the eye tracking data

from the client to the server, and from there that data goes to the web content

of the project. The functionality of this button is given by startSendingData()

and stopSendingData() methods. To be able to start and stop recording the data

into the table, appropriate buttons are provided. Recording and stop recording

methods that are implemented on the client side of the project are responsible

for the communication to the server side for the recording process. Inside

these methods, proper attributes are sent to the server with the actions start

recording tracking data and stop recording tracking data. On the server, the

class EyeTrackerActionHandler.java is responsible for handling all these actions

and messages.

32

An additional slider is used to set how long stored points are used to

identify graph objects (Sect. 4.3.3). For example, if the user sets the slider to

four seconds, the system will only use the stored points that are sent in the

last four seconds from the eye trackers during a graph session on the OnGraX

web page.

 Fig. 4.6 Login window

Fig. 4.7 Eye tracking client window

33

4.5 Comparison and Limitations of the Eye Trackers

Based on our Experience

This section will explain the advantages, disadvantages and limitations that

we discovered on both Mirametrix S2 and The Eye Tribe tracker during our

project.

The APIs of the trackers are an important part of the implementation of

the project after the building of the communication process between the

trackers and our system. We realized that The Eye Tribe tracker’s API is

more understandable and easier to implement with compared to the

Mirametrix S2 API. The way that the trackers provide this data is different

from each other. The Eye Tribe tracker provides the tracking data as pixels.

These pixels are oriented from the top left of the screen. Eye gaze data from

this tracker is also available in both smoothed and raw coordinates. For the

Mirametrix S2 eye tracker, it is a little bit different. It provides the data in

percentages of the screen size, it passes data in XML type strings, and it can

also give coordinates for both eyes separately. In our project, this data is first

read and converted to double type, and then (to be able to convert this data to

pixels) additional operations are done. Width and height values of the screen

are taken from the system and used for the converting process of the data.

Another compelling thing for The Eye Tribe tracker is that it works only with

USB 3.0, which with the new generation computers this does not create a big

problem for developers and users.

We also faced some limitations of the devices. The Eye Tribe tracker

had problems during the calibration process while being near a window.

Because of this, we had a lot of “calibration failed” warnings. Also, during

our user study, we realized that The Eye Tribe tracker is getting overheated

quickly and this affected the calibration process of the device. Because of this

reason, it had problems detecting the participants’ eyes during the calibration

and task solving process. The Mirametrix S2 eye tracker completed the

calibration successfully under the same conditions. This eye tracker also

offers a more detailed calibration window. The calibration interface includes

a scale with red, green and blue colors, and a bigger screen where users can

see their eyes clearly. With this scale on the interface, users can arrange their

sitting distance to the device in order to gain a better quality calibration. After

the calibration of both eye trackers, a window opens to show the calibration

results and give the users a chance to see if the tracker is really following

their eyes. The window that opens for the Mirametrix S2 after calibration

shows the calibration results in a more detailed way than The Eye Tribe

tracker. In this window, users can follow the point to test if the calibration is

of good quality. For the Mirametrix S2, this window also shows the deviation

of the right, left and the average of the right/left gaze. Both trackers had

problems tracking the eyes if the users moved their heads. Therefore, users

34

had to sit in front of the trackers and be careful not to move their heads too

much. Also during the calibration process for the Mirametrix S2 eye tracker,

some of the users in our study (Sect. 5) mentioned that they had to open their

eyes more in order to make the tracker see their eyes properly. These two

situations caused an environment that was not very natural and comfortable

for the users.

35

5 User Study
In this chapter, we discuss and describe the user study. We also explain the

process that we followed in order to finish it.

5.1 The Task

For the task that the users had to solve, we imported a graph in OnGraX that

depicts the map of Europe and Asia with the name eRoads, as shown in

Figure 5.1. Major cities are represented by circle nodes and their names and

lines between them show their road connections. The task we gave to the

users was to identify the cities of Barcelona and Berlin and try to find the

links and cities between them in order to travel from the first to the second

city.

Fig. 5.1 eRoads map based on [29].

5.2 Users testing with The Eye Tribe and the

Mirametrix S2 Eye Trackers

As a first step for the user study and the meeting with the participants, we

prepared a questionnaire with seven Likert Scale questions, where they are

asked to select one of the numbers between one and six, and one open

36

question, so they can write about their experience. These numbers represent

things like; poor or excellent quality degree during the task, ease or difficulty

of the task or the usage of the trackers, etc. The last question is an open

question where we asked the participants to write down their general

comments about the experience with the eye trackers and the task.

When we invited the study participants, we asked them if they would

have any issues with us recording their session. They agreed as we explained

to them that they would not have to face the camera and that the videos

would be used for research purposes and some pieces of them for the

presentation of the test.

Before the arrival of the participants, we put the camera in the right position

and prepared the graph that would be used for the testing. When they arrived,

we asked them to sit in front of the computer and introduced them to OnGraX

and showed them another graph, so they could get accustomed to the tool.

After that, we explained them the task that we would like them to do and

showed them a map of Europe, just in case they were not familiar with the

geographical positions of the two cities.

Additionally, we let them try out the eye tracker before the actual test,

so they could get comfortable with it too. After that, we gave them their

usernames and passwords and explained the order of the steps they needed to

make in order to complete the test correctly: First, they logged in to the

OnGraX website with the username and password given and entered the

graph called “eRoads”. Next, we ran our program and opened the eye

tracker’s user interface. After that, the participants started the calibration

process with the eye tracker, then logged into the eye tracking client with the

same username and password they used in OnGraX. After our eye tracking

client’s GUI opened, they pressed the “Start Sending” button, the “Start

Recording” button and finally returned to the browser window with the

OnGraX web page to find their path from Barcelona to Berlin. While they

searched their path to the destination city, we asked them to tell us every

node/city that they passed. After they finished, they pressed on the GUI’s

“Stop Recording” and “Stop Sending” button. Finally, they logged out from

OnGraX, and we continued to give them the questionnaire with the eight

questions.

5.3 Results from Questionnaire

At the end of the task, the Likert scale questionnaire has been offered to

the participants. With this questionnaire, they had the chance to say their

opinion about the task and answered questions about their experience with

the trackers.

The tables below show the collected data for each question in the Likert

scale questionnaire (see Fig. A.1 and Fig. A.2 in the appendix). The first

37

Table 5.1 is the data gained from the group which used Mirametrix S2 eye

tracker and the second Table 5.2 is the group which completed the task with

The Eye Tribe tracker.

The first column of the tables shows the users in the groups and the first

line of the tables contains the asked questions, i.e., Q1, Q2, Q3, Q4, Q5, Q6,

and Q7 which are:

Q1: How good would you rate the capability of the eye tracker

following your eye movement?

Q2: How much trouble did you have with the calibration process?

Q3: How would you rate the interface of the tracker?

Q4: How would you rate the difficulty of the task provided?

Q5: How much would you rate your experience in using computers?

Q6: Are you familiar with network drawing?

Q7: Have you used eye trackers before?

User ID Q1 Q2 Q3 Q4 Q5 Q6 Q7

1 6 5 5 3 5 1 1

2 6 1 5 5 5 5 1

3 5 4 5 3 5 1 1

4 6 1 5 2 6 5 3
Table 5.1 Answers given by each user from Group 1.

User ID Q1 Q2 Q3 Q4 Q5 Q6 Q7

5 5 3 5 4 6 3 2

6 5 5 5 3 5 2 1

7 5 4 5 2 4 2 1

8 5 5 2 4 5 4 1
Table 5.2 Answers given by each user from Group 2.

With the data from the first table, we can see that for Q1, most of the

users chose six. In the second group, they all selected five, so we can see that

with a little difference, the Mirametrix S2 eye trackers’ capability of

following the eye movements is better than The Eye Tribe tracker. For the

second question Q2, we can clearly see from the given answers that the

second group had more trouble with the calibration process than the first

group users. The answers to the third question Q3 show that the interface of

38

the Mirametrix S2 eye tracker is more detailed and understandable for users.

The averages of Q4 show that the users found the difficulty of the task

normal in both of the groups, and the Q5 indicates that both groups have an

adequate knowledge of computers. The numbers that the users chose as an

answer for the Q6 are very close. This points out that the users from both

groups do not have a lot of knowledge in network drawings. Finally, from the

answers that are given to the last question Q7, it is shown that both of the

groups did not have previous experience with eye trackers.

 To conclude, in the first, second and third question, we have the

opportunity to see some of the technical and conceptual limitations on the use

of the eye trackers (RQ2) and also see some of the differences between the

two eye trackers according to user experience (RQ1).

From the data that we show in the tables, we create two bar charts.

They show the average of the values that are given by the users to each Likert

question. Fig. 5.2 is based on the data from the first group and Fig. 5.3 shows

the results from the second group. The first group answered the questions

according to the experience that they had by completing the task with the

Mirametrix S2 while the second group did it with The Eye Tribe tracker. The

vertical axis of the bar chart represents the numbers that are used to answer

the Likert questions, and the horizontal axis is showing the seven questions.

Blue colored bars display the average value that is chosen by the users for the

questions, and the black thin lines represent the standard deviation. “In

statistics, the standard deviation (SD, also represented by the Greek letter

sigma σ or s) is a measure that is used to quantify the amount of variation or

dispersion of a set of data values.” [31].

Fig. 5.2 Bar chart of Group 1. Chosen values for each of the Likert type questions of the first

group (Mirametrix S2) and the standard deviation.

0

1

2

3

4

5

6

7

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Group 1

39

Fig. 5.3 Bar chart of Group 2. Values that participants of the second group (The Eye Tribe) chose

for answering the Likert type questions and the standard deviation.

Quantitative results that are gained from the user study: Time was

measured (in minutes and seconds) during the tasks for every user session.

Time measurement was stopped when the participants finished the given task.

For the first group with the Mirametrix S2 eye tracker, the average

completion time was 4 minutes, and for the second group with The Eye Tribe

tracker, 6 minutes. In the same way, time was measured for the completion of

the questionnaire. This questionnaire was done by each user after they

completed the task. The average time for the first group members to answer

the questions was 4 minutes and 10 seconds, when for the second group it

was 3 minutes.

Qualitative results that are gained from the user study: We asked all

participants to comment on their experience, and most of them answered that

it was interesting and fun. All of the participants that used The Eye Tribe

tracker, complained about the calibration quality, and they said that it took a

long time for the tracker to find their eyes.

5.4 Analysis of Created Heatmaps

This part contains the analysis of the heatmaps created based on the tracking

data or viewport, respectively.

5.4.1 According to Data Collected from the Eye Trackers

After the user study, in order to see the results in a clear way, heatmaps are

created from the data in the database. Figure 5.4 shows a heatmap from the

0

1

2

3

4

5

6

7

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Group 2

40

data that is collected from one of the users who used the Mirametrix S2 Eye

tracker. Figure 5.5 is another heatmap which is created from the data of The

Eye Tribe tracker. In both heatmaps, in some nodes/cities, colors are going

from purple to red and then yellow, meaning that the users paid more

attention to them. In the user study, we asked our participants to go from

Barcelona to Berlin. First, the participants tried to locate both cities on the

map, and then they followed the linked nodes to go from one city to another.

From both figures, we can see the path that these two participants followed to

complete the task.

From the heatmaps, we can see the differences between the two eye

trackers. In Fig. 5.4 we can see that the gaze points are created more

continuously, and in Fig. 5.5, in some places of the heatmap, there are gaps.

One of the biggest reasons for such a phenomenon is that during the

calibration The Eye Tribe tracker had difficulties finding the user's eyes. This

problem continued during the whole task. On the other hand, the Mirametrix

S2 eye tracker did not have any problems with calibration, so during the task,

it caught all the points that the participants looked at. From this, we can say

that the Mirametrix S2 eye tracker gives more accurate results than The Eye

Tribe tracker. Also, another finding of our user study is that when a

participant focuses on exactly one node/city in the map, The Eye Tribe

tracker generates points on the focused node/city, but it also creates extra dots

(points) around it. In Figure 5.5 (A), we can see these extra points that The

Eye Tribe tracker created while a node is in user’s focus. For example, when

we check Spain, we can see that there are a lot of extra created points around

Barcelona (the focused node), see Fig. 5.5. The Mirametrix S2 eye tracker

didn’t create a lot of extra points. We can see from Figure 5.4, the focused

cities are more evident, and they don’t have extra scattered dots around them.

With this result, we can say that it is easier to understand the focusing point

of the user with the Mirametrix S2 eye tracker.

41

Fig. 5.4 Created heatmap according to the Mirametrix S2 Eye tracker data.

Fig. 5.5 Created heatmap according to The Eye Tribe tracker data. (A) marks a region of a

focused node with a lot of scattered points due to bad tracking quality.

5.4.2 According to Data Collected from Viewports

In Figure 5.6, a heatmap is shown that was created from the viewports of one

of the participants. When the graph view opens, the default screen view is the

area near Moscow. For that reason, we can see that there is a heatmap drawn

in that area. While the participant started panning to the left part of the graph,

the viewport was altered and showed areas near where the participant was

looking at and not only where he/she did actually look. When the user caught

42

sight of Barcelona he/she immediately started going his/her way to Berlin. In

contrast, Figure 5.7 shows a heatmap generated from eye tracking data. We

can see that the path the participant followed in Fig. 5.6 is not clearly visible

as compared to Figure 5.7, as the participant did not focus enough time on

some nodes in order for the heat map to be shaped accordingly (more red and

yellow). For instance, according to our tracking data in Fig. 5.7, the

participant went through Paris, but this fact cannot be seen in Figure 5.6. The

path the participant followed was Barcelona, Toulouse, Orleans, Paris, Mons,

Brussels, Leuven, Hasselt, Heerlen, Cologne, Dortmund, Bad Oeynhausen,

Hanover, Braunschweig, Magdeburg, and finally Berlin.

Fig. 5.6 Created heatmap according to OnGraX’ viewports.

Fig. 5.7 Created heatmap according to the Mirametrix S2 tracker data.

43

6 Discussion

We use two eye trackers in our project. According to our findings, we realize

that the Mirametrix S2 is more effective than The Eye Tribe tracker in the

context of our research. The Mirametrix S2 is easier to work with, as its

calibration does not get so easily affected by light, glasses and other factors.

The Eye Tribe tracker showed evidence that it cannot be used for a long

period of time, as it gets overheated very fast. Also, The Eye Tribe’s way of

eye tracking is not very accurate and results in a lot of jitter. As a result, we

see that the Mirametrix S2 is living up to the expectations of being a high

quality eye tracker and it is worth its price as it gives better results. In

addition, The Eye Tribe tracker being a lot more economical does not affect

its effectiveness too much. It is not as good as the Mirametrix S2, but it can

still give adequate results. With these conclusions, we answer our first and

second research questions (RQ1 and RQ2).

For the third research question (RQ3), and with the help of the user

study, the answer would be that the heatmap quality of the viewports in

OnGraX can be improved by the use of the eye trackers since they are more

accurate with showing the user’s focus points. They show exactly where the

users were looking at through the whole duration of the task. That way, in the

case of a collaborative graph session (with other users), the rest of the users

would see where each one is looking at exactly. So, finally, the heatmap is

more defined and detailed.

With the implementation of our project, we can answer the last research

question (RQ4) as we identify graph nodes that are in the focus of the user, so

they can be adapted visually according to the future developers’ preference.

In our implementation, we resulted in making a node that is in the user’s

focus change color (turn to blue).

44

7 Conclusion

From our results, by answering research question 1 (RQ1), we conclude that

for our research, the Mirametrix S2 is a better choice for eye tracking. As an

answer to our third research question (RQ3), we can come to the conclusion

that eye tracking is a more accurate way of identifying the user’s focus than

the viewports in OnGraX as the viewports show areas that the user might

have not even looked at, at all, making the other users not quite sure of where

their colleagues paid more attention in the graph. To answer this question

more accurately, in the future there could be a measurement of the data

collected and statistical analysis of it, and not only a comparison based on our

experience and knowledge on the two trackers. This fact can also be applied

to the second research question, measuring exactly how much are the

limitations of the eye trackers, give also quantitative results. Finally,

answering our fourth research question (RQ4), we can say that adaptive

visualizations are possible with the use of eye trackers and they can be

designed in any way the developer wants. If we would have had more time

we could have also applied this to other graph elements and not only to a

node, and also we would have made different kind of adaptive visualizations.

Our results are relevant and can be helpful for scientific and societal research.

7.1 Future Research

As it was natural, due to time and resources, we were not able to extend our

project too much. For further and future research, there could be more

implementation on adapting visualizations with eye tracking data since we

gave the foundation for our fourth research question. For example, there

could be a depiction of the characteristics of the nodes that are in the focus of

the eye or change the node’s heatmap colors and intensity when it is in the

focus of the eyes. In Section 4.3.3, it is explained that the identification of the

nodes is done by changing their colors while they are in the user focus. Also

for future research, identification can be applied to other graph objects, like

edges. The project could also be tested with other brands of eye trackers. In

addition, future researchers can try to redo the same project but with more

different types of eye trackers and also with a bigger amount of people for the

user study.

45

References

[1] Kenneth Holmqvist and Marcus Nyström. “Eye tracking – A

comprehensive guide to methods and measures”. Oxford University Press,

2011.

[2] Björn Zimmer and Andreas Kerren. “Applying Heat Maps in a Web-

Based Collaborative Graph Visualization”. Conference: Poster Abstract,

IEEE Information Visualization (InfoVis '14), Paris, France, 2014.

[3] Björn Zimmer and Andreas Kerren. “Displaying User Behavior in the

Collaborative Graph Visualization System OnGraX”. Proceedings of the 23rd

International Symposium on Graph Drawing and Network Visualization (GD

'15), pages 247-259, Volume 9411 of LNCS, Springer, Los Angeles, CA,

USA, 2015.

 

[4] Ben Steichen, Giuseppe Carenini, and Cristina Conati, “Adaptive

Information Visualization - Predicting user characteristics and task context

from eye gaze”. Poster Proceedings of the 20th Conference on User

Modeling, Adaptation, and Personalization, Montreal, Canada, 2012.

 

[5] Ben Steichen, Giuseppe Carenini, and Cristina Conati, “User-Adaptive

Information Visualization - Using Eye Gaze Data to Infer Visualization

Tasks and User Cognitive Abilities”. Proceedings of the 2013 international

conference on Intelligent user interfaces, Vancouver, Canada, 2013.

[6] Tomasz D. Loboda and Peter Brusilovsky. “User-adaptive explanatory

program visualization: evaluation and insights from eye movements”. User

Modeling and User-Adapted Interaction, pages 191-226, Volume 20 Issue 3,

Springer Science+Business Media B.V., 2010.

[7] Jae-wook Ahn and Peter Brusilovsky, “Adaptive visualization for

exploratory information retrieval”, Information Processing & Management,

pages 1139-1164, Volume 49 Issue 5, 2013.

[8] Hsin-Yang Ho, I-Cheng Yeh, Yu-Chi Lai, Wen-Chieh Lin, and Fu-Yin

Chern. ”Evaluating 2D Flow Visualization Using Eye Tracking”.

Eurographics Conference on Visualization (EuroVis), Volume 34 Issue 3,

2015.

[9] Cristina Conati, Giuseppe Carenini, Derevk Toker, and Sebastien Lalle.

“Towards User-Adaptive Information Visualization”. Proceedings of the

46

Twenty-Ninth AAA1 Conference on Artificial Inteligence, pages 4100-4106,

Vancouver, Canada, 2015.

[10] Dereck Toker, Cristina Conati, Ben Steichen, and Giuseppe Carenini.

“Individual User Characteristics and Information Visualization: Connecting

the Dots through Eye Tracking”. Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, Vancouver, Canada, 2013.

[11] Arie E. Kaufman, Amit Bandopadhay, and Bernard D. Shaviv. ”An Eye

Tracking Computer User Interface”. Proceedings of the IEEE 1993

Symposium on Research Frontiers in Virtual Reality, San Jose, CA, USA,

1993.

[12] Ben Steichen, Oliver Schmid, Cristina Conati, and Giuseppe Carenini.

“Seeing how you’re looking -Using Real-Time Eye Gaze Data for User-

Adaptive Visualization”. Proceedings of the User Modeling, Adaptation and

Personalization (UMAP), pages 1-4, Rome, Italy, 2013.

[13] Owen A. Kelley. ”Adapting an existing visualization application for

browser-based deployment: A case study from the Tropical Rainfall

Measuring Mission”. Computers and Geosciences, pages 228-237, Volume

51, 2013.

[14] Robert Moro, Jakub Daraz, and Maris Bielikova. “Visualization of Gaze

Tracking Data for UX Testing on the Web”. Proceedings of the 25th ACM

Hypertext and Social Media Conference, Santiago, Chile, 2014

[15] Björn Zimmer and Andreas Kerren. “Harnessing WebGL and

WebSockets for a Web-Based Collaborative Graph Exploration Tool”.

Engineering the Web in the Big Data Era, pages 583-598, Volume 9114,

2015.

[16] Riccardo Mazza. Introduction to Information Visualization. Springer,

2009.

[17] O.Špakov and D.Miniotas. “Visualization of Eye Gaze Data using Heat

Maps”. Electronics and Electrical Engineering, Volume 115 Issue 2, 2007.

[18] Jakob Nielsen and Kara Pernice. Eyetracking Web Usability. New

Riders, 2010.

[19] Jesper Andersson. Class Lecture, Topic: “Software Development

Inception-Phase”. Linnaeus University, Computer Science Department,

Växjö, Sweden, 2015.

47

[20] Gornik Davor. “IBM Rational Unified Process: Best Practices for

Software Development Teams”. International Business Machines

Corporation, 2003.

[21] The Eye Tribe, (2014). [Online, Last access: 2016-04-23]. Available:

http://dev.theeyetribe.com/java/.

[22] Shawn Graham, Ian Milligan, and Scott Weingart. “Principles of

Information Visualization” The Historian's Macroscope: Big Digital History.

Under contract with Imperial College Press. Open Draft Version, (2013).

[Online,-Last-access:-2016-05-16].-Available:

http://www.themacroscope.org/?page_id=469.

[23] Johan Hagelbäck. Class Lecture, Topic: “Scientific Methods in

Computer Science”. Linnaeus University, Computer Science Department,

Växjö, Sweden, 2015.

[24] Mirametrix. Mirametrix API, 2015.

[25] Mirametrix. Mirametrix S2 User Guide, 2015.

[26] Linnaeus University. (2015), Course Room for Degree Projects,

Reliability.-[Online,-Last-Access:-2016-05-18].-Available:

https://coursepress.lnu.se/subject/thesis-projects/reliability/

[27] Linnaeus University. (2015), Course Room for Degree Projects,

Validity.-[Online,-Last-Access:-2016-05-18].-Available:

https://coursepress.lnu.se/subject/thesis-projects/validity/

[28] Daniel Cernea and Andreas Kerren, “A survey of technologies on the

rise for emotion-enhanced interaction”. Visual Languages and Computing,

pages 70-86, Volume 31, 2015.

[29] Wikipedia. International E-road network, (2016), [Online, Last access:

2016-05-18].-Available:-https://en.wikipedia.org/wiki/International_E-

road_network

[30] The Cyclosys. Methodology, (2015), [Online, Last access: 2016-05-16].

Available: http://www.cyclosys.com/Practices/MethodologiesFramework

[31] Wikipedia. Standard Deviation, (2016), [Online, Last access: 2016-05-

19]. Available: https://en.wikipedia.org/wiki/Standard_deviation

48

[32] Codeflow. High Performance JS heatmaps, (2013), [Online, Last access:

2016-05-19].-Availvable:-http://codeflow.org/entries/2013/feb/04/high-

performance-js-heatmaps/

[33] The Eye Tribe. Our Big Mission, (2014). [Online, Last access: 2016-04-

23]. Available: http://dev.theeyetribe.com/about/

[34] Wikipedia. Vertex (graph theory), (2015), [Online, Last access: 2016-

05-19]. Available: https://en.wikipedia.org/wiki/Vertex_(graph_theory)

[35] Wikipedia. WebSocket, (2016), [Online, Last access: 2016-05-19].

Available: https://en.wikipedia.org/wiki/WebSocket

[36] Wikipedia. WebGL, (2016), [Online, Last access: 2016-05-18].

Available: https://en.wikipedia.org/wiki/WebGL

[37] Andreas Kerren, Introduction to Computer Graphics, (2015). [Online, Last

access:-2016-07-12].-Available:

http://cs.lnu.se/isovis/courses/fall15/1dv800.html

49

Appendix 1
In this part of the appendix, we provide all the raw data from the user study.

Likert Questionnaire

Fig. A.1 First page of the Likert Scale questionnaire that was given to the users after they

completed the task.

50

Fig. A.2 Second page of the Likert Scale questionnaire and an open question.

51

Appendix 2

Collected Data from Questionnaire

Collected data from users who used the Mirametrix S2 tracker:

 1 2 3 4 5 6

Q1 0 0 0 0 1 3

Q2 2 0 0 1 1 0

Q3 0 0 0 0 4 0

Q4 0 1 2 0 1 0

Q5 0 0 0 0 3 1

Q6 2 0 0 0 2 0

Q7 3 0 1 0 0 0

Table A.2.1 Frequency Distribution

Average

Std.

Deviation Mode

Low

limit

High

Limit

Q1 5,75 0,500 5 5,250 6,250

Q2 2,75 2,062 5 0,688 4,812

Q3 5 0,000 5 5,000 5,000

Q4 3,25 1,258 3 1,992 4,508

Q5 5,25 0,500 5 4,750 5,750

Q6 3 2,309 2 0,691 5,309

Q7 1,5 1,000 1 0,500 2,500

Table A.2.2 Other Statistics

Collected data from users who used The Eye Tribe tracker:

 1 2 3 4 5 6

Q1 0 0 0 0 4 0

Q2 0 0 1 1 2 0

Q3 0 1 0 0 3 0

Q4 0 1 1 2 0 0

Q5 0 0 0 1 2 1

Q6 0 2 1 1 0 0

Q7 3 1 0 0 0 0
Table A.2.3 Frequency Distribution

52

 Average

Std.

Deviation Mode Low limit High Limit

Q1 5 0,000 5 5,000 5,000

Q2 4,25 0,957 5 3,293 5,207

Q3 4,25 1,500 5 2,750 5,750

Q4 3,25 0,957 3 2,293 4,207

Q5 5 0,816 5 4,184 5,816

Q6 2,75 0,957 2 1,793 3,707

Q7 1,25 0,500 1 0,750 1,750
Table A.2.4 Other Statistics

The answers given in the open question:

Mirametrix

User1: ”My problem was more geography than the eye trackers. It was good

to use the eye trackers, but maybe a bit funny when trying not to move your

head.”

User2: “Fun.”

User3: “Eye tracker calibration was smooth, fast and fun, I still remember

some geography.”

User4: ”It is the first time for me to experience the eye-tracker, fun

experience, but had a little bit of hassle while searching the cities, overall, a

great experience.”

The Eye Tribe

User5: “The task was very well formulated, the calibration software was easy

to use and intuitive, eye movement recognition was quite precise, the dots on

the graph were not equally distributed.”

User6: “It was fun.”

User7: “It was fun and interesting. The device is a bit difficult to calibrate at

first, but then it works pretty well.”

User8: “Everything was OK, but the eye tracker couldn’t find my eyes with

the glasses. It was a pleasure attending to this test maybe the tracker could be

a little bit more accurate.”

