
Degree project

Creating Music Visualizations
in a Mandelbrot Set Explorer

Author: Christian Knapp
Date: 2012-08-03
Subject: Computer Science
Level: Bachelor
Course code: 2DV00E

Abstract

The aim of this thesis is to implement a Mandelbrot Set Explorer that

includes the functionality to create music visualizations.

The Mandelbrot set is an important mathematical object, and the arguably

most famous so called fractal. One of its outstanding attributes is its beauty,

and therefore there are several implementations that visualize the set and allow

it to navigate around it.

In this thesis methods are discussed to visualize the set and create music

visualizations consisting of zooms into the Mandelbrot set. For that purpose

methods for analysing music are implemented, so user created zooms can react

to the music that is played.

Mainly the thesis deals with problems that occur during the process of

developing this application to create music visualizations. Especially problems

concerning performance and usability are focused.

The thesis will reveal that it is in fact possible to create very aesthetically

pleasing music visualizations by using zooms into the Mandelbrot set. The

biggest drawback is the lack in performance, because of the high computation

e�ort, and therefore the di�culties in rendering the visualization in real-time.

Keywords: Mandelbrot set, music visualization, GPGPU programming

i

Contents

1 The problem 1
1.1 Problem and Motivation . 1
1.2 Goal . 2
1.3 Restrictions . 3
1.4 Structure of the thesis . 3

2 Theoretical Backgrounds 5
2.1 Mandelbrot Set Theory . 5

2.1.1 Feedback Processes . 5
2.1.2 Self-Similarity . 5
2.1.3 Basic Fractals . 6
2.1.4 Limit . 7
2.1.5 �How long is the coast of Britain?� 8
2.1.6 Fractal Dimension . 8
2.1.7 Attractors . 9
2.1.8 Basin Boundaries . 9
2.1.9 Prisoners versus Escapees . 10
2.1.10 Julia Sets . 10
2.1.11 Mandelbrot Set . 11
2.1.12 Characteristics of the Mandelbrot Set 13

2.2 General Purpose GPU Programming 14
2.2.1 GPU Architecture . 14
2.2.2 Programming Interfaces . 15

2.3 Music Analysis . 16
2.3.1 Energy Analysis . 16
2.3.2 Frequency Based Beat Detection 16
2.3.3 Beat Spectrum . 17

3 Related Work 19
3.1 Mandelbrot Set Explorers - Comparison 19

3.1.1 Fractal Science Kit . 19
3.1.2 JM's Mandelbrot Explorer . 20
3.1.3 Ultra Fractal . 21
3.1.4 XaoS . 22
3.1.5 Ultimate Fractal . 23

3.2 Conclusion of Mandelbrot Set Explorers 24

4 Requirements and Software Structure 26
4.1 Feature list (Functional Requirements) 26
4.2 Non-Functional Requirements . 28

4.2.1 Performance . 28
4.2.2 Accuracy . 29
4.2.3 Usability . 30
4.2.4 Scalability . 30
4.2.5 Platform (In)-Dependency . 30

4.3 Architecture . 30
4.3.1 Model-View-Controller . 30

ii

4.3.2 Data Storage Layer . 31
4.3.3 Model . 31
4.3.4 View . 31
4.3.5 Controllers . 32

4.4 Technologies . 32
4.4.1 Java . 32
4.4.2 XML . 32
4.4.3 JDOM . 33
4.4.4 CUDA . 33
4.4.5 JCuda . 33
4.4.6 OpenCL . 33
4.4.7 JOCL . 33
4.4.8 Minim . 33
4.4.9 Swing . 34
4.4.10 OpenGL . 34
4.4.11 JOGL . 34

5 Implementation Process 35
5.1 Implementation Details . 35

5.1.1 Mandelbrot Set Calculation 35
5.1.2 Drawing . 38
5.1.3 Navigation . 39
5.1.4 Jumping to a Location . 40
5.1.5 Saving/Loading Locations . 40
5.1.6 Taking Snapshots . 40
5.1.7 Creating Color Plates . 41
5.1.8 Creating Zooms for Music Visualizations 43
5.1.9 Playback Zoom . 45
5.1.10 Rotation . 45
5.1.11 Music Analysis . 46
5.1.12 User Interface . 48

5.2 Issues . 48
5.2.1 Exact Playback Speed of Recorded Zooms 49
5.2.2 CUDA Contexts . 49
5.2.3 GPU Arithmetics . 50
5.2.4 Slow Successive Re�nement on GPU 50
5.2.5 Grabbing Sound Signal from Soundcard 51

6 Results 52
6.1 Functional Requirements . 52
6.2 Performance . 52

6.2.1 Workload Distribution on Multiple Threads 53
6.2.2 Successive Re�nement and Beyond 54

6.3 Platform Independency and Scalability 55

7 Future Work 57
7.1 Small Improvements and Fixes . 57
7.2 Usability Testing . 58
7.3 Import/Export features . 58
7.4 Automatic Change of Iteration Threshold 58

iii

7.5 Algorithmic Optimizations . 58
7.6 Fair Distribution of Work between Threads 58
7.7 Reusing Parts . 58
7.8 Pre-Rendering in Idle Mode . 59
7.9 Anti-Aliasing . 59
7.10 Own Arithmetics . 59
7.11 Other Coloring Methods . 59
7.12 Improve Music Analysis . 59
7.13 Read Played Music from Sound Card 60
7.14 More Fractals . 60

8 References 61

A Source Code 63
A.1 Determining Complex Numbers for Pixel 63
A.2 Basic Calculator . 63
A.3 Successive Re�nement . 64
A.4 CUDA Basic Algorithm . 65

A.4.1 CUDA Code . 65
A.4.2 Java Code - JCuda . 66

A.5 CUDA Successive Re�nement Algorithm 67
A.5.1 CUDA Code . 67
A.5.2 Java Code - JCuda . 68

A.6 OpenCL . 71
A.6.1 OpenCL Code . 71
A.6.2 Java Code - JOCL . 72

A.7 Creating a Color Plate . 73
A.8 Jump To Time . 74
A.9 Approaching Zoom . 75
A.10 Analyse Music . 75
A.11 Play Zoom . 77

B Raw Data 80
B.1 Low Magnitude . 80
B.2 Medium Magnitude . 80
B.3 High Magnitude . 80

iv

List of Figures

1.1 Entire Mandelbrot set, simple black to white coloring 1
1.2 Mandelbrot set at magni�cation 10 with goldish coloring 2
2.1 Iteration process as feedback machine 5
2.2 Cauli�ower with natural self-similar structures 6
2.3 Construction process of a Cantor set 6
2.4 Construction process of a Koch curve 7
2.5 Basins of attraction in pendulum experiment [10, p.711] 10
2.6 Julia set - connected . 11
2.7 Julia set - dust of points . 12
2.8 Entire Mandelbrot set with blueish coloring 13
2.9 Mandelbrot set with numbered buds 14
2.10 Similarity matrix of Gould Prelude [5] 17
2.11 Beat spectrum of Gould Prelude [5] 18
3.1 Fractal Science Kit 1.20 - Main View 19
3.2 JM's Mandelbrot Explorer 1.21 - Main View 20
3.3 Ultra Fractal 5.04 - Main View . 21
3.4 Ultra Fractal 5.04 - Color Editor . 22
3.5 XaoS 3.5 - Main View . 22
3.6 Ultimate Fractal 2.1 - Main View . 23
3.7 Ultimate Fractal 2.1 - Color Editor 24
4.1 Basic application architecture . 31
5.1 Location toolbar . 40
5.2 Load location dialog, showing preview of selected location 41
5.3 �Capture Image� dialog . 41
5.4 Color editor showing current color transition and color keys 42
5.5 Load zoom dialog with preview of selected zoom 43
5.6 Zoom panel with timeline . 44
5.7 Playing visualization, reacting on music 48
5.8 Main view of the application with all UI elements 49
6.1 Performance comparison between calculation methods 53
6.2 Example for bad workload distribution between threads 54
6.3 Example for good workload distribution between threads 54
6.4 Distribution of Calculation Time for Successive Re�nement on GPU . 55

v

List of Tables

3.1 An overview over the tested fractal explorers 19
3.2 Conclusion of the tested fractal explorers 25
5.1 Overwiew of implemented calculation methods 38
B.1 Raw performance measurements at low magnitude 81
B.2 Raw performance measurements at medium magnitude 82
B.3 Raw performance measurements at high magnitude 83

vi

1 The problem

This section will explain the motivation behind the topic of this thesis, as well as
outline the basic problem and structure of the thesis.

1.1 Problem and Motivation

The Mandelbrot set is a mathematical object, a set of complex numbers to be precise,
that was discovered just about 30 years ago, and is ever since playing a major role
in today's mathematical research.[10] Making it imaginable for everyone just was
possible by the development of powerful computers, that were able to render the
set. Basically it is decided if a complex number is part of the set by observing the
in�uence of that number on a dynamic, mathematical process (this will be revealed
in detail in section 2.1), and the set can then be represented by coloring the complex
number being part of the set in a complex plane. [10] These visualizations of the set
o�er interesting and aesthetically appealing images. A simple visualization of the
set can be seen in �gure 1.1, a more colorful one in higher magni�cation in �gure
1.2.

There are several existing tools allowing it to explore the Mandelbrot set, these
tools are consequently called �Mandelbrot Set Explorers�, or more general �Fractal
Explorers� (see section 3.1 for an overview). They help users to get an idea of
the in�nity of details and complexity of the structures that are generated by a
basically simple process. It became a hobby of many people to create images of
some exceptionally beautiful parts of the set. But many of these existing tools lack
at least in one attribute, may it be performance, o�ered features, or simply usability
for the non-advanced user.

Figure 1.1: Entire Mandelbrot set, simple black to white coloring

Moreover, when people are seeing the zooms or creating videos of zooms into
the set, it is quite natural that they connect it with music, because it immediately
reminds one of the typical music visualizations such as MilkDrop[15] or its open
reimplementation ProjectM[16]. Mandelbrot set zooming videos are typically ren-
dered in advance, because even today, when zooming far into the set, computational
power is a limiting factor and advanced and deep zooms can take hours and days to
be rendered.

1

The next step of connecting these Mandelbrot zooms with music is to render it
real-time and synchronize it with an arbitrary piece of music. Today's hardware
is at least strong enough to handle this real-time calculation of the set up to a
certain threshold. But this job is not trivial, because it needs a high amount of
optimizations and some tradeo�s to reach real-time rendering.

Figure 1.2: Mandelbrot set at magni�cation 10 with goldish coloring

1.2 Goal

The �rst aim of this bachelor's project is to create a Mandelbrot Set Explorer with
focus on easy usability and on good support to create customizable images, especially
by o�ering a good editor to modify the used coloring.

Easy usability implies an intuitive way of interaction with the set to navigate
around it and to reach interesting locations in the set. It also means that for users,
who are not experts in any related �eld, an easy interface should be provided that
also gives them feedback about what they are causing with their actions. But that
does not mean, that only few features should be o�ered to keep the tool simple,
because advanced users should also �nd pleasure in using advanced interactions.

High customizability means, that it should not only be possible to change the
location in the fractal, but especially the colors should be adaptable in an easy and
intuitive way and a high variety of coloring modes should be provided to create
di�erent kinds of images, even if they show the same part of the same object.

Besides these two attributes, the tool should also satisfy other basic requirements,
such as a convenient performance to make it possible to explore the set if someone
does not own a high-end computer. The current development in computer hardware
leads to a more and more parallel approach, which is of high bene�t for the purpose
of this thesis. The calculation of the Mandelbrot Set is highly parallelizable, and can
therefore bene�t a lot from multi-core CPUs, and especially from general purpose
GPU programming. That is why the option will be provided to use the GPU for
accelerating the calculations.

But it does not end there. The �nal aim of the project is the possibility to create
zooms into the set, that can then be stored and played back. The zooms should
again be highly customizable, with color changes on the way and di�erent other
features.

2

These replays should then be connectable with music. The zooms should have
some parameters, e.g. speed of the zoom, used colors and speed of color rotations.
These parameters then change according to some characteristics of the played music.
For instance the colors of the set could change on every beat that occurs in the song.

1.3 Restrictions

The application developed in the course of this bachelor's project could develop to
a large tool rich of many features. Looking at some commercial fractal explorers it
becomes clear, that it is impossible to reach the amount of features they o�er in an
application that is written in a short time period by one single person. So it should
also be clear that this tool will not compete with professional tools and also some
free tools that are being developed for a long time.

The performance of current high-end computers is raising exorbitantly fast, so
the possibility of the real-time rendering of the set is given. But still, the e�ort to
be made is extremely high, so it cannot be guaranteed that real-time rendering is
possible for high magni�cations or on older hardware.

The application will for the moment be restricted on calculating the Mandelbrot
set and no other fractals, to keep the complexity low.

The report will not focus on the theoretical background of the Mandelbrot set,
but give a short introduction into the topics of fractals in section 2.1 to make the
idea clear. The same is the case for music analysis, an overview of the possible
techniques and an explanation of the used ones will be given in 2.3, but the topic
will not be discussed in detail. The thesis should not focus on mathematical theory,
but on the implementation of this particular application.

The implementation of the application is a �rst prototype implementation, be-
cause the implementation e�ort will be big. Due to that the ful�lling of the aimed
features will be measured only by providing the application prototype that will show
that the features are implemented. Concerning usability there will be no usability
testing yet because of the restricted scope of the report.

1.4 Structure of the thesis

This thesis should provide an overview over some basic underlying concepts of the
topic, and it should give a deeper explanation about the implementation process of
the application and arguments about decisions that were made during this imple-
mentation process.

This �rst section is an introduction to the problem and how the idea about this
project had been developed.

The second section is the theoretical part, that explains some concepts around
which this thesis is built, namely fractals, music analysis and GPU programming.

The third section will give an overview about related works, in particular the
section will introduce existing Mandelbrot Set Explorers and compare them in con-
sideration of features that will be important for this project's implementation.

The fourth section points out basic requirements that should be ful�lled in the
course of the implementation. Moreover, it should give a brief overview about the
applications architecture and the used software technologies.

The �fth section discusses details about the implementation. It gives an overview
about the main implementation features, how they were implemented, what deci-

3

sions where made during the implementation process and why this decisions were
made.

The sixth section is a short discussion about the outcomes of the project.
And �nally the seventh section gives an outlook on what could be attached in

the future to this work.

4

2 Theoretical Backgrounds

This section will introduce the reader to the main theoretical backgrounds of the
thesis, namely the theory of fractals and the Mandelbrot set in particular, some
concepts about GPGPU programming, and possible ways to analyse music.

2.1 Mandelbrot Set Theory

This section introduces the basic theory about fractals in general and the Mandelbrot
set in speci�c.

2.1.1 Feedback Processes

For developing the further principles of fractals, it is necessary to understand a basic
underlying concept, named feedback processes.

A feedback process describes an outcome of a process depending on its previous
state. One iteration step processes an input value to generate an output, and this
output is reused as input for the next iteration step, as shown in �gure 2.1.

Figure 2.1: Iteration process as feedback machine

These one-step iteration processes do not sound complicated intentionally. But
even if the iteration process is simple, the behaviour can get complex.

If an iteration process is carried out with a computer, it has to be considered
that computers can only represent numbers with a certain amount of decimal places,
every following digit gets trunced o�. If the computer can represent, say 10 decimal
places, one would probably think that this is precise enough. But that is not the
case, because even the smallest deviation at some point of the iteration process can
grow to a massive deviation at a later point. [10, p.49-53]

2.1.2 Self-Similarity

A basic characteristic of fractals is self-similarity, more or less pronounced. In princi-
ple self-similarity can be described with the example of a cauli�ower, shown in �gure
2.2. It contains branches, which themselves look much like the whole cauli�ower,
only smaller. These branches can again be decomposed into smaller pieces with
the same property. On a cauli�ower, this self-similarity stops at some point when
the branches get to small. Strict self-similarity in its mathematical meaning would
imply, that this decomposing process can be done in�nitely many times. But also
without that attribute, self-similarity can be useful to examine natural structures.
[10, p. 215]

5

Figure 2.2: Cauli�ower with natural self-similar structures

A more mathematical explanation of this attribute can be formulated as follows.
Two objects are similar, if they have the same shape, regardless of their size. So
corresponding angles must be equal, and corresponding line segments must all have
the same factor of proportionality. [10, p. 138] In nature, self-similarity is never
perfect, because the magnitude will be bound and a smaller part of an object will
never be exactly the same as the whole.

2.1.3 Basic Fractals

Now that some basic terms that are necessary to talk about fractals are clear, some
�rst examples of fractals can be revealed.

Cantor set An important fractal, which is dating back to the 19th century, is the
Cantor set. It is basically an in�nite set of points in the interval [0, 1]. [10, p. 67]

The set is constructed by starting with the interval [0, 1] and taking away (cutting
out) the open middle interval (1/3, 2/3). That leaves the two intervals [0, 1/3] and
[2/3, 1]. Now this step is repeated on the two remaining intervals, so their middle
thirds get cut out and four intervals of length 1/9 remain. The �rst steps of this
process are shown in �gure 2.3. Carrying out this removal steps in�nitely often leads
to the Cantor set. [10, p. 68]

Figure 2.3: Construction process of a Cantor set

Is the Cantor set self-similar? It is, because e.g. taking a look at the interval
[0, 1/3] shows that this part is a scaled down version (by 1/3) of the whole Cantor
set in [0, 1]. [10, p. 75]

6

The Koch Curve The Swedish mathematician Helge von Koch introduced the
now called Koch curve in 1904, and it is geometrically constructed by starting with
a straight line, which is called the initiator. This line is partitioned into three equal
parts, the middle third is replaced by an equilateral triangle and its base is taken
away, leaving a �gure made out of four lines. This procedure is repeated on each of
these four line segments. Self-similarity is built into the construction process. The
�rst steps of the process are illustrated in �gure 2.4. [10, p. 90]

Figure 2.4: Construction process of a Koch curve

The Koch curve represents self-similarity in its purest form. Scaling up one of
the four equal parts of the Koch curve by the factor three results in the exact same
curve as before. [10, p. 145]

2.1.4 Limit

Many fractals are obtained by a construction process, and ideally this process should
never terminate. Any �nite stage may have �ne structure, but is always far from the
true fractal, and that fact is important to keep in mind. So the fractal only exists
as an idealization. Or, in other words, fractals are limits. [10, p. 147]

This property is highly related to the concept of limits e.g. of the geometric
series. The sum of the geometric series 1 + q + q2 + q3 + . . . has the limit 1/(1− q)
(if q < 1). But in fact the sum Sn (the sum of the �rst n elements of the geometric
series) will always be di�erent from the limit, no matter how large n is. But in a
�nite accuracy computer this di�erence is indistinguishable if n is large enough. [10,
p. 148f]

7

Also the construction progress shows high analogies. A starting value, here 1, is
scaled down by the scaling factor (which is q) and added (with geometrical objects
this is interpreted as a union of sets). This in�nite construction leads to a new
number which represents this process, and which is the limit of the geometric series.
Exactly analogous to that, the construction of a fractal leads to a new geometric
object. [10, p. 149]

This now examined strong link between the geometric series and the Koch curve
helps to understand and to provide evidence for the existence of fractals. Another
approach of doing this are fractals as solutions of equations, this is explained in
detail in [10, p.168-178].

2.1.5 �How long is the coast of Britain?�

Benoit Mandelbrot wrote an article in 1967 with the theme �How long is the coast of
Britain?�.[7] This article refers to the problem of measuring a coastline, which will
always get di�erent results, depending on the granularity of the measurements. The
smaller the scale, the longer the resulting measures will be. But how do these values
(scale of the `compass' and measured length) correspond to each other? To �nd that
out, a log/log diagram is drawn with the inverse compass setting (1/setting) on the
horizontal axis, which represents the precision of the measurement. The vertical axis
is the logarithm of the length. A line (approximated by the method of least squares)
is laid through the measured points. The line is described by u = d ∗ log(1/s) + b,
and the slope d of the line is the key to the fractal dimension (the term will be
explained in 2.1.6) of the underlying object. In the case of Britain's cost line, this
is about 0.36. [10, p. 184,p. 192-195]

If the measured length is called u and the precision 1/s, then the power law of
the growth of the measured length of Britain's coastline can be formulated like this:

u ∝ 1

s0.36

[10, p. 198f]
Now the same process can be applied to a pure mathematical situation, e.g. the

Koch curve. For the compass settings s = 1/3, 1/9, 1/27, ... can be chosen, because
it �ts best to the length of the segments of a Koch curve. The used logarithm should
be log3, to get convenient numbers. The growth law is then log3(u) = d ∗ log3(1/s),
therefore d = log3(4/3) = 0.2619. [10, p. 201]

2.1.6 Fractal Dimension

The term of dimension usually raises intuitively the thought about line, plane and
space as 1st, 2nd and 3rd dimension. But the term can get much more complex
than that, and was discussed a lot especially in the turn from 19th to 20th century.
Mathematicians came up with a bunch of di�erent notions of dimension, which are
all somehow related, but �t di�erently well to speci�c situations. [10, p. 202]

For the sake of this thesis, Mandelbrot's fractal dimension is of most importance,
which was already built up in 2.1.5, and can now be de�ned exactly.

Self-similarity dimension When observing self-similarity of fractals, there is
usually a scaling factor s, which is characteristic for fractal structures, and a number
of scaled down pieces a into which the structure is divided. [10, p. 203]

8

Now a power law relation between these number of pieces a and the reduction
factor s should be formulated:

a =
1

sD

, where D = 1 for a line, D = 2 for a square, and D = 3 for the cube, representing
exactly the numbers familiar for (topological) dimensions. [10, p. 204f]

For the Koch curve on the other hand, the results is 4 = 3D, or log(4) = D∗log(3),
or

D =
log(4)

log(3)
= 1.2619

. This is the self-similarity dimension of the Koch curve. A general self-similarity
dimension is calculated by

Ds =
log(a)

log(1
s
)

. [10, p. 205]
This calculated dimension of 1.2619 should sound familiar. It is exactly the

fractional part of the length measuring for the Koch curve in 2.1.5. Intuitively it
seems like the self-similarity dimension should be the length measuring slope plus
one, Ds = 1 + d. And this is, in fact, correct, as it is proved in the given reference.
[10, p. 205�]

2.1.7 Attractors

The term `attractor' will be needed for developing the ideas of Julia sets (explained
in section 2.1.10). As it is often with new terms, the easiest way to introduce them
is by giving an example.

One can think of an experiment, where three strong magnets are placed some-
where on a surface. Above this surface, a pendulum is �xed, consisting of the string
and a metallic ball at its end. If the pendulum is now moved to some position and
gets released there, it will swing for a while until it stops exactly above one of the
three magnets, depending on where the pendulum was released. The three positions
on which the pendulum can stop are called attractors.

To speak in more mathematical terms but stay informal, a variable moving ac-
cording to the dictates of a dynamical system evolves to a so called attracting set.
In practice smaller sets will be obtained, because some parts of an attracting set
may not be attracting. These smaller distinct sets are called attractors. [2]

2.1.8 Basin Boundaries

For a system with several coexisting attractors (see pendulum experiment), where
depending on the starting value one of the attractors is approached, the term of ��nal
state sensitivity� is used. A set of initial values which lead to one speci�c attractor
is called a basin of attraction (see �gure 2.5). So there must be a boundary of these
corresponding basins of attractions, and such boundaries often are fractals. The
complexer this boundary is, the more problematic it gets because of the limited
possibility for numerical representations. [10, p. 757]

9

Figure 2.5: Basins of attraction in pendulum experiment [10, p.711]

2.1.9 Prisoners versus Escapees

The simplest nonlinear iteration procedure in complex numbers is z → z2. Geomet-
rically this means, the corresponding length of z is squared, the angle arg(z) of z is
doubled (modulo 2π). [10, p. 789]

It is quite obvious that the points inside of the unit circle lead to a sequence that
converges to the origin, the points exactly on the unit circle lead to a sequence that
remains on the unit circle forever, and the points outside lead to sequences that
escape to in�nity. [10, p. 789]

The complex plane of initial values can be subdivided into two subsets. The �rst
one collects points for which the iteration escapes and is called the �escape set E".
The iteration of all other initial values remains in a bounded region forever, these
points are collected in the �prisoner set P". [10, p. 789f]

2.1.10 Julia Sets

In the previously introduced iteration z → z2, the prisoner set P is the disk around
zero with radius 1, and the escape set E is the outside of that disk. The boundary
between E and P is the unit circle, and is called the �Julia set" of the iteration.
The Julia set is invariant under iteration, i.e., for initial values in the Julia set, the
iteration generates only points which again lie in the Julia set. [10, p. 789f]

The iteration process has two �xed points, 0 (attracting) and 1 (repelling). We
can interpret the interior of P as the basin of attraction for the point 0, and the
escape set E as basin of attraction of the point at in�nity. [10, p. 790]

In this simple example, the Julia set is a circle, hence a geometrical object from
classical Euclidean geometry. But this is just an exception, most Julia sets are in
fact fractals. The iteration process should now be changed to z → z2 + c, where c
is some complex parameter. To visualize these fractals a way needs to be found to
�nd the escape set E and visualize it, the remaining points will then be the prisoner
set P, and the boundary between them the Julia set. [10, p. 791]

A �rst example: c = −0.5+0.5i. This leads to a set of points escaping to in�nity
(escape set) and a set of points converging to z ≈ −0.408 + 0.275i. So again, there
are two basins of attraction, but it is not zero which is one of the attracting points.
The Julia set of this example has clearly self-similar structures, no matter how far
it is magni�ed. [10, p. 792]

How can it be decided if a point escapes to in�nity or not? Observation shows,

10

that points zk from an orbit will escape to in�nity with certainty once their absolute
value is large enough (because a square of a large number will make the constant c
rather insigni�cant). But how large must it be? There is in fact an optimal answer
to this question, which helps a lot for the computations. This threshold number r(c)
can be calculated as the maximum of the absolute value |c| and 2:

r(c) = max(|c|, 2)

. Thus, if |zk| exceeds r(c) in absolute value, the iteration will escape to in�nity for
sure. [10, p. 793f]

In practice there is the problem, that it may take a long time until a certain orbit
escapes a disk of radius r(c), even though if it will escape at some point. So the
computation needs to be limited by a maximum number of iterations, if the iterated
point does not exceed r(c) in absolute value during these iterations, then it must
be assumed that the initial point belongs to the prisoner set. So it is important to
keep in mind, that the precision of the algorithm is limited. [10, p. 794]

By visualizing this process, di�erent results can be observed. Connected Julia
sets can appear, which are the common boundary of two basins of attraction, or a
prisoner set with no interior points is seen, which is equal to the Julia set. Hence it
can be distinguished between prisoner sets that are connected (see �gure 2.6) and
those that are a dust of points (see �gure 2.7). This observation is important for
the understanding of the Mandelbrot set. [10, p. 798]

Figure 2.6: Julia set - connected

2.1.11 Mandelbrot Set

The Mandelbrot set is certainly the most popular fractal, and has been a major
research object since the �rst experiments to show this extraordinary mathematical
objects by Benoit Mandelbrot around 1980. [10, p.841]

The occurrence of highly performant computers made it possible to show this
fascinating fractal to everyone, instead of it just being imagined in genius minds like
the one of Benoit Mandelbrot. The Mandelbrot set is a glimpse to everyone what
mathematicians sometimes call the aesthetics of mathematics. [10, p. 842]

11

Figure 2.7: Julia set - dust of points

The Mandelbrot set is not only aesthetically pleasant, but it o�ers a high amount
of mathematical backgrounds. But since this report focuses on the visual represen-
tation of the set and its use as an artistical object, its mathematical properties are
only touched on the surface.

Metaphorically speaking the Mandelbrot set can be described as an in�nite pic-
ture book, each page holds the image of one particular Julia set Jc, and the page
numbers are the complex parameter c belonging to the Julia sets. This in�nite
book can be organized in two chapters: the �rst for all connected Julia sets and the
other for those that are totally disconnected. This was the way how Mandelbrot
discovered the Mandelbrot set in 1979:

M = {c ∈ Complex plane C |Jc is connected}

. [10, p.843] So any point in the Complex plane, interpreted as a parameter c for
the iteration of z → z2 + c, corresponds to a Julia set. The point is colored black,
if the Julia set is connected (it is a 'piece'), and white if the set is disconnected (it
is a 'dust'). [10, p. 843f]

But how can it be decided computationally whether a parameter c belongs to the
Mandelbrot set or not?

Proposition 1. The prisoner set Pc is connected if and only if the critical orbit
0→ c→ c2 + c→ . . . is bounded

[10, p.844]
This proposition provides the alternative de�nition for the Mandelbrot set, Man-

delbrot himself used

M = {c ∈ C|c→ c2 + c→ . . . remains bounded}

as the de�nition for M in his 1979 experiments. [10, p.844] This de�nition is similar
to that of the Prisoner set Pc,

Pc = {z0 ∈ C|z0 → z0
2 + c→ . . . remains bounded}

. [10, p.845] The Julia set is part of the plane of initial values z0 which have orbits
that reside in the same complex plane. The Mandelbrot set however is the plane
of parameter values c, it is not appropriate to plot any orbits from the iteration of
z → z2 + c in this plane. [10, p. 844f]

12

As one of the characteristics of the Mandelbrot set, everything outside of a disk
of radius 2 is not part of the Mandelbrot set, because, if |c| > 2, the critical point
escapes to in�nity for sure, and the Julia set is a dust. [10, p. 845]

Given the parameter c, how can be computationally decided whether the orbit
of c is bounded or not, i.e., whether c ∈ M? This leads to the same problem as
deciding if z0 is in the prisoner set or not, so theoretically in�nitely many iterations
could have to be conducted, but in practice only a limited amount of iterations for
a su�ciently accurate approximation is carried out.

Figure 2.8 shows a visualization of the set with a blueish coloring (where colors
are according to the amount of iterations needed to decide whether c ∈M or c /∈M).

Figure 2.8: Entire Mandelbrot set with blueish coloring

2.1.12 Characteristics of the Mandelbrot Set

The complexity of the Mandelbrot set is in an altogether di�erent class compared to
that of Julia sets. On the one hand, the Mandelbrot set has a solid interior without
any structure, and on the other hand it is bordered by a complex boundary with an
in�nity of di�erent shapes. [10, p. 855]

An interesting feature of the Mandelbrot set are the small buds which are lined
up along the one big, heart-shaped, central region. The buds have a meaning for the
associated Julia sets. The big heart-shaped region is in fact the set of all (complex)
parameters c for which one of the two �xed points of z → z2+c is attractive. At the
left end of the heart-shaped region, at c = −0.75, there is a bud. For the parameters
in this bud neither one of the two �xed points of z → z2+c can be attractive because
c is outside of the heart-shaped center of M . The iteration of the orbit can either
diverge or it is dominated by the attractive orbit of period 2:

0→ −1→ 0→ . . .

All initial values of the interior of the prisoner set are attracted by this orbit, and
the Julia set is the boundary of this basin of attraction. The next big buds attached
at the edge of the heart-shaped center of M correspond to period-three behaviour,
then there are buds which house parameters belonging to attractive cycles of pe-
riod 4, and so on. Figure 2.9 shows a Mandelbrot sets with numbered buds, the
numbers correspond to the periodicity of the orbits of Julia sets in this bud. [10,
p. 855, 862�, 866]

There are many more mathematical observations about the set that can be made.
Many of these observations are explained in detail in literature [10] and [1]

13

Figure 2.9: Mandelbrot set with numbered buds

2.2 General Purpose GPU Programming

It should be clear that the decisive factor in the development of the music visual-
ization is to get the calculation of the Mandelbrot set as fast as somehow possible
to accomplish real-time zooming. To achieve this it can be of huge bene�t to use
a GPU for calculations, because in the last years GPUs got capable of handling
not only 3D-rendering but a wide �eld of heavy calculations. Especially for highly
parallelizable calculations, as the Mandelbrot set calculation, the GPU is the perfect
tool to use.

To understand why the GPU is so suitable for this purpose, it is necessary to
take a short look on the basic underlying architecture of a modern GPU. After that,
a look on the programming model will reveal how it is possible to actually use a
modern GPU for general purpose calculations. And �nally the actual programming
interfaces will be discussed, which allow it to `speak' to di�erent GPUs in a high-level
programming language.

2.2.1 GPU Architecture

Modern GPUs are highly parallel programmable processors, not only powerful graph-
ics engines as they used to be. GPUs are designed for applications with particular
characteristics, such as large computational requirements and high parallelizabil-
ity. Some years ago, the GPU was a highly specialized processor, built around the
graphics pipeline to perform graphic calculations. But since then, both the hardware
and the programming interfaces developed to make them more suitable for general
purpose applications. [9]

The graphics pipeline had a list of triangles in a 3-D world coordinate system as
input. These geometrical primitives got processed in several steps to �nally map
them onto the screen. This was done by �xed-function operations. The key step
in the evolution to general purpose processing was the replacement of these �xed-
function operations by user-speci�ed programs. So today we have a processor as
a programmable engine surrounded by supporting �xed-function units, instead of
them being the central and only part of a GPU. [9]

The programmable units of the GPU process multiple elements in parallel with a
single program. Each element must be independent from the others. Even though
only a single program is used, di�erent elements may take di�erent paths. But taking

14

a di�erent branch in the program is a major de�cit to the performance because of
the GPUs architecture, so it should be avoided. That is why elements get grouped
into blocks which are proceeded in parallel. If elements inside one of these block
branch into di�erent parts of the code, the di�erent branches get executed on all
elements of the block. So it has to be taken into consideration that elements of one
block should preferably follow the same code branch to optimize the performance of
the calculations. [9]

The computing on a modern GPU is not structured in terms of graphic calcu-
lation, but adapted a more general approach that is still closely connected to the
former graphical structure, but more bene�cial for general purpose applications. It
exploits data parallelism and provides a balance between generality and also restric-
tions to ensure a good performance. [9]

The basic steps are the following:

• Step 1: De�ning a computation domain as a grid of threads.

• Step 2: A single process multiple data general-purpose program computes the
value of each thread.

• Step 3: The computation of the value is done by a combination of math
operations and global memory access, and is stored in a resulting bu�er in
global memory.

2.2.2 Programming Interfaces

GPGPU programming used to be done through the graphics API. Therefore, calcu-
lations needed to be adapted exactly to the structure of graphic calculations. This
was time consuming and needed a deep understanding of the underlying hardware
structure. To avoid it, it was necessary to introduce APIs that can be easily used
in higher level languages and are abstracted of the graphic computation structure.
This led to the development of the stream programming model, which structures
programs in a way so they match the parallel processing resources and the memory
system of the GPU hardware. A stream program consists of a set of ordered sets of
data (streams) and the functions which are applied to the elements (kernels), and
produce streams as the output. [9]

The �rst widely used GPGPU programming systems got developed by the two
big GPU producers, AMD and NVIDIA. NVIDIA provides a higher level interface
than AMD does, namely CUDA. CUDA code adapts the syntax of C and is overall
closely related to C. It compiles o�ine, and it exposes two levels of parallelism, data
parallelism and multi-threading. [9]

The �rst open standard for parallel programming on modern computer hardware
was OpenCL (Open Computing Language). It has the great bene�t of running on
a wide range of di�erent hardware architectures.

CUDA and OpenCL have a similar functionality, and porting applications be-
tween them is quite simple. So a comparison between their performance should be
undertaken. The transfer of data to and from the GPU is faster on CUDA. When
it comes to kernel execution time, CUDA is also consistently faster than OpenCL.
So, when trying to reach a performance as high as possible, CUDA seems to be the
better choice. On the other hand there is the fact that OpenCL code will run on
almost every modern system, while CUDA code needs a speci�c hardware. [6]

15

Besides the choice of the right programming interface, there are other things to
be taken under consideration to bene�t as much as possible of GPGPU processing:
[9]

• Emphasize parallelism: The e�cient use of GPU depends on a high degree of
parallelism. CUDA e.g. prefers to launch thousands of threads at one time to
optimize the performance. But on the other hand, the use of shared resources
between the threads should be minimized, as well as synchronization between
them.

• Minimize SIMD divergence: It is important to avoid branches in the code
inside data blocks.

• Maximize arithmetic intensity: The number of numeric computations should
be as high as possible compared to memory transactions, because the GPU
can play out its advantages on its strong �oating-point unit.

• Exploit streaming bandwidth: Despite the fact that maximizing arithmetic
intensity is desirable, the GPU has also a high bandwidth on its on-board
memory, which can be made use of when a lot of memory accesses are necessary.

2.3 Music Analysis

To develop a good method for analysing played music and adapt graphical visu-
alizations to it, some basics about music theory and signal processing need to be
understood.

The signal that reaches the human ear when one listens to music has a certain en-
ergy, and the higher this energy value is, the louder the music seems. The rhythm of
music is determined as the (more or less) periodical succession of beats. Beats again
are determined as energy peaks, i.e. the energy level at some point is considerably
higher as it was over a time period before. [11]

2.3.1 Energy Analysis

The energy level of an audio signal gives us already some crucial information for
sound analysis, since beats can basically be determined by analyzing the energy level.
On the other hand it can happen as well, that the overall energy level will be loud in
some music genres and the energy level at moments where humans would `feel' a beat
is not higher compared to a time interval before. This can happen because unlike the
human ear, the energy level is not distinguishing between di�erent frequencies. For
that reason, it can be necessary to introduce the beat detection based on frequency
bands. [11]

2.3.2 Frequency Based Beat Detection

If simple energy analysis fails to �nd beats in an audio signal, advanced techniques
to make the beat detection dependent on the signals frequencies can be used. In
that way it can e.g. be possible to distinguish between di�erent instruments.

To get the audio signal from time to frequency domain, the fast Fourier transform
is being used. In that way, a bunch of values describing the energy level in a certain
frequency band are obtained. So now di�erent frequencies can be distinguished, and

16

beats in a certain frequency band can be found. This for instance makes it possible
to detect the drumming pattern of a song, even if it is not as loud as e.g. a guitar.
[11]

2.3.3 Beat Spectrum

The beat spectrum is a quite new and advanced method for automatically charac-
terizing rhythm and tempo of audio. It is a measure of acoustic self-similarity as
a function of lag time. Peaks in the beat spectrum show major rhythmic compo-
nents. The lag time of the corresponding peak shows the repetition time, and the
amplitudes of di�erent peaks re�ect the strengths of their rhythmic components.
The beat spectrogram is a graphical illustration of rhythmic variation over time,
and makes changes in tempo or time signature visible. [5]

The beat spectrum is calculated from three principle steps.

1. The audio gets parametrized, which results in a sequence of feature vectors.

2. The similarity between all pair wise combinations of feature vectors gets cal-
culated, which is then embedded into a two-dimensional representation, the
similarity matrix (example of a similarity matrix for Bach's Prelude No. 1 in
C Major, BVW 846, performance by Glenn Gould, in �gure 2.10).

3. The beat spectrum is determined by �nding periodicities in the similarity
matrix (result for Gould Prelude shown in �gure 2.11).

Figure 2.10: Similarity matrix of Gould Prelude [5]

17

Figure 2.11: Beat spectrum of Gould Prelude [5]

18

3 Related Work

As related work to this report are seen existing applications that are similar to the
one that will be developed for the purpose of this report, because the focus of the
thesis lies on implementation work.

3.1 Mandelbrot Set Explorers - Comparison

Numerous Mandelbrot Set Explorers can be found around the Internet, some of
them are simple and were written for test purposes or own use, while others are
fairly advanced and often not only include the Mandelbrot set but also several other
fractals which can be displayed. The di�erent applications vary a lot in o�ered fea-
tures, performance, appearance, price, and other important attributes. An overview
over the most popular and some not so well known but interesting fractal explorers
will be given, and the good and bad parts are pointed out to learn from them for
the implementation of the application for this thesis.

Some of the tested explorers are not free, but all of them have a free trial version.
The tests are always done with the trial version of these non-free explorers. All
of them are only limited by watermarks in the fractal pictures and by time based
limits, not by functional limits.

Name Platforms Version Last release Price
Fractal Science Kit Windows 1.20 20-10-2011 29.95$
JM's Mandelbrot Explorer Windows 1.21 26-05-1999 Free
Ultra Fractal Windows 5.04 11-08-2010 39-139$
XaoS Win, Linux, Mac 3.5 17-07-2009 Free
Ultimate Fractal Windows 2.1 19-10-2011 38$

Table 3.1: An overview over the tested fractal explorers

3.1.1 Fractal Science Kit [17]

Figure 3.1: Fractal Science Kit 1.20 - Main View

The Fractal Science Kit is a fractal explorer, that implements the basic features
an explorer should have. The main view of it is shown in �gure 3.1.

19

First of all, it is possible to save and load image properties, but also many other
things like own fractal equations and so on. It is also possible to take snapshots of
the fractal image.

The tool has basic navigation features, it is possible to jump to a certain location
and rotate the fractal. But all that has to be done through a menu, there is no
possibility at all to interact directly with the image without clicking a menu button
�rst. There is no panning at all, and zooming can only be done by a box which
outlines the area to zoom into. The zoom jumps in, there is no smooth movement.
All this makes it annoying to navigate around the set and is not convenient at all.

What is also quite annoying is the fact that it is not possible at all to change
the images size and resolution, both is �xed. Also, there is no possibility to change
the colors of the fractals, the color set is prede�ned and cannot be changed by any
means.

The feature which makes this tool exceptional, is the sheer versatility of options
to represent a lot of di�erent kinds of fractals, and de�ne own fractals as well. So
this tool is really more of a creator than an explorer, and should therefore rather
be measured by its huge variety of fractals and the possibility to manipulate them.
But still, better navigation and the possibility to manipulate the color plates would
make this tool much more user friendly and would make it more appealing.

3.1.2 JM's Mandelbrot Explorer [18]

Figure 3.2: JM's Mandelbrot Explorer 1.21 - Main View

JM's Mandelbrot Explorer is a small and fairly old fractal explorer with a narrow
band of features. Figure 3.2 shows the main view of it.

It is possible to save and load locations, images and color plates.
This tool has the distinction that it has a great usability in navigating the Man-

delbrot set. The navigation is easy and is done on the set image itself. By left
clicking it is possible to draw up a rectangle on the image that speci�es the area
that should be shown. Then the zoom to this window is smooth with coarse image
representation on the way in. The zoom is quick and without big delays. A right
click is used for panning. All in all the way of navigation is user friendly and con-
venient, even though it would be nice to have some additional navigation features.
The worst thing missing is the possibility to jump to a location that is entered by
the user directly, even though it is well possible to save and load locations where the

20

viewport is at that moment. Also, the users get no feedback about their location in
the set.

Image size and resolution change automatically when the window size changes. A
color plate editor is built into the program. At �rst it can be hard to use it, because
it is not obvious what the di�erent options cause in the color plate. But after a
short time it is clear what is happening, and then the editing of colors works well.

The tool lacks in options. There is almost nothing that can be adjusted, not even
the maximum iteration count (which leads to a limited reachable magni�cation).
There are some few options of fractal equations to use, but the Mandelbrot set is in
fact the only one of them which is really interesting.

This tool is good for beginners in the world of fractals who just want to jump
around the Mandelbrot set with a tool that is easy to learn. But it is not the right
thing for people who have high expectations in possible options and adjustments to
make or who want to go deep into the set.

3.1.3 Ultra Fractal [19]

Figure 3.3: Ultra Fractal 5.04 - Main View

Ultra Fractal is an advanced and professional fractal explorer, seen in �gure 3.3.
First, besides being possible to save and load positions and create images, it is

also possible to write own transformation algorithms, fractal algorithms, and even
coloring algorithms.

The zooming is done by opening a zooming window on the fractal image (which
can also be rotated), and clicking again to smoothly zoom in to this window. A
right click opens a context menu which makes it possible to zoom back out, to
change colors, to change to full screen, and some more. By using shortcuts it is also
easily possible to pan/skew/rotate the image directly. The users can also write in a
location to jump to that place.

The resolution of the image can be changed manually. The feedback given to the
user is great, also with displayed calculation time.

The color plate editor of Ultra Fractal is exceptionally good (shown in �gure 3.4).
It is possible to create own color plates in an easy and intuitive way, it is quickly
understood how it works. Only one small critic is that the set with the new colors
cannot be seen simultaneously, but the user has to switch between color plate mode
and fractal mode to see the result of his manipulations.

21

Figure 3.4: Ultra Fractal 5.04 - Color Editor

The settings o�er a lot of di�erent possibilities to adjust the tool to the own
needs. And as mentioned in the beginning, especially the possibility to code own
transformations, fractals and coloring methods is a great way to get deeper into the
topic of fractal visualizations.

A special feature of Ultra Fractals, which is of special interest for this project, is
the possibility to create animations. On a time line it is possible to record and play
animations of zooms into the sets by setting key values. The problem with it is, that
it is not intuitive at �rst, and it is sometimes not that easy to create animations
as wanted. But it is already a great tool for animating prede�ned zooms and play
them back.

All in all Ultra Fractals is clearly a tool for professional or at least experienced
users with all its possibilities to extend the program with own code. But it can also
be a tool for beginners who want to experience fractals, because the tool is fairly
simple in usage.

3.1.4 XaoS [20]

Figure 3.5: XaoS 3.5 - Main View

XaoS is a free and simple fractal explorer, which o�ers all the basic features and
has some nice aspects. Figure 3.5 shows the main view of the application.

Locations can be loaded and saved, images created, and even zooms can be
recorded and played.

22

The navigation is done by clicking somewhere on the fractal image to slowly and
smoothly zoom into the set in that direction, as long as the left mouse button is
held down. By holding the right mouse button down, the zoom goes out instead of
in. It is also possible to jump to certain positions, but no panning can be done.

The menus have a clear structure, everything can be found in a quick and intuitive
way. But the menu has to be opened every time something should be done, so at
least some clicks are inevitable for almost every action.

Size and resolution of the image change automatically. User color plates do exist,
but they just make it possible to choose one of some di�erent algorithms to create
the plate and some o�sets. Besides that, it is possible to pick random plates (which
works well), and even the equation to calculate the coloring of a pixel out of di�erent
variables (like iteration count) can be changed by the user.

There are several options to adjust the fractals. Several di�erent equations can be
chosen out of, and several interesting �lters can be laid over the fractal image. Apart
from that, there are a few other options to modify calculation and appearance.

As mentioned before, it is possible to record zooms. A special feature is to load
and pre-calculate these zooms, so they can then be played without more delays.

XaoS is a nice tool, that is extremely easy to handle. It may have not as many
features as some other tools, but at least the features are easy to �nd and it is easy to
understand what they cause. Also, the zooms look good and the overall appearance
of the tool and the fractal image is appealing. This program shows how a great tool
can be created without making it complicated to use it.

3.1.5 Ultimate Fractal [21]

Figure 3.6: Ultimate Fractal 2.1 - Main View

Ultimate Fractal is an advanced but easy to use fractal explorer for a lot of
di�erent fractals, �gure 3.6 shows the main view of the application.

Parameters and images can be saved and loaded. The tool has also `back'- and
`forward'-options.

Zooming in is done by opening a zoom window. The zoom is a jump and no
smooth zoom. By clicking the right mouse button, a jump zoom out of the fractal
occurs. There is no panning, but easy and direct jumping to certain positions.
Resolution of the set is changed automatically when resizing the window, but no
full screen mode is available.

23

The tool has some prede�ned color gradients, as well as an own color plate editor.
The editor (see �gure 3.7) is really easy and intuitive to use and makes it easy to
create nice own color plates, as well as saving or loading them. One disadvantage
is again, that the colors of the fractal images are not updated simultaneously while
changing the color set, it is necessary to �rst close the editor to see how the fractal
changes.

Figure 3.7: Ultimate Fractal 2.1 - Color Editor

There are several di�erent fractals and equations that can be loaded, but not
many program options besides that. Because of the not so overwhelming amount of
options, the menu structure stays quite clear.

Ultimate Fractal is a quite nice explorer, but it still could need some inspiration
of tools like XaoS which have higher functionality, nicer appearance, run on di�erent
platforms, and even are completely free.

3.2 Conclusion of Mandelbrot Set Explorers

Table 5.1 should give a brief overview over the functionality of the tested explorers,
without giving a qualitative assessment.

The observations made about existing fractal explorers in�uence the requirements
for the thesis project. E.g. the interaction bene�ts highly from direct interaction
with the the fractal on the viewport, and by smooth zooms instead of simple jumps
into or out of the set, and the coloring of the set should be easily customizable.

24

Explorer Mult.
Frac-
tals

View-
port
Inter-
act.

Smooth
Zoom

Color
Edi-
tor

Create
Zooms

Outstanding
Feature

Fractal Sc. Kit Yes No No No No Create Fractals
JM's M. Expl. No Yes Yes Yes No None
Ultra Fractal Yes Yes Yes Yes Yes Own Algorithms
XaoS Yes Yes Yes No Yes Usability
Ultimate Fractal Yes Yes No Yes No None

Table 3.2: Conclusion of the tested fractal explorers

25

4 Requirements and Software Structure

Section 3 revealed what can be necessary for a convenient user experience and what
should be avoided. According to these �ndings, this section formulates the require-
ments for the application, consisting of functional and non-functional requirements.
Moreover, after de�ning these requirements, the basic architecture of the application
is constructed.

4.1 Feature list (Functional Requirements)

1. Display the Mandelbrot set

The obvious �rst feature of the application should be the displaying of the
Mandelbrot set.

2. Navigation

The navigation around the set should be interactive. That means, the users
should be able to directly interact on the set image with their mouse and
keyboard, and immediately see the result of their actions. In that way, the
users will quickly internalize the ways of navigation that are provided by the
tool.

(a) Panning

Panning is the navigation on the set, that leaves the magni�cation level
the same, but changes the real and imaginary centre of the visualization.

(b) Zooming

Zooming into the set should be done in an intuitive way, which is easy to
handle for the user. One possible way is clicking on a position in the set,
and then jumping in by a certain level, e.g. doubling the magni�cation.
To make it more interactive, the zoom should not jump, but when the
user is clicking on a position in the set and keeping the mouse button
down, the magni�cation level should increase (or decrease) slowly, so
that it looks like a smooth movement into the set, that stops on releasing
the mouse button.

3. Basic Settings

The application should provide some basic settings which allow the users to
directly in�uence the appearance of the displayed set.

(a) Location

The user can change the location in the set, which consists of the complex
number in the centre of the visualization and the magni�cation level. By
these parameters, the exact current viewport can be obtained.

(b) Iterations

The appearance of the set will change according to the maximum number
of iteration steps to carry out. The more iterations can be done, the more
accurate the picture will be because less mistaken prisoners will be added
to the prisoner set. So the users should have the possibility to modify
this value on their own.

26

4. Saving/Loading Positions

To make it easy to �nd and share interesting locations in the set, the users
would want to save certain locations and load them later, to not have to
remember the locations themselves. So there should be an easy way to save a
location, to see all saved locations, to load one of the saved locations and to
remove locations that are not needed anymore. It would also be convenient
to make it possible to export/import locations and not just save/load them
internally, so users could exchange locations with each other and do not have
to insert the locations manually.

5. Color Sets

For the calculation of the set the number of iterations is evaluated that are
needed, until the absolute value of the complex number exceeds a certain
limit. That means, the calculation just results in a raster of integer-values
which represent this iteration counts. Hence, arbitrary color values can be
mapped to these integers. To make the set visually appealing, the chosen
color mapping is important and also editable by the user.

(a) Pick Prede�ned Color Set

The users should be able to pick one of some prede�ned color sets to
ensure a nice appearance of the set.

(b) Create Color Sets

To make the appearance more customizable it should be possible for the
users to create their own color mappings. That is done by a convenient
color plate editor, where the user can create own color transitions by
setting color keys and giving them a distinct color. Every color in between
those values is interpolated. Color keys should be moveable interactively.
To give an immediate preview of how the modi�cation of the colors a�ects
the set, the displayed set should be redrawn on the �y in the new colors
when the plate was modi�ed.

(c) Save/Load Color Sets

To not have to recreate the own color sets every single time, the users
should have the possibility to save and load their created plates. Also they
should be able to export and import them, so they can be exchanged with
other users of the program.

(d) Color Rotation

The users can let the colors of a color plate rotate, and also let this happen
automatically, for example when zooming into the set. This causes a color
movement e�ect, which will be important for the music visualization.

6. Zooms

To make it possible to play the music visualization, the users must �rst be
able to record zooms into the set.

(a) Pick a zoom

A set of prede�ned zooms into the set should be provided, so the users
have some visually appealing zooms ready.

27

(b) Create a zoom

The users should be able to create nice looking zooms into the set to
their own preferred locations in an easy way. For that, the principle
of the color plate editor is adapted, so that the users can specify key
frames which hold a certain location. At the points in time between
these keys, the locations (i.e. position, magnitude, maximum iterations)
are interpolated.

(c) Save/Load zooms

Created or modi�ed zooms should be storable and loadable at a later
moment. Moreover, it should be possible to export and import them, so
users can share them with other users of the tool.

(d) Play zoom

Zooms get played with a default speed level and some settings, e.g. if
color rotation should be carried out while zooming.

(e) Play music visualization

As before a zoom gets played, but now the zoom should change some of
its parameters according to a music piece which is chosen by the user.
The length of song and zoom can be adjusted, or the zoom is simply
looped.

7. Settings

The tool should be customizable, so the users can change it to their own needs
and also adapt it to their used hardware, so they can get the best possible
performance out of the program. Some parameters that should be modi�able
are:

• Used algorithm

• Used arithmetic

• Used zoom modes

• Algorithmic details

4.2 Non-Functional Requirements

This section formulates the non-functional requirements for the application.

4.2.1 Performance

The performance of the application is a crucial element in the development. The
main feature of the application, creation and playback of music visualizations, re-
quires real-time rendering. Therefore, the application should be able to render at
least 25 frames per second, which means it can spend up to 40 ms on calculating
and drawing one frame. Since the calculation is highly time consuming, this is not
an easy task, but the main concern in the development process.

Generally speaking, the calculation e�ort increases when zooming deep into the
set. This is due to the fact that higher magni�cations need a higher iteration
threshold until a point gets considered inside the set to create a su�ciently accurate
image. A higher iteration threshold means a higher computation time, except if

28

all the points escape quickly, but the positions where that is the case do usually
not look as interesting and will therefore usually not be the �rst choice to go to
for the users. Moreover, if we go deeper into the set, we need a consecutively more
precise arithmetic, which is the second big reason for a major slowdown when the
magni�cation level increases.

It is di�cult to give a threshold to which the performance should be raised. That
is due to

• di�erent calculation times in di�erent positions of the set

• a variety of di�erent algorithmic optimizations, which have di�erent in�uence
on the performance, depending on the position and magni�cation of the fractal

• and a wide range of di�erent consumer hardware on which the application
should run.

A minimum requirement can be formulated:
The application should be able to render arbitrary zooms in low magni�cation

levels on fairly modern hardware.
This requirement is still vague, because neither the term low magni�cation levels,

nor fairly modern hardware can be de�ned exactly. The point of this minimum
requirement should be clear though.

4.2.2 Accuracy

The calculation of the Mandelbrot set in the application includes several tradeo�s
in accuracy. By the nature of the used algorithm, it cannot be decided for sure if
a point really lies inside the set, or if it would escape at some point, because the
iteration process cannot be iterated in�nitely often, but has to have a threshold at
which the iteration process is stopped and the point is considered to be inside the
set. The higher this threshold, the higher the accuracy of the algorithm because
there are less points that are mistakenly assumed to be inside the set. But the e�ort
gets high to increase this threshold, just to eliminate some small mistakes.

Moreover, there is a loss of accuracy because of the computer's arithmetic. Since
the computer is not able to exactly represent �oating point values, there is an in-
evitable mistake in calculations, and therefore a loss of accuracy. If the magni�cation
of the set gets higher, this loss gets higher as well, and as soon as the precision of
the parameters exceeds the precision of the used arithmetic, the accuracy is lost
completely.

A third source of loss of accuracy are optimization algorithms for the calculation
of the Mandelbrot set. Some of these optimization algorithms have a high loss of
accuracy, some do not lead to a loss at all. But since performance requirements need
to be ful�lled as well, a tradeo� between accuracy and performance has to be done.

And at last, there is the boundary of resolution, which makes it only possible to
display the set with a certain amount of detail, even if the accuracy of the calculation
would have been higher than that. That leads to the point where it is unnecessary
and just wasted computation time if the set is calculated more accurately, than the
displaying device can represent it.

This application should lay its focus more on performance than on accuracy, but
some level of accuracy has to be maintained. It can be said, that the accuracy
of the calculations should generate fractal images, that are not or just in small

29

details distinguishable from the perfect image by the human eye. The fact of limited
resolution actually helps a lot to ful�l this requirement even if the focus lies on
performance.

4.2.3 Usability

The usability of the application is an important factor, that is often neglected by
too technically or mathematically thinking computer scientists.

This application should provide a high level of usability to a wide range of users.
The users are not expected to be experts or even advanced in neither of the touched
�elds, may it be computer science, mathematics or physics (signal processing and
music theory). So everyone who has basic knowledge about how to use modern
computer applications should be able to create his or her own customized music
visualization after a short time of exploring and accustoming to the applications
mechanisms.

But, also the usability is highly related to the performance the application can
provide. If users have to wait for seconds to render each single image, they would
not be happy with the application and quickly drop it. Therefore, performance has
a high impact on usability.

4.2.4 Scalability

As already mentioned in the performance requirement, it is di�cult or even quite
impossible to set exact aims which should be reached considering performance of
the application. Same is the case for scalability. It is obvious because of the need
of a real time rendering of the set, that the application is not likely to run on older
hardware. But users with hardware that is not performant enough, even for real
time rendering in slow magni�cations, should still be able to use the application for
the exploration of the Mandelbrot set. Therefore, the application should provide
mechanisms to lower the accuracy of calculations, so the performance can increase
considerably to make the tool conveniently usable for users with slow hardware.

4.2.5 Platform (In)-Dependency

The application should run on current versions of the most common desktop plat-
forms. That includes Linux, Microsoft Windows and Apple MacOS. The application
should run on 32 bit as well as on 64 bit operating systems.

4.3 Architecture

Figure 4.1 outlines the basic architecture of the application. The application will be
discussed in more detail in the following sections.

4.3.1 Model-View-Controller

The used architectural pattern is the Model-View-Controller (MVC) pattern. It
strictly assigns three di�erent roles to three parts of the application, which interact
in a speci�c way. The model holds the application data and implements the business
logic. The view is responsible for the visual representation of the program, and is
the interface with which users directly interact. It has access to the model, to get

30

Figure 4.1: Basic application architecture

the data that should be displayed. The controller at last deals with the user inputs,
reacts on them, and manipulates model and view according to it.

4.3.2 Data Storage Layer

The �rst layer of the application is the data storage layer. It consists of some kind
of storage unit. So called �Data Access Objects� (DAOs) are used to manipulate the
data, i.e. to read and write from and to the storage unit.

4.3.3 Model

The main component of the model in the application is the `Fractal' class. It is the
main hub of the application by accessing the data layer and holding the necessary
data for the rendering of the set. It provides methods to navigate the set, i.e. to
manipulate its parameters. It also provides methods to actually calculate the set
through access to the `Calculator'-classes. Some of the calculators execute code on
the GPU, the so called �GPGPU Kernels�. At last the `Fractal' class also holds the
sound and color mapping data and the methods for manipulating them.

4.3.4 View

The view consists of the classes which deal with the visual representation of the
application. These classes create what the users will see on their screen and what

31

they will interact with. It draws the fractal images on the screen, and surrounds
it with all the user interface components. The data it needs to display all this is
obtained by the model.

4.3.5 Controllers

The controller classes are, so to speak, the nervous system of the application, because
they react to impulses from outside (from the users) and trigger re�exes according
to the signals they get. Depending on the input, the controller classes react by
manipulating the model and the view of the application.

4.4 Technologies

The application uses a variety of technologies to ful�l the stated requirements. This
section lists these used technologies, explains how they are integrated into the appli-
cation and gives arguments about why a certain technology is preferred over others.

4.4.1 Java [22]

The application is mainly written in the programming language Java. The reason
for choosing Java bases on di�erent reasons.

• A fast high programming language is needed to solve this complex and calcu-
lation intensive problem.

• The author has the most experience in Java out of all high programming
languages.

• The development in Java is platform independent, so the application can be
developed for several di�erent platforms, usually without changing the code.

• Java applications bene�t from the improvements of the underlying Java Virtual
Machine, without being modi�ed themselves.

On the downside the main argument would be that Java is often considered to
be slow and memory ine�cient in execution. But in fact, when it comes to numeric
computations and multi-threading, Java already reaches a performance close to C.
[12] Therefore, this slight disadvantage is acceptable and Java is used as the main
language for developing the application.

4.4.2 XML [23]

Application data has to be stored somehow, and there are many di�erent ways of
doing this. For instance, the application could use a database and choose between a
huge variety of di�erent database management systems. But since the application is
not going to deal with a huge amount of stored data, a semi-structured data storage
on �le basis, namely XML, is more adequate because of advantages such as less data
overhead and easy exchangeability of �les.

32

4.4.3 JDOM [24]

A Java-representation of the XML data is required, for that matter the JDOM-
API is used. There is no need for a SAX parser, because the amount of data is
comparably low. So JDOM can manipulate the data that is stored in XML �les by
using Java code, and o�ers a representation of the XML data in Java so it can be
processed further.

4.4.4 CUDA [25]

CUDA is one of the used technologies by the application for calculating the fractal.
CUDA is a library of NVIDIA, that allows it to programmers to use a NVIDIA
GPU (of a newer generation) for executing general purpose processing tasks. This
application uses CUDA for executing the operations that are necessary to obtain
the raster of integer values that visually represent the current set. CUDA code is
written in a C-like language and compiled for a certain hardware architecture.

4.4.5 JCuda [26]

JCuda is an API written for Java for integrating CUDA programming into Java, i.e.
CUDA code can be executed from inside a Java application. JCuda o�ers support for
di�erent platforms like Windows, Linux and MacOS, so the multi platform approach
of the application can be retained. In the application JCuda is used for setting up the
necessary CUDA environment, transferring data to the GPU, start the calculations,
and �nally retrieve the results from the GPU again.

4.4.6 OpenCL [27]

OpenCL is the alternative to CUDA programming, to run GPGPU calculations on
many di�erent supported hardware architectures. OpenCL code does not only run
on GPUs manufactured by NVIDIA, but also on others such as AMD's or Intel's
GPUs. The usage is similar to CUDA, the code is again written in a language close
to C.

4.4.7 JOCL [28]

JOCL is a Java API to enable OpenCL programming in Java, just as JCuda is for
CUDA. Also JOCL o�ers libraries for several platforms, and it has the same tasks
as JCuda, the usage is just slightly di�erent.

4.4.8 Minim [29]

Minim is a strong audio library for Java. It is usually integrated in the programming
framework `Processing'1, but it can be integrated as well in pure Java.

The good thing about Minim is that it provides easy ways to perform simple
audio analysis. It is one of the few good audio libraries for Java, so the range of
suitable APIs is not wide. Minim can do simple signal processing with fast Fourier
transforms, and provides possibilities for playing audio �les and getting their meta
data. Moreover, it includes classes which can be used for doing simple energy based
audio analysis or a bit more advanced frequency band beat analysis.

1http://processing.org/

33

http://processing.org/

4.4.9 Swing [30]

Swing is the graphics API that is part of the Java Runtime Environment since
version 1.2. It brings implementations of all the important components in modern
client applications, and a variety of layout managers to assemble the UI components.
Swing is based on the Abstract Window Toolkit (AWT), and looks much more
modern than AWT does.

The main competitor for Swing is the Standard Widget Toolkit (SWT), but Swing
was chosen over SWT. It is much closer to Javas �Write once - run everywhere�
principle, because SWT has much more issues in adapting it for di�erent platforms.
[4]

Swing may also be used for drawing the fractal, by manually painting every single
pixel with a certain color value.

4.4.10 OpenGL [31]

The Open Graphics Library (OpenGL) is a speci�cation for developing 2D- and
3D-graphic applications platform independently. In this application it is used for
drawing the fractal. The bene�t of using OpenGL instead of Swing is the huge
performance gain, because OpenGL directly calls corresponding operations on the
GPU, which makes it much faster than the drawing methods used by Swing. [14]

4.4.11 JOGL [32]

JOGL basically wraps OpenGL into a Java library. Most of the functions that are
available for OpenGL, are directly translated into Java and can be accessed with
the exact same function call. Only some adaption were done because of some Java
characteristics, such as simulating pointers because Java hides pointers from the
developer.

34

5 Implementation Process

This section goes deeper into the implementation of the application. In particular,
it presents the implementation process of the major algorithms and functionalities.
In an own subsection the big issues that occured during the implementation process
are discussed in detail.

5.1 Implementation Details

Each of the following subsection contains a brief description about the implemen-
tation of a part of the application. Furthermore, it reveals the motivation behind
certain decisions made during the implementation process.

5.1.1 Mandelbrot Set Calculation

Iteration The basic underlying algorithm that is going to be used in the program
is the �Distance Estimator Method� [1, p.196�] with small simpli�cations, because it
creates appealing images of the set and can be optimized in di�erent ways. The idea
is to map a pixel in the viewing plane to a corresponding point in the complex plane,
which will be C for the iteration of Zn+1 = Z2

n + C with Z0 = 0. Then this point
gets iterated, until its distance from the origin exceeds a critical boundary or until
it reaches a de�ned maximum number of iterations. If the boundary is exceeded, it
is assumed that the value diverges, and the number of iterations that were needed
is used to color the pixel in a certain color. But if the iteration continues until the
maximum number of iterations, it must be assumed that the value will not diverge
and therefore the point is in the Mandelbrot set and gets colored accordingly.

The basic algorithm to calculate and draw the Mandelbrot set does not implement
any speed improvement or other optimizations. It is a simple raster scan, that
iterates over every pixel of the viewport and iterates the orbit of the corresponding
point.

There are several methods to optimize the calculation of the Mandelbrot set. The
most suitable ones will be discussed in the following.

Mirror Symmetry Maybe the simplest and most obvious optimization is using
the mirror symmetry of the Mandelbrot set at the real axis. The set has several
symmetries in it, but only the symmetry on the real axis is perfect. So if the
displaying window contains the real axis, it would be enough to calculate the bigger
of the two parts (either above or below the real axis), and then mirror the values on
the real axis.

There is one problem with this optimization. Because the rendering happens at
pixel level and the value of the complex plain gets calculated for pixels, it is highly
unlikely that the real axis will be exactly on one pixel line, and therefore one cannot
just mirror the image on that pixel line. Nevertheless, if the image is simply mirrored
on the pixel line closest to the real axis, the mistake would be neglectable and since
it is not the aim to calculate as accurate as possible, it would be reasonable to accept
this small error.

Orbit Detection As it has been discussed in 2.1.12, a lot of values inside the set
which do not diverge (and will therefore be iterated until the full maximal iteration
count), will end up in a cycle of reoccurring values. Especially in the big buds - they

35

will be inside the display window quite often - the periodic cycles are quite small.
The main bud for example has the periodicity of two. To exploit this characteristic,
a certain amount of last calculated values of the orbit can be stored and new values
can get checked if they coincide with one of the stored values, which would mean
there is a cycle (even if it would not be a real cycle due to inaccurate arithmetic, the
computer will not break out of this cycle anymore and therefore calculate the value
wrong anyways). So the calculation for this point can immediately be stopped and
the point is assumed to be inside the set.

Successive Re�nement Successive Re�nement is a popular and e�cient method
to improve the speed of the Mandelbrot set calculation. Moreover, it has progres-
sive calculation inherent, so without additional e�ort (except for the rendering) a
progressive drawing method can be obtained, hence a user can already see a coarse
approximation of the set which gets improved step by step until it eventually be-
comes pixel (or even subpixel) accurate.

The following implementation ideas for the successive re�nement algorithm base
on [8] and [1].

The basic progressive calculation is simple to implement and to understand. The
pixel raster �rst gets grouped into so called chunks of several pixels, for example
starting with blocks of the size of 8x8 pixels. Then the usual iteration method is
executed for one pixel in each of these chunks (which will be the top left one), but
the whole chunk will get colored according to the outcome of the calculation for
the one pixel. This results in the Mandelbrot set in a much lower resolution, which
already provides a glimpse on the look of the �nal image. In the next step, the chunk
sizes is cut in half, e.g. 4x4 pixels, and the iteration process is repeated, which leads
to a re�ned picture of the set. This method is repeated, until the chunks are in the
size of only one pixel.

This is no speed improvement, but it will increase the calculation time signi�-
cantly by a factor of about 2. The �rst logical step to improve the performance (and
approximately reach the performance of the naive algorithm) is to avoid to calculate
the pixels again which were already evaluated in the former step to determine the
value for the parent chunk. To do so, in each step it is checked if the quotient of
the x and y-value of the the pixel to evaluate and the chunk size is divisible by two,
hence

i f (((x / chunkSize) % 2 == 0)) &&
((y/ chunkSize) % 2 == 0)) {

" sk ip eva lua t i on and use parent chunk value "
}

, because if this equation is true, the value was already calculated before and that
value can be adopted.

But how can this method lead to a real performance improvement? This re�ne-
ment method can be used to exploit a characteristic of a calculated coarse pixel map
to save certain calculations in the next re�nement step with lower chunk size. The
short explanation is that for all neighboring chunks of some chunk should be checked
if they all have the same `value' (iteration escape count) and if so, the iteration can
be skipped and the neighbors value can be adopted.

The �rst step to implement that is to save the values that are calculated in one
re�nement step and carry them on to the calculation with the half size chunks. So

36

in the next re�nement step, the `parent' chunk for this new chunk �rst needs to be
obtained.

i f (x \% (2∗ chunkSize) == 0)
parentX = x ;

else
parentX = x − chunkSize ;

Analogous this works for the vertical direction. This works because if the top left
corner of a chunk was already calculated in the step before, the parent position is
the same as the current one. But if this is not the case, the current chunk size needs
to be subtracted to get to the position of the top left corner of the parent chunk.

Carrying out this test makes sure that pixels that were already evaluated in the
parent step are not evaluated again. Now a new test is added, which examines if
in the former re�nement step all the neighbors of this chunk had the same value,
and in that case adopt this value for the current chunk without iterating it. The
distance of the neighboring parent chunks to this parent chunk is the current chunk
size times two.

So in the end, if a chunk was already calculated in the former re�nement step
that value is adopted, or if its parent neighboring chunks all had the same value,
this value is adopted. If these two tests fail, the usual iteration is carried out and
the resulting value is adopted to the whole chunk. This is repeated until the chunks
are of the size of one pixel.

This method works especially well on low magnitudes. For example if the whole
fractal is on the viewport, in the main bud the iteration process will only be done a
few times and then this values will be adopted over and over again because all the
neighboring chunks have the same value. Also in the outer region, the same value
appears over a big range of the viewport and therefore a lot neighboring tests will
succeed. In higher magnitudes, especially on the edges of the set, the method will
not be so much of an improvement, because the values di�er a lot from pixel to pixel.
But the calculation time is usually still improved signi�cantly, so it is de�nitely well
worth the implementation e�ort.

Again this algorithm leads to a loss of accuracy, especially narrow features such
as cusps can be missed with this method. But the mistakes are comparably small
to the huge performance gain, and can be neglected as well.

Multi-Threading So far the implementation of the successive re�nement method
does only explicitly make use of one thread and therefore one CPU core. But the
algorithm is easy to split up in several pieces, by just cutting `slices' out of the
viewport and assign each of them to an own thread. It must be considered that the
algorithm uses its neighboring chunks for the calculation of each chunk, that means
that the slices will not be calculated completely independent from each other. In
fact, only the chunks on the edge of the slices can be dependent of their neighboring
pieces. One possibility to deal with that, is to simply evaluate the chunks on the edge
of a piece every single time, and do not check the parent map for equal neighbors.
That results in a small performance loss, but ensures the correct calculation of the
set. Another possibility is to synchronize the threads, so that after each re�nement
step the threads are waiting for their siblings to �nish the step as well, and then go
on with the next re�nement step.

37

GPGPU Processing The performance of calculations with higher magnitudes
will not be su�cient for real-time rendering, even on current consumer CPUs. So
GPU calculations could be the solution for a highly parallelizable problem like this
one.

The �rst step was to implement the naive calculating algorithm in CUDA, so it
can be executed on NVIDIA's graphic processors which support CUDA calculating
(that is the case for almost every GeForce chip of the 8000-generation or newer). In
a next step, the algorithms are also implemented in OpenCL, which is quite easy
because syntax and functionality of both CUDA and OpenCL are similar.

The calculation cannot be executed with double arithmetic on every graphic
processor, but this and many other issues in the process of porting the algorithms
to the GPU will be discussed in 5.2.

The performance gain by porting this simple algorithm to the GPU is huge. But
the result is still not really satisfying, because the algorithm was not yet optimized
in any way and has therefore a lot of potential in performance increases. The �rst
optimization to be made was implementing the successive re�nement method for the
GPU. But this led to several problem, which will be discussed in detail in section
5.2.4.

Calculation Method Comparison After discussing several di�erent calculation
methods, table 5.1 should now give a brief tabular overview about the di�erences
between the seven implemented calculators.

Calculation Method Algorithm Calculation
Hardware

CPU
Threads

Arithmetic

Basic Calculator DEM/M [1, p. 197f],
Simpli�ed

CPU 1 Double

Successive Re�ne-
ment

Successive Re�nement
[8]

CPU 1 Double

Multi-Threaded SR Successive Re�nement
[8]

CPU 1-8 Double

CUDA DEM/M [1, p. 197f],
Simpli�ed

GPU
(NVIDIA)

- Float/
Double

CUDA SR Successive Re�nement
[8], Modi�ed

CPU+GPU
(NVIDIA)

1 Float/
Double

OpenCL DEM/M [1, p. 197f],
Simpli�ed

GPU - Float/
Double

OpenCL SR Successive Re�nement
[8], Modi�ed

CPU+GPU 1 Float/
Double

Table 5.1: Overwiew of implemented calculation methods

5.1.2 Drawing

In low magni�cations the drawing of the set with a simple method of drawing 1x1
rectangles in AWT is a bottle neck. The drawing of the whole panel in an average
resolution can already take more than 100 ms, which is weigh too much considering
the targeted total rendering time (calculation plus drawing) of 40 ms. So there
clearly is a need for improvements in the drawing of the set.

38

The obvious way of improving the performance of drawing, is to use OpenGL for
it. Instead of using simple integer RGB values, it is necessary to cast the values for
the color components into byte values. After that, they get stored in a �at array,
which lines up the rows from the bottom to the top of the screen, so they have
to be �ipped because they are stored from top to bottom. But including all this
additional e�ort, the drawing by using OpenGL only takes about 10 ms.2

5.1.3 Navigation

The two basic navigation features of the application are zooming and panning.
One way of zooming into or out of the set is to react on a click into the viewport

by centering the set at that position and changing the magnitude by a certain
amount. In that way, the users are able to jump to desired positions which seem
interesting to them. This is fairly easy to implement, by �guring out the clicked
complex number (which can be calculated out of the clicked x- and y-position and
the current viewport parameters). Then this complex number is moved to the centre
of the viewport, and the magnitude is adjusted, depending on the chosen extent of
the jumps and if it is a jump in or out. The drawback of this method is the waiting
time for the users until the new set is calculated, during which they do not have a
feedback if the position is really the one they want to go to.

An improvement to provide a more intuitive way of zooming is to not jump di-
rectly to a position, but to �uently approach a position which is clicked by the users,
as long as they hold the mouse button pressed. This is done in a separate thread,
so at the same time mouse events can be registered. The user clicks with his or her
left mouse button at some point in the viewport, and keeps the button pressed. The
clicked position is saved in the zooming thread, and this point will be continuously
approached by the zoom. The pace of how quick this point should be approached
can be set by a parameter. When the mouse pointer is moved, the approached point
changes right away by setting the new position as the approached one in the zoom-
ing thread. This works analogous for zooming out by holding down the right mouse
button. Moreover, before starting the zooming process, the minimum chunk size can
be set up to a higher value, which means that the calculation will be much faster,
but only create the set in a lower resolution. But for the images during the zoom
it is most important to see a glimpse of where one is zooming, it is less important
to see a detailed image. After the zoom is done, the minimum chunk size has to be
set down to 1 again, and the set must be calculated once more to show the fully
detailed image.

The users could also want to not change the magnitude of the set, but just change
the position at the same magnitude. This is referred to as panning. A way to pan
is to use the arrow keys of the keyboard, which changes the center of the set by a
certain degree. For instance if a user presses the left arrow key, the center of the
real part is decreased and the piece of the set which is displayed moves to the left.

A certainly more convenient way for the users to pan, is to use the mouse for it.
It should be possible to click on a position in the set, and `drag' the set around.
So the users can `grab' the set at some position, and drag this position around the
viewport, e.g. drag it to the center of the viewport.

2Times were measured on a system with an Intel Core 2 Duo CPU and NVIDIA GeForce 8600M
GT GPU

39

5.1.4 Jumping to a Location

Besides the interactive navigation on the displayed set, the user may also want
to jump to a certain location in the set by entering some speci�c data about this
location.

The part of the fractal that is shown in the viewport is dependent on some
parameters, which namely are the real values on the left and on the right edge,
the imaginary values on the top and the bottom edge and the magni�cation of the
set. The centre of the viewport is represented by a complex number, which can be
calculated out of the minimum and maximum values.

The users should be able to insert the fractal parameters as they wish. For
that matter, a form was implemented which allows the users to insert the complex
number to be placed at the centre of the viewport (imaginary part and real part),
the magni�cation, and �nally the count of maximum iterations (see 5.1).

Figure 5.1: Location toolbar

5.1.5 Saving/Loading Locations

Saving locations means, that the users should be able to store a location where they
are currently at in the viewport, so that they can easily load this location later.

The implementation of the DOM-Parser is short and simple, because the under-
lying storage XML �les are fairly small, and the saving and loading algorithms are
self explanatory.

After �rst having a simple drop down list of locations to choose one of them, it
became obvious that this is not really convenient. Especially, there is no way to
identify the saved locations just by a simple name given to the location. So an own
window was created for loading positions, by showing a list of all saved locations,
and by selecting one of them, a thumbnail of the locations image is displayed as well
as the details about this particular location. It that way, the users can see right
away, which location they are about to load (see �gure 5.2).

The main implementation issue was that every thumbnail needs his own data of
what should be drawn, and for that a new fractal object has to be created with
the according parameters. These fractal objects also need the right color plate,
because the locations are saved with a maximum iteration parameter, so when the
thumbnail is displayed, �rst a color plate with the size of the according maximum
iteration parameter must be created.

5.1.6 Taking Snapshots

A nice feature for users is to take snapshots of the currently drawn image. To do
so, the current image must be drawn into a bu�ered image instead of the drawing
panel. Then this image can be written somewhere to the �le system in a chosen
format. The users can also decide the resolution of the saved image (see �gure 5.3).
If this resolution di�ers from the one of the currently drawn image, the image must
be recalculated with the new parameters. After doing so, the picture can be saved,
and the fractal parameters can be set back to their former values.

40

Figure 5.2: Load location dialog, showing preview of selected location

Figure 5.3: �Capture Image� dialog

5.1.7 Creating Color Plates

A central feature of the program is to create own color plates to make the color
mapping highly customizable and therefore let it up to the users in which coloring
the set appears and to make the zooms look as appealing as possible.

In principle, a color plate that is usable in the application is an array with the
size of the maximum number of iterations before a point is considered to be inside
the set. Each element of the array is a color value. For every pixel in the viewport
there is a calculated escape iteration count, so for each of these pixels a color value
is looked up in the array.

But saved color plates should be independent of the number of maximum itera-
tions, because that changes frequently. For that matter, color plates are made up
of color keys, which hold a color value as well as a relative positioning value from 0
to 1, where 0 represents the �rst element in the color plate array, while 1 represents
the last one. The color of a key gets mapped to the �nal color plate array by using
its relative position value to place it in the corresponding element of the array. All
array elements in between are calculated by linear interpolations of the two enclosing

41

color keys, with each color component (red, green, blue) interpolated separately. So
a color plate consists of at least two color keys, one at the beginning and one at the
end, and can have arbitrarily many more in between.

If the users want to create a color plate, an editor is opened in a new window
(see �gure 5.4). There, the users see a transition stripe of the current coloring. This
stripe illustrates how the color values are assigned to the number of iterations that
a point needs to escape. The left side of the stripe shows the color that is linked to
the value of 0 needed iterations, while the right side shows the colors assigned to the
highest escape values, and the very last element on the right shows the color assigned
to values which do not escape in the speci�ed number of maximum iterations (this
is the color of the interior of the set).

The user now has the possibility to add additional color keys in between of the
two default keys. Then the interpolation is carried out between each neighboring
pair of keys. New keys can be added by clicking somewhere on the color stripe. The
position inside the stripe of already existing color keys can be changed by drag and
drop. A key can be selected by clicking the circle on the bottom of it, and then the
keys color can be manipulated or the key can be removed.

The implementation of the color plate editor ensures, that changes in the plate
will immediately a�ect the currently drawn fractal. So the users can understand
right away how their actions on the color keys of a plate a�ect the image.

Figure 5.4: Color editor showing current color transition and color keys

There are some cases which need special treatment. One is, if either the key at
the beginning or at the end of the transition stripe is moved. Then a new key at that
position must be created, because there must necessarily be keys at these positions.

42

Another case is, when only one color plate is left and the user wants to delete that
one. This would cause a series of exceptional behaviours in the application that
would have to be handled. The easy way to avoid that is to simply prevent the user
from deleting the last color plate. Since this is not really a drawback for the user,
this is the way that is used in the application.

5.1.8 Creating Zooms for Music Visualizations

Since also not experienced users should be able to create their own zooms for a
music visualization, the procedure of creating these zooms should stay as simple as
possible, but should still give the chance to create zooms in exactly the way users
want them to look.

The basic model to store zooms is quite similar to the one used for color plates. To
make it easy to change the length of zooms, which can be of bene�t to adjust their
length to the length of a piece of music, the saved zooms should be independent
of the total length. Therefore zoom keys are being used, where every zoom key
contains a location in the set and a relative time value from 0 to 1. There is one
key at the very beginning with time value 0 and one at the end with time value 1.
Additional keys can be added in between, and the locations in between of the keys
are interpolated.

The implementation �rst consists of buttons to create zooms, remove them, save
modi�ed zooms and load previously created ones. The loading of zooms looks similar
to the loading of locations, the users can choose a zoom from a list and see a preview
of it through several thumbnails at certain points in time of it (see �gure 5.5). Also
they see the important information about it. The button to remove zooms simply
removes the currently loaded zoom. The saving button saves all the changes that
were made to a zoom since it was last loaded. The button to create a zoom opens
a simple form where the users can insert basic information about it. They can also
choose a template for this new zoom, i.e. they choose a zoom that was created
before, and the new one will start out with the exact zoom keys of that old one. If
they want to create a zoom from the scratch, a default zoom with only a key at the
beginning and the end is created.

Figure 5.5: Load zoom dialog with preview of selected zoom

The user interface for creating zooms is a panel placed on the right side and looks
as in �gure 5.6. When a zoom is loaded, a timeline on the right shows the position
of the zoom keys. The timeline looks similar to a ruler, with ticks on every second
of the zoom and a long tick every �ve seconds. The length of the whole zoom can
easily be edited, and is therefore not of big importance. But it is useful for testing a

43

zoom with a certain length to see how fast the movements appear. On the position
of zoom keys, a circle is attached to the according position on the ruler, which is
calculated from the relative time value of the key. The keys can, analogous to the
keys in the color plate editor, be dragged and dropped to change their time value,
and they can be clicked to select them. Selected keys can be deleted. In the fractal
viewport the location of the selected zoom key is rendered. The zoom will be on
exactly this location at this time. The location can be changed by usual navigation,
and by clicking the �set key�-button, this new location is set for the selected key. By
clicking somewhere on the timeline, where no key is already existing, a new key is
created with the respective time value and the location that is currently set in the
viewport.

Figure 5.6: Zoom panel with timeline

There are special cases that are similar to the ones of color plates. If the key at
the beginning or the end of the timeline is moved, a new one must be created on
that position because there must necessarily be a key at these positions. Also, same
as with color plates again, there must be always at least one zoom left, the last one
cannot be deleted.

An important tool for creating and playing back zooms is the time slider. It
is a simple slider next to the timeline, with the same length and value range as
the timeline. When moving the slider, the time value is updated and the location
is rendered at which the zoom would be at that exact point in time at which the
slider resides. So the users can easily jump to an arbitrary time in the zoom to see
the location rendered at that time. This slider triggers all the necessary actions to
change the time values, render the fractal and redraw everything.

The interpolations between zoom keys work quite simple. The positions, i.e. the
real and imaginary part of the complex number in the centre of the viewport, can be
interpolated linearly, while the interpolation of the magnitude should be exponential.

44

5.1.9 Playback Zoom

The next step was the implementation of the playback of the zoom with or without
music. The playback is carried out by an own thread. This thread basically only
changes the position of the time slider, the listener of the slider takes care of the
rest. So the playing thread has a loop in which it increases the value of the time
slider. Since the aim is to have 25 frames per second, one loop iteration should take
40 ms, and increase the sliders value by 40. Now, the rendering will usually not
take up exactly 40 ms. So if it takes less the thread should just sleep for the rest of
the time until it reaches a total iteration time of 40 ms. If it takes longer, the total
spent time in this iteration step is added to the slider value, so the zoom does not
get delayed.

It is now possible to play back a zoom, but not yet any music to it. The zooming
panel should provide the possibility to load a song from the users �le system. Users
can choose a song, and then they have the choice if they want to adjust the songs
length. If they do not want that to happen, there are two possibilities left:

• The song is shorter than the zoom, in that case the zoom will just stop when
the end of the song is reached.

• The song is longer than the zoom, the zoom will be looped and �nally stop
when the song comes to its end.

If a song is loaded and the user clicks the play button, the zoom is started at
the time value of the current position of the time slider. Also the song starts at the
time that is given by the time slider. So the slider not only moves the time position
of the zoom, but also the one of the loaded song.

5.1.10 Rotation

Before the implementation of the music analysis and the synchronization of the zoom
to it, the rotation of the fractal should be implemented. That will be of importance
to change the fractal according to the music that is played.

The rotation of the set needs some mathematical considerations. What will
change comparatively to the current version of the algorithms is the mapping from a
pixel in the viewport to the according complex number. This mapping was straight
forward until now. The value of the �rst pixel in the top left corner was already
given by the minimum real and the maximum imaginary value of the current section
of the fractal. Then, when increasing the x-value, also the real value is increasing.
The factor of this increase is the total real range divided by the total pixel width of
the viewport. The increasing of y-values works analogous.

This changes now as the fractal should be rotateable. When the x-value is chang-
ing, not only the real value will change, but also the imaginary value. The same is
true when changing the y value. The factors by which the real and imaginary value
change on each increase of x and y should be calculated like this:

dXReal =
realRange

fractalWidth
∗ cos(rotation

180
∗ π)

dY Real =
realRange

fractalWidth
∗ sin(rotation

180
∗ π)

45

dXImag = − imagRange

fractalHeight
∗ sin(rotation

180
∗ π)

dY Imag =
imagRange

fractalHeight
∗ cos(rotation

180
∗ π)

That is not all, because the starting value for the top left corner pixel is now not
given any more by the minimum real and maximum imaginary value, but must be
calculated according to the current rotation value.

startRe = realCenter − fractalWidth/2 ∗ dXReal − fractalHeight/2 ∗ dY Real

startIm = imagCenter+ fractalWidth/2∗dXImag+ fractalHeight/2∗dY Imag

Then, for each pixel, the according complex number can be calculated as follows:

cRe = startRe+ x ∗ dXReal + y ∗ dY Real

cIm = startIm− x ∗ dXImag − y ∗ dY Imag

5.1.11 Music Analysis

The approached �nal feature of the application is the music visualization, consisting
of a zoom into the Mandelbrot set. It is not desirable to simply play back a recorded
zoom, but the zoom should change according to the playing music. Therefore, an
analysis of the music has to be carried out, and a good way to map the data gained
from the music analysis to the played zoom needs to be found.

There are several ways for analysing music, which are explained in the theoretical
section 2.3. To keep the complexity reasonable, an API is used to do a simple energy
and beat detection. The API will make it possible to gain this two parameters:

• Energy Level: A low energy level is related to quiet parts in the music. Natu-
rally, if the music is quiet, it is desirable to let the zoom look quiet and slow
as well. In contrary, if the energy level is high, the zoom should look dynamic
and energetic.

• Beat Detection: Beats can be detected for di�erent frequency bands, which
results in several beat values. Each of them is a simple boolean value, that
reveals if a beat occurs in one particular frequency band in one particular
moment. It is desirable that something happens with the zoom when a beat
occurs, especially on base frequency levels.

Now, what could be changed in a zoom? There are several parameters:

• Location: The location in the set at a moment in time. The locations change
over time and form a zooming path.

• Location change speed: The velocity in which the location changes over time.

• Rotation: The rotation of the set, between 0 and 360 degrees, at a moment in
time.

• Rotation change: The pace in which the set is rotating over a period of time.

46

• Color Plate: The current color mapping at a moment in time, represented by
a simple RGB color value.

• Color change: The colors can change over time in di�erent manners. For
instance, the color transition stripe could be `rotated', which means that the
array which represents the mapping of iteration steps to colors is seen as a
ring, and the colors get shifted inside this ring over time.

As locations are picked when creating a zoom, this parameter should stay �xed.
This has the practical reason that the user will want to create a zoom which moves
to interesting locations in the set, so the actual zoom playback should stick to these
prede�ned path. An automatically generated path would most likely not show an
interesting zooming path.

So there are two parameters to change over time, namely rotation and colors.
Since there are also two parameters that can be easily gained from the playing
music by using simple analysing methods, it is a perfect match. Only the best way
to map the parameters to each other has to be �gured out.

First a closer look is taken on the input parameter characteristics. The rotation
of the fractal can have an arbitrary value between 0 and 360. The highest value
is the same as the starting value (because 360 degrees is equal to 0 degrees). The
color change can also be seen as iteration, but here the color values in a (imaginary)
ring get iterated. This rotation can be represented in relative values between 0 and
1, where 0 is no rotation, and 1 is a full rotation around the ring and therefore
recreates the initial state of the array. In using these relative values, the color
rotation is independent from the size of the color array.

Next a look is taken on the music parameters. The energy level is given as a
parameter between 0 and 1, so it is easy to map this parameter to one of the two
input parameter. The beats are represented as booleans. A way to map this to one
of the input parameters could be to execute a `jump' in the rotation value when a
beat occurs.

So, should a level change cause a change in the rotation of the fractal and a beat
cause a change in the color rotation, or the other way around? Both makes sense,
because a high energy level as well as frequent beats should cause `high activity'
of the zoom, so a fast rotating fractal as well as fast rotating colors. It is more or
less arbitrary which way to map it, and it will depend on the kind of music or on
personal taste, which way looks better.

The problem here is, that rotating the colors can look quite exhausting to the
eyes, especially if this rotation is fast or simply if the rotation speed changes a lot
(which happens when reacting to music). For that reason, it should be up to the
user if the color rotation should really be reacting on music or just be static (with
a rotation speed also de�ned by the user).

The way the color rotation reacts to the detected beats is by rotating faster right
at and after a beat, and then decay again to a slower rotation. This is calculated
by the exponential decay function

N(t) = N0e
−λt

, where N0 is the initial rotation speed right at the beat, λ is the decay factor (so
if λ is big, the decay is quick and the rotation speed will get slower quickly after a
beat), and t is the time since the last beat.

Figure 5.7 shows the application interface during the execution of a music visu-
alization.

47

Figure 5.7: Playing visualization, reacting on music

5.1.12 User Interface

The tool should provide an easy to use interface to the user, so it does not take a
long time to understand in which way they can explore the set and create music
visualizations. The main view of the application can be seen in �gure 5.8.

The Mandelbrot set image should take up the biggest part of the frame. A
standard menu bar should be provided for interaction. A toolbar should appear right
under the menu bar, to provide the most important actions to the users, so they
only have to use the menu bar for less frequently needed actions. A second toolbar
should show information about the part of the set that is shown at the moment,
and should provide the possibility to quickly change this location by entering a new
position. A status bar on the bottom should show some feedback about where the
user hovers the mouse over in the set, e.g. the corresponding complex number and
the iteration steps that where needed to escape the set for that number. Moreover, it
should show what the tool is currently up to, e.g. if it is calculating a new location,
if it is drawing, or if it is in idle mode. Finally, at the right side of the main view
of the Mandelbrot set, the users can open an interface for creating and playing the
music visualizations.

There are some more things that have to be taken care of: If the window is
resized, the resolution of the viewport and therefore the resolution of the fractal
image changes. It is important that in this case, if the ratio between width and
height changes, the fractal should not be skewed, but should keep its right ratio.

When a toolbar or the zooming panel on the side are hidden, the resolution of
the fractal must be adjusted immediately, without losing its correct ratio.

The users can switch into a full screen mode, which lets them solely see the
fractal image without any disturbing UI elements around it. This mode is especially
suitable for playing the music visualizations. To obtain a full screen mode in Java,
there have to be done some steps, which involve recreating the entire JFrame.

5.2 Issues

In this section some major issues that where occurring during the development
process are discussed. The focus is not on discussing small bugs in the code, even

48

Figure 5.8: Main view of the application with all UI elements

if they were quite cumbersome to �x, but it should be on bigger issues that either
delayed the development a lot, threatened the ful�llment of requirements or even
are still unresolved.

5.2.1 Exact Playback Speed of Recorded Zooms

As described in 5.1.9, the zooms are played back with aimed 25 frames per seconds,
which means a new frame has to be rendered every 40 ms. If the rendering is quicker,
the thread is waiting for some time to �ll up 40 ms. If the rendering needs more
than 40 ms, then the time value is increased by the time that was needed instead of
40 ms. So by that, the zoom should always be in sync with the played music. That
is especially important when adjusting the zooms length to the length of a song,
because the users would expect the zoom to end exactly at the end of a song. And
it is also important if a user tailors a visualization exactly for a particular song.

But in fact, zoom and song are not always in sync. The reason for this is, that
Javas `sleep' function for threads is not exact. So even if the mistake that is made for
every rendered frame is little, in the end of a long song it can add up to a signi�cant
factor.

A possible solution for this would be to resynchronize song and zoom, say once
every second.

5.2.2 CUDA Contexts

If some code in CUDA is written, that should be carried out on the GPU, the
application �rst has to do some initializations. These includes creating a so called
�CUDA context�. This context will be associated with the calling thread. So if
another thread wants to run CUDA code, it has to get its own context. This was
an issue during the implementation process because di�erent threads, i.e. the main
thread, zooming thread, or music visualization thread, have to run CUDA code if a
CUDA calculator is selected.

Since CUDA 2.0 it is possible to assign existing CUDA contexts to another host
thread, without having to use an own context. Therefore the easiest way to �x the
issue was to create a singleton that creates a CUDA context only the �rst time it

49

is called. From then on, before every action that is run on the GPU, the CUDA
context is pushed to the current thread and when the action is �nished, the CUDA
context is popped back o� the thread. In that way, the context is always assigned
to the proper host thread and does not have to be recreated (which would be more
time consuming).

5.2.3 GPU Arithmetics

GPUs from older generations (generally speaking about 5 years or older) do not
support 64 bit �oating point arithmetic (corresponds to the double type in Java
and C), but only 32 bit arithmetic (corresponds to the �oat type in Java and C).
Since the threshold of how far the zooms into the set get calculated accurately is
bounded by the precision of the used arithmetic, this is a big issue in using the
GPU for calculating the set. With �oat values a magni�cation level of about 105

can be reached, while double values allow magni�cation levels of about 1014. Also,
the algorithms written in CUDA and OpenCL must be adjusted to the supported
arithmetic.

The users are allowed to change the used arithmetic for calculations on the GPU,
so if their GPU would not support double arithmetic but can still run CUDA or
OpenCL code, the GPU can be used for calculations, but the maximum magni�ca-
tion level is lower.

Since this boundary is fairly low, a third mode besides the two for using �oat and
double arithmetic was implemented. This mode simulates double values by using
two �oat values. [13]

It needs to be noted that using double arithmetic instead of �oat arithmetic slows
down the application considerably, and simulating double arithmetic is again slower
than native supported double arithmetic.

5.2.4 Slow Successive Re�nement on GPU

As mentioned in section 5.1.1, after porting the naive calculation algorithm from
Java to CUDA and OpenCL, the performance gain was big but not satisfying because
of missing optimizations.

So the next obvious step was to implement the successive re�nement algorithm
on the GPU to gain a better performance. The simple way of doing that was to
straight forward port the algorithm from its Java version to CUDA-code, which can
be seen in appendix A.5.

But apparently this code leads to a slower execution time than the naive algorithm
on the GPU. This in a �rst moment seemingly strange behaviour becomes clear when
looking at the architecture of the GPU, as it was already explained in the theory
in 2.2.1. The data domain is split in small blocks, usually of the size of about 8x8
elements. If there are branches inside the CUDA-code, and the execution of the
code on one of these blocks leads into one of the branches, this branch is executed
for all of the elements in this block. In the algorithm above, there are the main
branches of either evaluating a value, or adopting a previously calculated value.
The computational e�ort for these two branches di�ers extremely. But by looking
at the successive re�nement algorithm it gets obvious that there will be most likely
at least one of the elements in a 8x8 block going to the expensive evaluating branch,
so this is also executed for all other elements in the block. That means, for every
re�nement step almost every single element in the big raster is evaluated, but most

50

of the results are dropped because the evaluating branch is just executed because of
the `penalty', as explained before. Therefore, the more re�nement steps are done,
the slower the algorithm will be. A lot of the executed calculations would not be
necessary to do at all!

To show that this is feasible, a simple test with this version of the algorithm can
be done. If the algorithm was executed with a starting chunk size of 16x16 on a
particular location, it needed about 160 ms of calculation time in average.3 Now, if
the former argument was correct, the performance should be increased considerably
by lowering the starting chunk size.

• 16x16: 160 ms

• 8x8: 150 ms

• 4x4: 120 ms

• 2x2: 90 ms

• 1x1: 55 ms

Considering the general overhead, this is clear evidence that each re�nement step
needs approximately the same calculation time, and therefore the above argument
is feasible.

Assuming the argument was true, a modi�cation was made to the algorithm to
workaround this problem. This can be done by splitting the successive re�nement
algorithm into two parts, one done by the CPU and one done by the GPU. The
decision making which chunks have to be evaluated in an iteration step can be
done by the CPU, because this process includes a code branch that decides if heavy
computation has to be done or not. After that, all position that have to be evaluated
are added to an array, which is then sent to the GPU. The GPU does the heavy
computations, i.e. the iteration process for the given positions, and sends the result
back. In that way, the GPU can strongly parallelize the computation and has no
branches. Furthermore, only the necessary information is transferred from CPU
to GPU memory instead of the whole pixel array. This should result in a storng
performance gain.

In fact, a performance gain is achieved compared to the �rst `naive' version of the
successive re�nement algorithm on the GPU, but it is still slightly slower in most
locations than the basic algorithm.

5.2.5 Grabbing Sound Signal from Soundcard

In the beginning the plan for the visualization playback was to let users play songs
from an arbitrary source, and the application will pick up the sound signal somehow
to analyse it and synchronize the visualization to it.

But that turned out to be a major issue, because it is not easily possible to grab
the signal that is played on the sound card, especially in Java. In fact, there is no
library for Java that can do this job.

3All the tests in this chapter were done on an Intel Core i7 (quad-core) CPU and a NVIDIA
GeForce GT 630M GPU

51

6 Results

This section evaluates if the requirements that were raised for this bachelor project
were ful�lled and to which degree the outcome of the application development was
satisfactory.

6.1 Functional Requirements

The functional requirements that have been formulated for the application are widely
ful�lled.

The aspired navigation features are fully implemented in the application. The
navigation in the explorer is easy to understand and straightforward to use. The
application gives feedback about the location where the user currently is, and the
users can change several settings to adjust some navigation details to their wishes.
By showing thumbnails when the users want to load a previously saved location
they can immediately recognize locations, which is a big advantage in comparison
to other Fractal Explorers, because giving a name to a location gives no guarantee
that the location can be found again easily.

The color plate editor is a convenient way to create own color mappings. Not only
can users completely adjust the appearance of the set by setting the color keys, but
the automatic interpolation between color keys creates a smooth transition of colors
instead of distinct jumps. And by immediately seeing the e�ect of their actions to
the set it is easy to understand how to create own plates and what is of bene�t for
the appearance of the fractal.

The creation of own zoom paths into the set is a crucial feature, that needs to be
as easy to use as possible but at the same time give free hand on creating completely
customized zooms. This tradeo� was reached by again using the principle of key
values, so the users can add interesting locations in the set at a good point in time,
while the application takes care of the interpolation in between.

The visualization that reacts on songs in the background could have been a whole
own topic for a thesis, because the range of possibilities is almost endless. The
decision to only change rotation of the set and the rotation of the color plate is a
good way to make it predictable for the users how the zoom they create will look
�in action�, but still react to the music to a degree that the zoom looks di�erent to
every di�erent song that is played.

The functional requirements that were not ful�lled are the import and export
features for locations, color plates and zooms, because time was running out and
this feature seamed to be the most reasonable to cut �rst, because it is not a central
feature that impacts other features as well.

6.2 Performance

From the beginning of the project on it was obvious that besides usability and music
analysis, the performance would be the crucial point in the development process.
Even if the application would make it possible to create the most amazing music
visualizations ever, there would be no point in it if almost nobody can play them on
their hardware because it is not fast enough for real-time rendering, and therefore
the animations are not displayed �uently.

The performance that was reached is good enough to render simple zooms, i.e.
zooms that do not go far into the set but stay more on the `surface', in real-time

52

on modern consumer hardware, especially if a GPU is available to support the
calculations. So the main aim of showing the beauty of music visualizations created
in a Mandelbrot Set Explorer was reached.

Figure 6.1: Performance comparison between calculation methods

Figure 6.1 shows a performance comparison of the implemented calculation meth-
ods (`SR' stands for �Successive Re�nement", and note that the time scale is loga-
rithmic). Some important observations in this comparison are:

• Switching from the naive distance estimator method to successive re�nement
has a huge performance boost in low magni�cations, but only a small one in
higher magni�cations (see 6.2.2).

• The performance gain from using more than one thread varies considerably at
di�erent locations in the set (see 6.2.1).

• OpenCL is much slower than CUDA, especially in low magni�cations. This
is mainly due to an issue with the context initialization of OpenCL, which
creates a lot of overhead, but also in general the execution time with OpenCL
is a bit slower than with CUDA.

• Successive re�nement on the GPU is unexpectedly. This is discussed in detail
in 6.2.2.

6.2.1 Workload Distribution on Multiple Threads

As discussed in 5.1.1, the successive re�nement algorithm can easily be parallelized
by breaking down the pixel raster into parts, that can be assigned to di�erent threads
and be calculated independently. But the question is, how to distribute the work
between threads to get a good work balance. That is an important factor, consid-
ering that the rendering of the whole fractal will not be �nished until every single
thread has done its work, and therefore the slowest thread determines the overall
calculation time.

This distribution of workload is simply done by splitting the viewport into equal
pieces and assign one piece to each of the threads. But this leads to scenarios like

53

Figure 6.2: Example for bad workload distribution between threads

Figure 6.3: Example for good workload distribution between threads

follows. There are four parts of the set, assigned to four di�erent threads. What if
three of them contain complex numbers which have quickly diverging orbits, while
one of them is full of numbers diverging slowly? One thread is carrying almost
the whole workload, and while three threads will be �nished after a short time, one
thread can be busy for a long time. This is illustrated in �gures 6.2 and 6.3. First, 6.2
shows the location at 0.23853497490613537 + 0.5544634809846665i and magnitude
21800, and the workload balance is bad here. The overall computation time when
using four threads is depending on the computation time of the slowest thread, in
this case thread 4, while thread 2 is �nished a lot earlier. On the other hand, �gure
6.3 shows the location at 0.3680814529993473−0.14978321260314592i at magnitude
2.11854039 ∗ 109. The workload in this case is split up almost equally between all of
the four threads, and therefore the overall computation time is actually only about
1/4 of the computation time of one thread alone.

6.2.2 Successive Re�nement and Beyond

The highest expectations regarding performance were put in the implementation of
the successive re�nement algorithm on the GPU, but as already partly discussed
in 5.2.4, this was a bit of a disappointment. One of the reasons for that is simply
the characteristics of the successive re�nement method regardless of if calculation is
done on a CPU or GPU. Especially in higher magni�cations, but in general if the
fractal image has a lot of small details and no big monotonic areas (like the inside of
the set, or areas quite far outside, but not the edge of the interior of the set), there
is almost no performance gain (or even none at all) of the successive re�nement

54

method, because in the end almost every pixel of the fractal needs to be evaluated.
In addition to that, there have also been done overhead calculations, e.g. to decide
if a point should be evaluated or not. This altogether leads to a only slightly faster
or even poorer performance for the successive re�nement method than for the naive
calculation method.

Besides that general drawback of successive re�nement, there is also some speci�c
drawback for the used variation of the method to do heavy calculations on the GPU.
First, it must be checked which points have to be evaluated, and this is done on the
CPU. Data structures are generated for it, and a check has to be done on each point
of the current iteration step. Then all this data has to be packed into arrays, sent to
the GPU, and after that the results are read back from the GPU. All of that has to
be done for every chunk iteration step, and already consumes a signi�cant amount
of time.

Figure 6.4: Distribution of Calculation Time for Successive Re�nement on GPU

Figure 6.4 shows how the overall computation time is distributed between the
parts of the algorithm for two di�erent locations, one at the magni�cation level of
1, and the second on the magni�cation level of 21,800. For high computation times,
the overhead of estimating which pixels have to be evaluated in an iteration step
and the other overhead (mainly data movements from and to the GPU) make just
a small part of the whole calculation time, most of the time is spent on actually
executing the kernel on the GPU. But this high computation times usually occur on
high magni�cation levels, where the successive re�nement method does not lead to
a high performance gain anyways. In the more important magni�cation levels, i.e.
the ones that should still be calculated in real time, the overhead is clearly to big
with around 30 ms. So it would be necessary to minimize this overhead.

Clearly, for higher magnitudes and detailed images, a more suitable calculation
algorithm must be found to increase the performance and allow real-time calcula-
tions. These algorithms could especially have the need for estimations instead of
(quite) exact calculations.

6.3 Platform Independency and Scalability

Platform independency is widely reached because it is only necessary to adapt some
libraries to the operating system in use and to recompile the CUDA code for the

55

desired platform, but there is no need to change any of the code.
By the usage of the MVC (Model-View-Controller) pattern, it would be quite

easy to adapt the application to even more platforms, so it could e.g. be possible to
write the application for a smartphone or tablet, thanks to their quickly rising per-
formance, especially if GPGPU computing should be introduced for this platforms
soon.

The scalability on the other hand is not good enough yet. There especially can
occur problems with the drawing of the set, that produces artifacts while zooming
if the calculation is not quick enough. The simple reason for it is that drawing and
calculating is not synchronized, which is bene�cial to the performance, but can lead
to such artifacts in the drawing process, e.g. it is even possible that a new drawing
iteration is started before the last one is even �nished.

56

7 Future Work

There are plenty of things to do, which would make this application more valuable.
Some of them are major improvements requiring big e�ort and good consideration.
Others are just minor improvements and could simply not yet be implemented be-
cause time was running out.

7.1 Small Improvements and Fixes

Several small improvements could be done to improve the application. The most
important of them are listed here.

• As mentioned in section 5.1.11, the mapping of the parameters gained from
the played music and the input parameters of the zoom can be mapped to
each other in di�erent ways. It would be nice if this choice of how to map
them would be up to the users, so zooms get even a bit more customizable.

• When the smooth zooming navigation is used in the explorer, the speed of
zooming is dependent on the performance of the user's hardware. This should
be normalized, so that the zoom's speed is the same no matter how fast the
users hardware is.

• The amount of CPU threads used for calculating the fractal in multi-threading
mode should be determined automatically instead of letting the users do the
work to choose the right amount of threads for their system.

• Another navigation method that could be useful is the box zoom. Users would
be able to draw a rectangle on the viewport over a part of the fractal that seems
interesting to them. Then a smooth zoom into the set is executed, that ends
with the area inside the rectangle �lling the entire viewport.

• Instead of just using rotations to react on music when playing back recorded
zooms, the rotations could also be implemented for the explorer as a navigation
feature. This would need several adjustments for the other navigation features
and how to deal with the parameters of the fractal, that is why this feature
was not yet implemented.

• The issue of synchronizing sound and animation was previously mentioned in
5.2.1. This could be �xed somehow, i.e. by using another waiting method or
by do synchronizations from time to time.

• As described before, using double arithmetic instead of �oat arithmetic is nec-
essary to get to a higher magnitude, but results in much poorer performance.
An easy remedy to deal with this problem would be to simply use �oat arith-
metic up to a magnitude where the calculation is still accurate enough, and
then switch to double arithmetic (if the hardware allows it).

• When using the successive re�nement method, the size of the chunks can al-
ready be changed for the zooming process in the explorer. The next step would
be to automatically determine if a zoom is choppy because the performance is
too low, and in that case to increase the minimum chunk size. On the other
hand, if computation time is actually wasted because the calculation time is

57

much less than allowed, the minimum chunk size should be decreased to make
the image more precise.

• When users create or edit a color plate, they can select keys and then change
this key's color. A more convenient way of doing this instead of using sliders
for the color components would be a color palette from which they could pick
up a color.

7.2 Usability Testing

An important future work is to make usability testing to see if the application is
actually convenient in usage for people with di�erent backgrounds and interests and
adapting the applications user interface and mechanics according to the results of
such testings.

7.3 Import/Export features

Importing and exporting locations, color plates, and zoom records is a feature that
was in the projects requirements 4.1, but could not be ful�lled due to lack of time.

7.4 Automatic Change of Iteration Threshold

When zooming into the set, the threshold for the maximum number of iterations
needs to be increased continuously to still give an accurate image of the Mandelbrot
set. This increase has to be done manually. A future work to do would be to
automate this process by �nding an algorithm for determining an appropriate value
for the maximum iterations automatically if the user wishes so.

7.5 Algorithmic Optimizations

There are still several optimization that could be done on the calculation algorithms
to increase its performance.

Mirror Symmetry and Orbit Detection were already explained in 5.1.1, but could
not be implemented due to lack of time.

There are also other optimization algorithms that could be implemented, more
about algorithms can be found in [1].

7.6 Fair Distribution of Work between Threads

As described in 6.2.1, the application does not yet implement any intelligent algo-
rithms to balance the workload between multiple threads, which can lead to a big
performance loss. Possibilities to do so would be e.g. that chunks of the whole
fractal are continuously assigned to one of the threads as soon as the thread is done
with its previous work, until every chunk has been calculated.

7.7 Reusing Parts

When users are panning on the viewport, they would usually just move the fractal
by small steps. That means, that most of the new piece that has to be calculated,
was already calculated for the former piece and could simply be reused. This would
give a big performance improvement for the Mandelbrot Set Explorer, but also for
parts of zooms which only consist of panning.

58

7.8 Pre-Rendering in Idle Mode

As mentioned in section 5.1.9, if the calculation of the set takes less than 40 ms, the
thread sleeps for the rest of the time and therefore wastes precious CPU time.

An interesting approach would be the one to already start to calculate the location
of the next step, if the previous one was �nished in less than 40 ms. So if the zoom is
still in low magni�cations, but gets deep later, the algorithm could already calculate
and store images for later so it can save time when calculation time gets really
scarce. This was not done in the current implementation because it would raise the
complexity of zooming algorithms a lot.

7.9 Anti-Aliasing

Another possibility to do something useful in that previously mentioned, wasted
CPU time could be anti-aliasing, to make the fractal look nicer. Instead of simply
running a standard anti-aliasing algorithm, it would also be possible to calculate the
iteration value not just for every pixel, but also for subpixels, and then painting the
pixel in an interpolated color value of the subpixel values.

7.10 Own Arithmetics

At the moment, the maximum magni�cation level is bounded by the used double
values, which save a 64 bit representation of �oating point numbers. Instead, an
own arithmetic could be implemented that allows a higher precision. The simplest
way of doing that would be to use two double values to simulate a higher precision
arithmetic. The big problem is, that the calculation e�ort in high magni�cations is
already high, and that using higher precision values would make the performance
extremely poor on most systems. But if a really high performing system is available,
the users should be able to use it.

It could also be worth to examine if there is another arithmetic in general that
�ts this particular problem well and would be worth implementing to increase per-
formance and/or accuracy.

7.11 Other Coloring Methods

The color in which a pixel of the viewport is painted, is determined by a direct
mapping from an iteration count to a color. That is how most Mandelbrot Set
Explorers do the color mapping. But there would be other possibilities as well,
loads of di�erent ways to map an iteration count to a color would be imaginable. By
implementing some of them, the user would have even more freedom in customizing
the fractal.

7.12 Improve Music Analysis

The current music analysis algorithm analyses the played audio �le in real-time on
energy and frequency bands. The analysis could still be improved a lot. There are a
big variety of di�erent algorithms, and a lot of time could be spent to �nd the most
suitable ones and adapt them to the needs of the application.

One step would be to implement the self-similarity analysis, as explained in the
theoretical section 2.3.3. That would make it necessary to analyse the whole �le

59

before it is played. But this would also have the advantage, that the whole compu-
tation time during the playback of the visualization could be used for the rendering
of the zoom, instead of also spending time on analysing the audio signal in real-time.

7.13 Read Played Music from Sound Card

As described in 5.2.5, reading a sound signal from the sound card is not that easy.
But if a possibility to do that would be found, that would make it possible to not
just load a song and play the visualization for it, but it would allow it to the users
to use their own arbitrary music player. This would especially be desirable, because
a lot of people today stream their music directly in the Internet and do not even
have it as �les on the local �le system or audio-CDs.

7.14 More Fractals

Finally, an obvious future work that would most likely not even need a whole lot of
implementation e�ort would be to extend the application from only rendering the
Mandelbrot set to rendering a variety of di�erent fractals, or make it even possible
for the user to insert his or her own formula for the iteration process to create own
fractals.

60

8 References

References

[1] Michael F. Barnsley, Robert L. Devaney, Benoit B. Mandelbrot, Heinz-Otto
Peitgen, Dietmar Saupe, and Richard F. Voss. The Science of Fractal Images.
Springer-Verlag, 1988.

[2] J.-P. Eckmann and D. Ruelle. Ergodic theory of chaos and strange attractors.
Reviews of modern physics, 57:617�656, 1985.

[3] Jianbin Fang, Ana L. Varbanescu, and Henk Sips. A comprehensive perfor-
mance comparison of cuda and opencl. In 2011 International Conference on
Parallel Processing (ICPP'11), pages 216�225, 2011.

[4] Barry Feigenbaum. Swt, swing or awt: Which is right for you? On-
line at http://www.ibm.com/developerworks/grid/library/os-swingswt/,
February 2006. Visited on 21 Apr 2012.

[5] Jonathan Foote and Shingo Uchihashi. The beat spectrum: A new approach to
rhythm analysis. Multimedia and Expo, 2001. ICME 2001. IEEE International
Conference on, pages 881�884, August 2001.

[6] Kamran Karimi, Neil G. Dickson, and Firas Hamze. A performance comparison
of cuda and opencl. Report number: arXiv:1005.2581, May 2010.

[7] Benoit Mandelbrot. How long is the coast of britain? statistical self-similarity
and fractional dimension. Science, 156:636�638, May 1967.

[8] Robert Munafo. Mu-ency - the encyclopedia of the mandelbrot set. Online at
http://mrob.com/pub/muency.html. Visited on 23 Apr 2012.

[9] John D. Owens, Mike Houston, David Luebke, Simon Green, John E. Stone,
and James C. Phillips. Gpu computing. Proceedings of the IEEE, 96:879�899,
May 2008.

[10] Heinz-Otto Peitgen, Hartmut Jürgens, and Dietmar Saupe. Chaos and Fractals
- New Frontiers of Science. Springer-Verlag, 1992.

[11] Eric D. Scheirer. Tempo and beat analysis of acoustic musical signals. The
Journal of the Acoustical Society of America, 103:588�601, 1998.

[12] Aamir Sha�, Bryan Carpenter, Mark Baker, and Aftab Hussain. A comparative
study of java and c performance in two large-scale parallel applications. Con-
currency and Computation: Practice and Experience, 21:1882�1906, February
2009.

[13] Andrew Thall. Extended-precision �oating-point numbers for gpu computation.
ACM SIGGRAPH 2006 Research posters, 2006.

[14] Yi-Hsien Wang and I-Chen Wu. Achieving high and consistent rendering per-
formance of java awt/swing on multiple platforms. Software: Practice and
Experience, 39:701�736, March 2009.

61

http://www.ibm.com/developerworks/grid/library/os-swingswt/
http://mrob.com/pub/muency.html

[15] http://sourceforge.net/projects/milkdrop/. Visited on 3rd July 2012.

[16] http://projectm.sourceforge.net/. Visited on 3rd July 2012.

[17] http://www.fractalsciencekit.com/. Visited on 3rd July 2012.

[18] http://www.chaucery.com/jme/fractals/. Visited on 3rd July 2012.

[19] http://www.ultrafractal.com/. Visited on 3rd July 2012.

[20] http://wmi.math.u-szeged.hu/xaos/doku.php. Visited on 3rd July 2012.

[21] http://www.fotoview.nl/uf_eng.htm. Visited on 3rd July 2012.

[22] http://www.oracle.com/technetwork/java/javase/overview/index.
html. Visited on 3rd July 2012.

[23] http://www.w3.org/XML/. Visited on 3rd July 2012.

[24] http://www.jdom.org/. Visited on 3rd July 2012.

[25] http://www.nvidia.com/object/cuda_home_new.html. Visited on 3rd July
2012.

[26] http://www.jcuda.org/. Visited on 3rd July 2012.

[27] http://www.khronos.org/opencl/. Visited on 3rd July 2012.

[28] http://www.jocl.org/. Visited on 3rd July 2012.

[29] http://code.compartmental.net/tools/minim/. Visited on 3rd July 2012.

[30] http://docs.oracle.com/javase/tutorial/uiswing/. Visited on 3rd July
2012.

[31] http://www.opengl.org/. Visited on 3rd July 2012.

[32] http://jogamp.org/jogl/www/. Visited on 3rd July 2012.

62

http://sourceforge.net/projects/milkdrop/
http://projectm.sourceforge.net/
http://www.fractalsciencekit.com/
http://www.chaucery.com/jme/fractals/
http://www.ultrafractal.com/
http://wmi.math.u-szeged.hu/xaos/doku.php
http://www.fotoview.nl/uf_eng.htm
http://www.oracle.com/technetwork/java/javase/overview/index.html
http://www.oracle.com/technetwork/java/javase/overview/index.html
http://www.w3.org/XML/
http://www.jdom.org/
http://www.nvidia.com/object/cuda_home_new.html
http://www.jcuda.org/
http://www.khronos.org/opencl/
http://www.jocl.org/
http://code.compartmental.net/tools/minim/
http://docs.oracle.com/javase/tutorial/uiswing/
http://www.opengl.org/
http://jogamp.org/jogl/www/

A Source Code

This appendix section contains parts of the source code. It includes the most im-
portant parts of the business logic. Some initializations and other lines which are
not directly of importance for understanding the logic may have been left out to
increase the readability of the code.

A.1 Determining Complex Numbers for Pixel

dXReal = realRange / f racta lWidth ∗ cos (r o t a t i on /180∗PI) ;
dYReal = realRange / f racta lWidth ∗ s i n (r o t a t i on /180∗PI) ;
dXImag = −imagRange / f r a c t a lHe i gh t ∗ s i n (r o t a t i on /180∗PI) ;
dYImag = imagRange / f r a c t a lHe i gh t ∗ cos (r o t a t i on /180∗PI) ;

s tartRe = rea lCente r − f racta lWidth /2 ∗ dXReal −
f r a c t a lHe i gh t /2 ∗ dYReal ;

s tart Im = iamgCenter + fracta lWidth /2 ∗ dXImag +
f r a c t a lHe i gh t /2 ∗ dYImag ;

cReal = startRe + x∗dXReal + y∗dYReal ;
cImag = start Im − x∗dXImag − y∗dYImag ;

A.2 Basic Calculator

for (y=0; y<f r a c t a lHe i gh t ; y++) {
for (x=0; x<fracta lWidth ; x++) {

cReal = startRe + x∗dXReal + y∗dYReal ;
cImag = start Im − x∗dXImag − y∗dYImag ;

// c a l c u l a t e po in t and i f i t i s i n s i d e s e t
zRe = cReal ;
zIm = cImag ;

pixelMap [x] [y] = maxIte rat ions ;
for (i t e r =0; i t e r <maxIte rat ions ; i t e r++) {

zReNew = zRe∗zRe ;
zImNew = zIm∗zIm ;

// check i f c a l c u l a t e d complex number i s
// b i g g e r 4 and t h e r e f o r e an escaper
i f (zReNew + zImNew > 4) {

pixelMap [x] [y] = i t e r ;
break ;

}
zIm = 2∗zRe∗zIm + cIm ;
zRe = zReNew − zImNew + cRe ;

}
}

}

63

A.3 Successive Re�nement

for (chunkSize=maxChunk ; chunkSize>=minChunk ;
chunkSize=chunkSize /2) {
for (y=0; y<f r a c t a lHe i gh t ; y+=chunkSize) {
for (x=0; x<fracta lWidth ; x+=chunkSize) {

cReeal = startRe + x∗dXReal + y∗dYReal ;
cImag = start Im − x∗dXImag − y∗dYImag ;
calculateChunk (x , y , cReal , cImag , chunkSize) ;

}
}

copyPixelMapToPixelMapParent () ;
}

/∗∗
∗ Ca l cu l a t e and f i l l a chunk o f p i x e l s .
∗ @param x S t a r t i n g x va lue .
∗ @param y S t a r t i n g y va lue .
∗ @param cRe Real par t o f adding cons tant
∗ @param cIm Imaginary par t o f adding cons tant
∗ @param chunkSize S i z e o f the chunk in p i x e l s
∗/

calculateChunk (x , y , cRe , cIm , chunkSize) {
i f (x%(2∗ chunkSize) == 0)

parentX = x ;
else

parentX = x − chunkSize ;

i f (y%(2∗ chunkSize) == 0)
parentY = y ;

else
parentY = y − chunkSize ;

i f (chunkSize == maxChunk)
eva luate = true ;

// i f a chunk was a l r eady c a l c u l a t e d in parent s t ep
else i f ((x == parentX) && (y == parentY)) {

eva luate = fa l se ;
} else i f (equalNeighbors (parentX , parentY , chunkSize ∗2)) {

eva luate = fa l se ;
} else {

eva luate = true ;
}

i f (eva luate) {
// c a l c u l a t e po in t and i f i t i s i n s i d e s e t

64

double zRe = cRe ;
double zIm = cIm ;

for (i t e r =0; i t e r <getMaxIte rat ions () ; i t e r++) {
zReNew = zRe∗zRe ;
zImNew = zIm∗zIm ;

// check i f c a l c u l a t e d complex number
// i s b i g g e r 4 and t h e r e f o r e an escaper
i f (zReNew + zImNew > 4) {
break ;

}
zIm = 2∗zRe∗zIm + cIm ;
zRe = zReNew − zImNew + cRe ;

}
} else {

i t e r = pixelMapParent [parentX] [parentY] ;
}

// f i l l chunk
for (xF i l l=x ; (xF i l l <(x+chunkSize)) &&

(xF i l l <fracta lWidth) ; xF i l l++)
for (yF i l l=y ; (yF i l l <(y+chunkSize)) &&

(yF i l l <f r a c t a lHe i gh t) ; y F i l l++)
pixelMap [xF i l l] [y F i l l] = count ;

}

A.4 CUDA Basic Algorithm

A.4.1 CUDA Code

// Ca l cu l a t e the Mandelbrot Set wi th doub le a r i t hme t i c
__device__ i n l i n e int CalcMandelbrotTrueDouble (
const double xPos , const double yPos ,
const int maxIter)

{
double y = yPos ;
double x = xPos ;
double yy = y ∗ y ;
double xx = x ∗ x ;
int i = 0 ;

while ((i < (maxIter−1)) && (xx + yy < 4 .0 f)) {
y = x ∗ y ∗ 2 .0 f + yPos ;
x = xx − yy + xPos ;
yy = y ∗ y ;
xx = x ∗ x ;
i++;

}

65

return i ;
}

// The Mandelbrot CUDA GPU thread
// func t i on wi th doub le a r i t hme t i c .
extern "C"
__global__ void MandelbrotTrueDouble (
const double dXReal , const double dYReal ,
const double dXImag , const double dYImag ,
const double startRe , const double startIm ,
const int maxIterat ions , const int f racta lWidth ,
const int f r a c t a lHe i gh t , int∗ pixelMap) {

const int i x = blockDim . x ∗ blockIdx . x + threadIdx . x ;
const int i y = blockDim . y ∗ blockIdx . y + threadIdx . y ;

i f ((i x < fracta lWidth) && (iy < f r a c t a lHe i gh t)) {
// Ca l cu l a t e the l o c a t i o n
const double xPos = startRe + ix ∗dXReal + iy ∗dYReal ;
const double yPos = start Im − i x ∗dXImag − i y ∗dYImag ;

// Ca l cu l a t e the Mandelbrot index f o r
// the current l o ca t i on , wr i t e i t in f l a t array
pixelMap [i x+iy ∗ f racta lWidth] =

CalcMandelbrotTrueDouble (xPos , yPos , maxIte rat ions) ;
}

}

A.4.2 Java Code - JCuda

d o I n i t i a l i z a t i o n s () ;

hostOutput [] = new int [f racta lWidth ∗ f r a c t a lHe i gh t] ;

// A l l o ca t e dev i c e memory f o r the array po in te r s , and copy
// the array po in t e r s from the hos t to the dev i c e .
CUdeviceptr deviceOutput = new CUdeviceptr () ;
cuMemAlloc (deviceOutput ,

f racta lWidth ∗ f r a c t a lHe i gh t ∗ S i z e o f . INT) ;

c a l c u l a t eS t a r t i n gVa l u e s () ;

// Set up the k e rne l parameters : A po in t e r to an array
// o f po in t e r s which po in t to the a c t ua l va l u e s .
Pointer kerne lParameters = Pointer . to (

Po inter . to (new double [] { (double) dXReal }) ,
Po inter . to (new double [] { (double) dYReal }) ,
Po inter . to (new double [] { (double)dXImag}) ,

66

Pointer . to (new double [] { (double)dYImag}) ,
Po inter . to (new double [] { (double) s tartRe }) ,
Po inter . to (new double [] { (double) s tart Im }) ,
Po inter . to (new int [] { getMaxIte rat ions () }) ,
Po inter . to (new int [] { getFractalWidth () }) ,
Po inter . to (new int [] { ge tFrac ta lHe ight () }) ,
Po inter . to (deviceOutput)

) ;

// Ca l l the k e rne l f unc t i on .
cuLaunchKernel (funct ion ,

gr idSizeX , gr idSizeY , 1 , // Grid dimension
blockSizeX , blockSizeY , 1 , // Block dimension
0 , null , // Shared memory s i z e and stream
kernelParameters , null // Kernel− and ex t ra parameters

) ;

// t h i s wa i t s f o r the conc lu s ion o f GPU ca l c u l a t i o n
cuCtxSynchronize () ;

// copy the array po in t e r s from the dev i c e to the hos t .
cuMemcpyDtoH(Pointer . to (hostOutput) , deviceOutput ,

f racta lWidth ∗ f r a c t a lHe i gh t ∗ S i z e o f .FLOAT) ;
cuMemFree (deviceOutput) ;

// t h i s cop i e s the f l a t r e s u l t array to the p i x e l r a s t e r
un f l a t t en (hostOutput) ;

A.5 CUDA Successive Re�nement Algorithm

A.5.1 CUDA Code

// The Mandelbrot CUDA GPU thread funct ion ,
// c a l c u l a t e s a l i s t o f po in t s
extern "C"
__global__ void c a l c u l a t e L i s t (const double dXReal ,
const double dYReal , const double dXImag ,
const double dYImag , const double startRe ,
const double startIm , const int maxIterat ions ,
const int f racta lWidth , const int f r a c t a lHe i gh t ,
const int chunkSize , const int evalCount ,
int ∗evaluateMap , int ∗ resultMap) {

int num = blockDim . x ∗ blockIdx . x + threadIdx . x ;
int i x = evaluateMap [num∗ 2] ;
int i y = evaluateMap [num∗2+1] ;

i f (num < evalCount) {
double xPos = startRe + ix ∗dXReal + iy ∗dYReal ;

67

double yPos = start Im − i x ∗dXImag − i y ∗dYImag ;

int i =0;

double y = yPos ;
double x = xPos ;
double yy = y ∗ y ;
double xx = x ∗ x ;

while ((i < (maxIterat ions −1)) && (xx + yy < 4 .0 f)) {
y = x ∗ y ∗ 2 .0 f + yPos ;
x = xx − yy + xPos ;
yy = y ∗ y ;
xx = x ∗ x ;
i++;

}

resultMap [num] = i ;
}

}

A.5.2 Java Code - JCuda

/∗∗
∗ Ca l cu l a t e the s e t f o r a chunk s i z e , doub le a r i t hme t i c .
∗ @param chunkSize Chunk s i z e
∗/
public void c a l c u l a t eF l a t (int chunkSize) {

eva l ua t eL i s t = new ArrayList<Evaluat ingPoint >() ;

for (int y=0; y < getFrac ta lHe ight () ; y+=chunkSize)
for (int x=0; x < getFractalWidth () ; x+=chunkSize)

calculateChunk (x , y , chunkSize) ;

int hostOutput [] = new int [e v a l ua t eL i s t . s i z e ()] ;

// A l l o ca t e dev i c e memory f o r the array po in te r s , and copy
// the array po in t e r s from the hos t to the dev i c e .
CUdeviceptr dev ice Input = new CUdeviceptr () ;
cuMemAlloc (deviceInput , e va l ua t eL i s t . s i z e ()∗2 ∗

S i z e o f . INT) ;
cuMemcpyHtoD(deviceInput , Po inter . to (createEvaluateMap (

eva l ua t eL i s t)) , e v a l ua t eL i s t . s i z e ()∗2 ∗ S i z e o f . INT) ;

CUdeviceptr deviceOutput = new CUdeviceptr () ;
cuMemAlloc (deviceOutput , e va l ua t eL i s t . s i z e () ∗

S i z e o f . INT) ;

double dXReal=(getMaxRe()−getMinRe ()) / getFractalWidth ()∗

68

Math . cos ((f loat) r o t a t i on /180 f ∗Math . PI) ;
double dYReal=(getMaxRe()−getMinRe ()) / getFractalWidth ()∗

Math . s i n ((f loat) r o t a t i on /180 f ∗Math . PI) ;
double dXImag=−(getMaxIm()−getMinIm ()) / ge tFrac ta lHe ight ()∗

Math . s i n ((f loat) r o t a t i on /180 f ∗Math . PI) ;
double dYImag=(getMaxIm()−getMinIm ()) / ge tFrac ta lHe ight ()∗

Math . cos ((f loat) r o t a t i on /180 f ∗Math . PI) ;

double s tartRe = getReCenter () − getFractalWidth ()/2 ∗
dXReal − getFrac ta lHe ight ()/2 ∗ dYReal ;

double s tart Im = getImCenter () + getFractalWidth ()/2 ∗
dXImag + getFrac ta lHe ight ()/2 ∗ dYImag ;

// Set up the k e rne l parameters : A po in t e r to an array
// o f po in t e r s which po in t to the a c t ua l va l u e s .
Pointer kerne lParameters = Pointer . to (

Po inter . to (new double [] { (double) dXReal }) ,
Po inter . to (new double [] { (double) dYReal }) ,
Po inter . to (new double [] { (double)dXImag}) ,
Po inter . to (new double [] { (double)dYImag}) ,
Po inter . to (new double [] { (double) s tartRe }) ,
Po inter . to (new double [] { (double) s tart Im }) ,
Po inter . to (new int [] { getMaxIte rat ions () }) ,
Po inter . to (new int [] { getFractalWidth () }) ,
Po inter . to (new int [] { ge tFrac ta lHe ight () }) ,
Po inter . to (new int [] { chunkSize }) ,
Po inter . to (new int [] { e va l ua t eL i s t . s i z e () }) ,
Po inter . to (dev ice Input) ,
Po inter . to (deviceOutput)

) ;

// Ca l l the k e rne l f unc t i on .
int blockSizeX = 256 ;
int gr idS izeX = (int)Math . c e i l (

(f loat) e va l ua t eL i s t . s i z e () / blockSizeX) ;
cuLaunchKernel (funct ion ,

gr idSizeX , 1 , 1 , // Grid dimension
blockSizeX , 1 , 1 , // Block dimension
0 , null , // Shared memory s i z e and stream
kernelParameters , null // Kernel− and ex t ra parameters

) ;

cuCtxSynchronize () ;

// copy the array po in t e r s from the dev i c e to the hos t .
cuMemcpyDtoH(Pointer . to (hostOutput) , deviceOutput ,

e va l ua t eL i s t . s i z e () ∗ S i z e o f . INT) ;

cuMemFree (deviceOutput) ;

69

cuMemFree (dev ice Input) ;

resu l tBuf ferToPixe lMap (hostOutput , chunkSize) ;

for (int y=0; y<getFrac ta lHe ight () ; y+=chunkSize)
for (int x=0; x<getFractalWidth () ; x+=chunkSize)

parentMap [x] [y] = pixelMap [x] [y] ;
}

/∗∗
∗ Ca l cu l a t e and f i l l a chunk o f p i x e l s .
∗ @param x S t a r t i n g x va lue .
∗ @param y S t a r t i n g y va lue .
∗ @param cRe Real par t o f adding cons tant
∗ @param cIm Imaginary par t o f adding cons tant
∗ @param chunkSize S i z e o f the chunk in p i x e l s
∗/
protected void calculateChunk (int x , int y , int chunkSize) {
boolean eva luate ;
int parentX , parentY ;

i f (x%(2∗ chunkSize) == 0)
parentX = x ;

else
parentX = x − chunkSize ;

i f (y%(2∗ chunkSize) == 0)
parentY = y ;

else
parentY = y − chunkSize ;

i f (chunkSize == getMaxChunk ())
eva luate = true ;

else i f ((x == parentX) && (y == parentY)) {
// i f a chunk was a l r eady c a l c u l a t e d in parent s t ep
eva luate = fa l se ;

} else
i f (equalNeighbors (parentX , parentY , chunkSize ∗ 2)) {

eva luate = fa l se ;
} else {

eva luate = true ;
}

int count=0;

i f (eva luate) {
count = −1;
e va l ua t eL i s t . add (new Evaluat ingPoint (x , y)) ;

} else {

70

count = parentMap [parentX] [parentY] ;
// f i l l chunk
for (int xF i l l=x ; (xF i l l <(x+chunkSize)) &&

(xF i l l <getFractalWidth ()) ; x F i l l++)
for (int yF i l l=y ; (yF i l l <(y+chunkSize)) &&

(yF i l l <getFrac ta lHe ight ()) ; y F i l l++)
pixelMap [xF i l l] [y F i l l] = count ; }

}

A.6 OpenCL

A.6.1 OpenCL Code

ke rne l void Mandelbrot (
const double dXReal , const double dYReal ,
const double dXImag , const double dYImag ,
const double startRe , const double startIm ,
const int maxIterat ions , const int f racta lWidth ,
const int f r a c t a lHe i gh t , g l oba l int ∗pixelMap) {

const int i x = get_global_id (0) ;
const int i y = get_global_id (1) ;

i f ((i x < fracta lWidth) && (iy < f r a c t a lHe i gh t)) {
// Ca l cu l a t e the l o c a t i o n
const double xPos = startRe + ix ∗dXReal + iy ∗dYReal ;
const double yPos = start Im − i x ∗dXImag − i y ∗dYImag ;

double y = yPos ;
double x = xPos ;
double yy = y ∗ y ;
double xx = x ∗ x ;
int i = 0 ;

while ((i < (maxIterat ions −1)) && (xx + yy < 4 .0 f)) {
y = x ∗ y ∗ 2 .0 f + yPos ;
x = xx − yy + xPos ;
yy = y ∗ y ;
xx = x ∗ x ;
i++;

}

// Ca l cu l a t e the Mandelbrot index f o r the curren t
// l oca t i on , wr i t e i t in f l a t array
pixelMap [i x+iy ∗ f racta lWidth] = i ;

}
}

71

A.6.2 Java Code - JOCL

/∗∗
∗ Ca l cu l a t e the s e t wi th t rue doub le a r i t hme t i c .
∗/
public void ca lcu lateTrueDouble () {

// se tup
CLContext context = CLContext . c r e a t e () ;

try {
CLProgram program = context . createProgram (new

Fi leInputStream (" r e s /mandelbrot_kernel . c l ")) . bu i ld () ;
// s e l e c t f a s t e s t dev i c e
CLDevice dev i ce = context . getMaxFlopsDevice () ;
// c rea t e command queue on dev i c e .
CLCommandQueue queue = dev i ce . createCommandQueue () ;

CLBuffer<IntBuf f e r> clOutputBuf fer =
context . c r e a t e I n tBu f f e r (f racta lWidth ∗ f r a c t a lHe i gh t ,
Mem.WRITE_ONLY) ;

// ge t a r e f e r ence to the k e rne l f unc t i on wi th the name
// 'VectorAdd ' , map the b u f f e r s to i t s input parameters
CLKernel k e rne l = program . createCLKernel ("Mandelbrot") ;

double dXReal =
(getMaxRe () − getMinRe ()) / getFractalWidth () ∗
Math . cos ((f loat) r o t a t i on /180 f ∗Math . PI) ;

double dYReal =
(getMaxRe () − getMinRe ()) / getFractalWidth ()∗
Math . s i n ((f loat) r o t a t i on /180 f ∗Math . PI) ;

double dXImag =
−(getMaxIm () − getMinIm ()) / ge tFrac ta lHe ight () ∗
Math . s i n ((f loat) r o t a t i on /180 f ∗Math . PI) ;

double dYImag =
(getMaxIm () − getMinIm ()) / ge tFrac ta lHe ight ()∗
Math . cos ((f loat) r o t a t i on /180 f ∗Math . PI) ;

double s tartRe = getReCenter () − getFractalWidth ()/2 ∗
dXReal − getFrac ta lHe ight ()/2 ∗ dYReal ;

double s tart Im = getImCenter () + getFractalWidth ()/2 ∗
dXImag + getFrac ta lHe ight ()/2 ∗ dYImag ;

ke rne l . putArg (dXReal) . putArg (dYReal) . putArg (dXImag) .
putArg (dYImag) . putArg (startRe) . putArg (start Im) .
putArg (getMaxIte rat ions ()) . putArg (getFractalWidth ()) .
putArg (ge tFrac ta lHe ight ()) . putArg (c lOutputBuf fer) ;

queue . put2DRangeKernel (

72

kerne l , 0 , 0 , f racta lWidth , f r a c t a lHe i gh t , 0 , 0) .
putReadBuffer (c lOutputBuffer , true) ;

un f l a t t en (c lOutputBuf fer . g e tBu f f e r ()) ;

} catch (IOException e) {
e . pr intStackTrace () ;

} f ina l ly {
// c leanup a l l r e source s a s s o c i a t e d wi th t h i s con t e x t .
context . r e l e a s e () ;

}
}

A.7 Creating a Color Plate

Color [] c o l o r s = new Color [s i z e] ;

// d e l t a red/ green/ b lue , marks the s t ep
// s i z e s in each p i x e l between two key va l u e s
f loat dr=0,dg=0,db=0;
// f l o a t red/ green/ b lue , marks the curren t f l o a t i n g
// va lue o f a co l o r to c a l c u l a t e i t p r e c i s e l y
f loat f r =0, f g =0, fb=0;

// i t e r a t e over co l o r keys
for (int key=1; key<colorKeys . s i z e () ; key++) {

delta_red = (red_right − r ed_l e f t) /
((pos_right − pos_le f t) ∗ s i z e) ;

de lta_green = (green_right − g r e en_le f t) /
((pos_right − pos_le f t) ∗ s i z e) ;

de lta_blue = (blue_right − b lue_ l e f t) /
((pos_right − pos_le f t) ∗ s i z e) ;

// s t a r t i n g co l o r va l u e s f o r the i n t e r v a l
r = red_le f t ;
g = green_le f t ;
b = b lue_ l e f t ;

// count ing the p i x e l s t e p s between two keys
s tep = 0 ;

// i t e r a t e over va l u e s between (i n c l u d i n g)
// l a s t and (e x c l ud ing) curren t co l o r key
for (i=pos_le f t ∗ s i z e ; i<pos_right∗ s i z e ; i++) {

// c a l c u l a t e s the r i g h t p o s i t i o n co s i d e r i n g
// the r o t a t i on o f the co l o r p l a t e
c o l o r s [(i + (r o t a t i on ∗ c o l o r s . l ength)) %

c o l o r s . l ength] = new Color (r , g , b) ;
// adding de l t a−va l u e s to co lor−va l u e s

73

r += delta_red ;
g += delta_green ;
b += delta_blue ;

}
}

A.8 Jump To Time

/∗∗
∗ Jump to a po in t in time o f the curren t zoom
∗ record .
∗ @param time Time f a c t o r between 0 and 1
∗/
public void jumpToTime(f loat time) {

// we are on the f i r s t key
i f (prev ious == null) {

r e a l = next_real ;
imag = next_imag ;
mag = next_magnitude ;
i t e r = nex t_ i t e r a t i on s ;

// we are on the l a s t key
} else i f (next == null) {

r e a l = prev ious_rea l ;
imag = previous_imag ;
mag = previous_magnitude ;
i t e r = pr ev i ou s_ i t e r a t i on s ;

// we are somewhere in between
} else {

r e a l = l i n I n t e r p o l (previous_time , next_time ,
time , prev ious_rea l , next_real) ;

imag = l i n I n t e r p o l (previous_time , next_time ,
time , previous_imag , next_imag) ;

mag = l i n I n t e r p o l (previous_time , next_time ,
time , previous_mag , next_mag) ;

i t e r = l i n I n t e r p o l (previous_time , next_time ,
time , prev ious_i te r , next_iter) ;

}

jumpTo(rea l , imag , mag) ;
// s e t max i t e r a t i o n s and c rea t e new
// co l o r p l a t e i f the s i z e has changed . . .
int o l d I t e r = getMaxIte rat ions () ;
s e tMaxI t e ra t i ons (i t e r) ;
i f (o l d I t e r != i t e r) {

c o l o rP l a t e . applyColorPlate (i t e r) ;
}

}

74

A.9 Approaching Zoom

/∗∗
∗ Zooming in or out to a c e r t a i n d i r e c t i o n
∗ @param c l i c kX X po s i t i o n c l i c k e d
∗ @param c l i c kY Y po s i t i o n c l i c k e d
∗ @param s t e pS i z e Zooming s t ep s i z e , zoom in i f
∗ po s i t i v e , zoom out i f nega t i ve , pan i f 0
∗/
public void zoomDirect ion (int c l ickX ,
int c l ickY , double s t epS i z e) {

// va l u e s dX and dY are between −0.5 and 0.5
dX = cl i ckX / fracta lWidth − 0 . 5 ;
dY = −(c l i ckY / f racta lWidth − 0 . 5) ;
r ea lCente r = rea lCent r e + dX∗ realRange /10 ;
imagCenter = imagCentre + dY∗ imagRange /10 ;

jumpTo(rea lCenter , imagCenter ,
magnitude + magnitude ∗ s t epS i z e) ;

}

A.10 Analyse Music

public class Song {
public Song (F i l e songF i l e) {
this . minim = new Minim(new ProcessingDummy ()) ;
this . s ongF i l e = songF i l e ;
// load song
this . song = minim . l o adF i l e (songF i l e . getAbsolutePath ()) ;
AudioMetaData meta = song . getMetaData () ;
this . a r t i s t = meta . author () ;
this . t i t l e = meta . t i t l e () ;
this . l ength = meta . l ength () ;

// i n i t i a l i z e d e t e c t i on
beatDetect = new BeatDetect (song . b u f f e r S i z e () ,

song . sampleRate ()) ;
// use f a s t f o u r i e r transform
beatDetect . detectMode (BeatDetect .FREQ_ENERGY) ;
// says t ha t d e t e c t i on shou ld not l i s t e n to b ea t s
// f o r 200 ms a f t e r a bea t (saves re source s)
beatDetect . s e t S e n s i t i v i t y (2 0 0) ;

}

public boolean play () {
i f (song != null) {

song . play () ;
l i s t e n e r = new L i s t en e r () ;

75

song . addLis tener (l i s t e n e r) ;
} else
return fa l se ;

return true ;
}

public boolean pause () {
i f (song != null) {

song . pause () ;
song . removeListener (l i s t e n e r) ;

} else
return fa l se ;

return true ;
}

public boolean stop () {
i f (song != null) {

song . c l o s e () ;
song . removeListener (l i s t e n e r) ;

} else
return fa l se ;

return true ;
}

/∗∗
∗ Jump to a po s i t i o n o f the song .
∗ @param time Time in m i l l i s e c ond s .
∗/
public boolean jumpTo(int time) {

i f (song !=null) {
song . cue (time) ;

} else
return fa l se ;

return true ;
}

/∗∗
∗ This c l a s s l i s t e n s to audio and ana l y z e s i t .
∗ @author Chr i s t i an Knapp
∗
∗/
class L i s t en e r implements AudioListener {

@Override
public void samples (f loat [] samp) {

// sound i s mono
this . samples (samp , null) ;

}
@Override
public void samples (f loat [] sampL , f loat [] sampR) {

76

l e v e l = song . mix . l e v e l () ;

// d e t e c t bea t (on ly uses l e f t channel)
beatDetect . de t e c t (sampL) ;

i f (beatDetect . i sSna r e ())
snare = true ;

else
snare = fa l se ;

i f (beatDetect . i sK ick ())
k i ck = true ;

else
k ick = fa l se ;

i f (beatDetect . i sHat ())
hat = true ;

else
hat = fa l se ;

}
}

}

A.11 Play Zoom

public void run () {
this . p lay ing = true ;
this . time = mainFrame . getZoomPanel () . getSTime () .

getValue () ;

mainFrame . getZoomPanel () . getBPlayRecord () . setText ("Stop") ;
mainFrame . getZoomPanel () . r epa in t () ;

long s t a r t , durat ion ;

// decay f a c t o r
int a=Se t t i n g s . g e t In s tance () .

getColorRotationDynamicDecayFactor () ;
// decay time in ms (a f t e r t h a t time the va lue
// decreased by the decay f a c t o r)
int decay=Se t t i n g s . g e t In s tance () .

getColorRotationDynamicDecayTime () ;
// dura t ion o f f u l l r o t a t i on (at k i c k) in ms
int ro t=Se t t i n g s . g e t In s tance () .

getColorRotationDynamicSpeed () ;
// time s ince l a s t k i c k
int kickCount = decay ;
// some p r e c a l c u l a t i o n s
f ina l double ca l cPar t1 = −Math . l og (ro t) ;
f ina l double ca l cPar t2 = Math . l og (a) / decay ;

77

f r a c t a l . ge tCo lo rP la te () . s e tRotat ion (0) ;
// s e t s tandard co l o r r o t a t i on (w i l l on ly be changed
// i f c o l o r r o t a t i on i s s e t to dynamic)
// supposes every s t ep t a k e s 40 ms
f r a c t a l . ge tCo lo rP la te () . s e tRotat ionStep (

1 f /(f loat) S e t t i n g s . g e t In s tance () .
getColorRotat ionSpeed () ∗ 40) ;

// PLAY!
f r a c t a l . getSong () . jumpTo(mainFrame . getZoomPanel () .

getSTime () . getValue ()) ;
f r a c t a l . getSong () . play () ;

while (p lay ing) {
s t a r t = System . cur r entT imeMi l l i s () ;
mainFrame . getZoomPanel () . getSTime () . setValue (time) ;

i f (f r a c t a l . getSong () . i sK ick ())
// 1 in s t ead o f 0 because o f c h a r a c t e r i s t i c
// o f decay func t i on
kickCount = 1 ;

i f (S e t t i n g s . g e t In s tance () . isColorRotationDynamic ()) {
// c a l c u l a t e e xponen t i a l decay func t i on
// y (t) = e^(− l n (ro t) + ln (dec fac) / dect ime ∗ (1− t))
// suppose t ha t every s t ep t a k e s 40ms . . .
f r a c t a l . ge tCo lo rP la te () . s e tRotat ionStep (

(f loat) (Math . exp (ca l cPart1 + ca l cPart2 ∗
(1−kickCount)) ∗ 4 0)) ;

}

f r a c t a l . ge tCo lo rP la te () . r o t a t e () ;
f r a c t a l . ge tCo lo rP la te () . applyColorPlate () ;

// f r a c t a l r o t a t i on
f r a c t a l . g e tCa l cu l a to r () . s e tRotat ionStep (

f r a c t a l . getSong () . ge tLeve l () ∗ 2 0) ;
f r a c t a l . r o t a t e () ;

durat ion = System . cur r entT imeMi l l i s () − s t a r t ;

i f (durat ion < 40) {
Thread . s l e e p (40 − durat ion) ;
durat ion = 40 ;

}
time += durat ion ;
kickCount += durat ion ;

time = time % f r a c t a l . getZoomRecord () . getLength () ;

78

}

this . p lay ing = fa l se ;

i f (paused) {
f r a c t a l . getSong () . pause () ;

} else {
f r a c t a l . getSong () . stop () ;
time = 0 ;

}

f r a c t a l . ge tCo lo rP la te () . s e tRotat ion (0) ;
f r a c t a l . g e tCa l cu l a to r () . s e tRotat ion (0) ;
f r a c t a l . ge tCo lo rP la te () . applyColorPlate () ;
mainFrame . getZoomPanel () . getSTime () . setValue (time) ;

c . getMainFrame () . s e t Id l eAfte rZooming () ;
mainFrame . r epa in t () ;

}

79

B Raw Data

This appendix shows the raw time measurements that were made with the applica-
tion and used for analyses in this thesis. Each test was executed �ve times, and then
the average of this �ve times was calculated. That is due to inaccuracies in time
measurements because the operating system in the background may be busy with
own tasks and therefore occupy CPU time, so it is better to have several measures.

B.1 Low Magnitude

Table B.1.

• Position: −0.5

• Magnitude: 1

• Pixel Resolution: 800x500

• Maximum Iterations: 500

B.2 Medium Magnitude

Table B.2.

• Position: 0.23853497490613537 + 0.5544634809846665i

• Magnitude: 21800

• Pixel Resolution: 800x500

• Maximum Iterations: 1,000

B.3 High Magnitude

Table B.3.

• Position: 0.3680814529993473− 0.14978321260314592i

• Magnitude: 2.11854039 ∗ 109

• Pixel Resolution: 800x500

• Maximum Iterations: 10,000

80

Basic #1 #2 #3 #4 #5 Avg.
Total 199 211 195 212 191 202

Successive Re�nement #1 #2 #3 #4 #5 Avg.
Total 86 90 99 105 95 95
Chunk 16x16 4 3 4 4 3 4
Chunk 8x8 4 4 6 6 6 5
Chunk 4x4 10 11 9 14 9 11
Chunk 2x2 12 14 20 16 16 16
Chunk 1x1 34 32 32 34 32 33
SR Evaluation Only 31 30 35 37 34 33

Successive Re�nement - 2 Threads #1 #2 #3 #4 #5 Avg.
Total 62 52 53 56 65 58

Successive Re�nement - 4 Threads #1 #2 #3 #4 #5 Avg.
Total 52 58 57 68 54 58
Thread 1 28 23 28 30 26 27
Thread 2 44 41 48 30 40 41
Thread 3 47 45 51 45 41 46
Thread 4 28 22 26 25 24 25

Successive Re�nement - 8 Threads #1 #2 #3 #4 #5 Avg.
Total 49 48 52 51 48 50

CUDA #1 #2 #3 #4 #5 Avg.
Total 54 48 46 42 40 46
Kernel Only 32 31 31 31 31 31

CUDA - Successive Re�nement #1 #2 #3 #4 #5 Avg.
Total 169 146 158 170 170 163
Chunk 1 Estimate 11 11 11 10 11 11
Chunk 1 Kernel 9 9 9 9 9 9
Chunk 1 Total 38 37 38 38 39 38

OpenCL #1 #2 #3 #4 #5 Avg.
Total 109 110 94 94 109 103
Kernel Only 47 47 31 31 47 41

Table B.1: Raw performance measurements at low magnitude

81

Basic #1 #2 #3 #4 #5 Avg.
Total 491 499 492 495 490 493

Successive Re�nement #1 #2 #3 #4 #5 Avg.
SR 1 Thread - Total 483 475 483 474 496 482
SR Chunk 16 8 6 8 7 8 7
SR Chunk 8 14 16 10 14 20 15
SR Chunk 4 28 23 29 23 31 27
SR Chunk 2 89 87 88 88 88 88
SR Chunk 1 323 321 322 322 324 322
SR Evaluation Only 426 422 426 419 441 427

Successive Re�nement - 2 Threads #1 #2 #3 #4 #5 Avg.
Total 338 336 329 331 316 330

Successive Re�nement - 4 Threads #1 #2 #3 #4 #5 Avg.
SR 4 Threads - Total 208 198 199 204 191 200
Thread 1 126 118 119 114 114 118
Thread 2 115 105 106 100 95 104
Thread 3 175 168 168 173 162 169
Thread 4 202 194 193 197 185 194

Successive Re�nement - 8 Threads #1 #2 #3 #4 #5 Avg.
Total 154 149 160 144 156 153

CUDA #1 #2 #3 #4 #5 Avg.
Total 148 148 148 147 147 148
Kernel Only 139 139 139 138 138 139

CUDA - Successive Re�nement #1 #2 #3 #4 #5 Avg.
Total 236 243 245 253 255 246
Chunk 1 Estimate 11 11 11 11 10 11
Chunk 1 Kernel 105 105 106 105 105 105
Chunk 1 Total 133 133 133 133 133 133

OpenCL #1 #2 #3 #4 #5 Avg.
Total 219 234 234 218 234 228
Kernel Only 156 156 171 156 156 159

Table B.2: Raw performance measurements at medium magnitude

82

Basic #1 #2 #3 #4 #5 Avg.
Total 5117 5097 5125 5163 5154 5131

Successive Re�nement #1 #2 #3 #4 #5 Avg.
SR 1 Thread - Total 5023 4968 4942 4986 4978 4979
SR Chunk 16 50 39 20 46 39 39
SR Chunk 8 66 61 61 64 60 62
SR Chunk 4 245 239 235 241 240 240
SR Chunk 2 953 954 953 955 955 954
SR Chunk 1 3687 3660 3662 3665 3666 3668
SR Evaluation Only 4949 4912 4890 4943 4926 4924

Successive Re�nement - 2 Threads #1 #2 #3 #4 #5 Avg.
Total 2600 2597 2605 2605 2607 2603

Successive Re�nement - 4 Threads #1 #2 #3 #4 #5 Avg.
SR 4 Threads - Total 1394 1356 1356 1364 1377 1369
Thread 1 1389 1351 1347 1360 1370 1363
Thread 2 1331 1339 1305 1310 1348 1327
Thread 3 1358 1349 1350 1352 1363 1354
Thread 4 1353 1308 1333 1312 1371 1335

Successive Re�nement - 8 Threads #1 #2 #3 #4 #5 Avg.
Total 947 901 913 947 910 924

CUDA #1 #2 #3 #4 #5 Avg.
Total 2204 2205 2201 2225 2205 2208
Kernel Only 2193 2195 2191 2189 2205 2195

CUDA - Successive Re�nement #1 #2 #3 #4 #5 Avg.
Total 2558 2544 2560 2559 2575 2559
Chunk 1 Estimate 10 15 16 15 31 17
Chunk 1 Kernel 1797 1810 1794 1794 1810 1801
Chunk 1 Total 1827 1825 1826 1825 1856 1832

OpenCL #1 #2 #3 #4 #5 Avg.
Total 2564 2563 2560 2563 2560 2562
Kernel Only 2494 2493 2490 2493 2490 2492

Table B.3: Raw performance measurements at high magnitude

83

SE-391 82 Kalmar / SE-351 95 Växjö
Tel +46 (0)772-28 80 00
dfm@lnu.se
Lnu.se/dfm

	The problem
	Problem and Motivation
	Goal
	Restrictions
	Structure of the thesis

	Theoretical Backgrounds
	Mandelbrot Set Theory
	Feedback Processes
	Self-Similarity
	Basic Fractals
	Limit
	``How long is the coast of Britain?''
	Fractal Dimension
	Attractors
	Basin Boundaries
	Prisoners versus Escapees
	Julia Sets
	Mandelbrot Set
	Characteristics of the Mandelbrot Set

	General Purpose GPU Programming
	GPU Architecture
	Programming Interfaces

	Music Analysis
	Energy Analysis
	Frequency Based Beat Detection
	Beat Spectrum

	Related Work
	Mandelbrot Set Explorers - Comparison
	Fractal Science Kit
	JM's Mandelbrot Explorer
	Ultra Fractal
	XaoS
	Ultimate Fractal

	Conclusion of Mandelbrot Set Explorers

	Requirements and Software Structure
	Feature list (Functional Requirements)
	Non-Functional Requirements
	Performance
	Accuracy
	Usability
	Scalability
	Platform (In)-Dependency

	Architecture
	Model-View-Controller
	Data Storage Layer
	Model
	View
	Controllers

	Technologies
	Java
	XML
	JDOM
	CUDA
	JCuda
	OpenCL
	JOCL
	Minim
	Swing
	OpenGL
	JOGL

	Implementation Process
	Implementation Details
	Mandelbrot Set Calculation
	Drawing
	Navigation
	Jumping to a Location
	Saving/Loading Locations
	Taking Snapshots
	Creating Color Plates
	Creating Zooms for Music Visualizations
	Playback Zoom
	Rotation
	Music Analysis
	User Interface

	Issues
	Exact Playback Speed of Recorded Zooms
	CUDA Contexts
	GPU Arithmetics
	Slow Successive Refinement on GPU
	Grabbing Sound Signal from Soundcard

	Results
	Functional Requirements
	Performance
	Workload Distribution on Multiple Threads
	Successive Refinement and Beyond

	Platform Independency and Scalability

	Future Work
	Small Improvements and Fixes
	Usability Testing
	Import/Export features
	Automatic Change of Iteration Threshold
	Algorithmic Optimizations
	Fair Distribution of Work between Threads
	Reusing Parts
	Pre-Rendering in Idle Mode
	Anti-Aliasing
	Own Arithmetics
	Other Coloring Methods
	Improve Music Analysis
	Read Played Music from Sound Card
	More Fractals

	References
	Source Code
	Determining Complex Numbers for Pixel
	Basic Calculator
	Successive Refinement
	CUDA Basic Algorithm
	CUDA Code
	Java Code - JCuda

	CUDA Successive Refinement Algorithm
	CUDA Code
	Java Code - JCuda

	OpenCL
	OpenCL Code
	Java Code - JOCL

	Creating a Color Plate
	Jump To Time
	Approaching Zoom
	Analyse Music
	Play Zoom

	Raw Data
	Low Magnitude
	Medium Magnitude
	High Magnitude

