
Degree project

A Space-Filling Technique for
the Visualization of Planar st-
Graphs

Author: Yuanmao Wang
Date: 2012-08-07
Subject: Computer Science
Level: Bachelor
Course code: 2DV00E

Abstract

Graphs currently attract an increasing number of computer scientists due to their
widely adoptions in different areas. However, when people perform graph draw-
ing, one of the most critical issues they need to concern is atheistics, i.e., to make
the graph more suitable for human perceptions. In this work, we will aim at ex-
ploring one specific kind of graph ”planar st-graphs” with space-filling technique
in Info Vis area. We would cover edge crossing elimination, layer assignment, graph
drawing algorithms, and new development of space-filling technique in planar st-graphs
drawing etc. The final aim of this project is to develop a new algorithm to draw
planar st-graphs based on a space-filling visualization approach with minimum
edge crossings and maximum space usage.

keywords: Planar st-graph, Space-filling, Information Visualization, Edge cross-
ing, Graph Drawing.

i

i

Contents

1 Introduction 1
1.1 Background . 1
1.2 Problems . 2
1.3 Motivations . 4
1.4 Project Goals . 5
1.5 Restrictions . 5
1.6 Structure of the report . 6

2 Related Works 7
2.1 Information Visualization . 7
2.2 Planar st-graph . 7

2.2.1 St-graph . 8
2.2.2 Planar Graph . 8

2.3 Space-Filling . 10
2.3.1 Treemap . 10
2.3.2 Radial Space-Filling . 11

2.4 Parameterized st-Orientations . 12
2.5 Processing . 12

3 Visualization 14
3.1 Data Source . 14
3.2 Initial View . 15
3.3 Layer Assignment and X Coordinate Assignment 15

3.3.1 Layer Assignment . 16
3.3.2 X-coordinate Assignment . 18
3.3.3 Creation of Dummy Nodes 19

3.4 Eliminate Edge Crossings Manually 20
3.5 Drawing Arcs . 21
3.6 Interactions . 22

4 Implementation 23
4.1 Original Planar St-Graph Visualization 23

4.1.1 Layer and X-coordinate Assignment 23
4.1.2 Generating Dummy Node . 27
4.1.3 Edge Crossing Reduction . 27
4.1.4 Original Graph Layout . 28

4.2 Space-filling Visualization . 28

5 Discussion 33

6 Future Work 35

ii

1 Introduction

Comparing with a table or a paper with thousands of words, people often prefer
a diagram or picture instead to make a much better sense of what they want to
know. Indeed, graphs can convey information into a much attractive and easy
way, especially when an organization need to know the work flow diagram, then
usually a kind of flow chart will be conducted in order to make it clear for all
people to recognize the approaching events and possible and related activities.

Comparing with diagrams and images, while in computer science or math-
ematics, there is one concept called ”graph” which as Diestel, R. [1] defined ”A
graph is an abstract representation of a set of objects where some pairs of the objects are
connected by links”. The concept of graph will be introduced in the coming Sec-
tion 1.1. After that, we will explain the idea about how graphs are used in our
lives and in computer science (e.g. Graph Drawing) where we will also introduce
the concept of planar st-graphs which is the main target of this study. Further,
we will talk about the problems with planar st-graphs and show the goal of the
project.

1.1 Background

What is a graph? Actually, when we talk about graph, it mainly refer to the ob-
ject in ”Graph Theory” which is a branch of Mathematics. The research in ”Graph
Theory” is based on ”Graph” which consists with several given nodes and links
connect them. This kind of graphics usually used for describing the specific rela-
tions between objects where the nodes represent objects and the links represent
relations [1]. In the most common sense of the definition of graph, it is an or-
dered pair G = (V, E) comprising a set V of vertices or nodes together with a set
E of edges or lines. For undirected graphs, it is a graph A, in which edges have
no orientation, i.e., they are not ordered pairs, but sets u, v of vertices [2]. While
a directed graph is an ordered pair D= (V, A) with V a set whose elements are
called vertices, and A is a set of ordered pairs of vertices, called directed edges.
Comparing with these two kinds of graphs, the main difference is ones vertices
are ordered and the other is not. I.e., the edges have an orientation.

Today, with the development of technology, increasing works can be done
by computers. One of the mostly widely used techniques is computer graph. As
Michael T.G. & Stephen G.K. [2] stated ”Graph drawing has emerged in recent years as
a very lively area in computer science.” We can see that computer graph has become
more and more important in the modern world. Taking a look around, you can
find many examples which use this technique to show information. If you have
some experience about using the subway, what you firstly do before you get on
the train is probably looking at the map and try to find the right path to your
destination. These maps often are interpreted as graphs.

There is also a very good example of how graph used in the traffic system

1

Figure 1.1: Tube Map [3]

which is called ”tube map” coined in 1931 by Beck [3]. Comparing with the
traditional geographic presentation of the tube map, Beck developed a new ap-
proach in which all the connections (the tube lines) between each node (station)
are straight lines, as you can see in Figure 1.1.

Taking a look at Figure 1.1 , this is a tube map of London in 2011. This kind
of map does not represent the real geography of the city and traffic, however, as
a passenger he or she may not concerns about the geography things, what they
really concern is to go to the right destination with right path, which in other
words the less time consuming. These straight lines can indeed help people to
calculate the distance and find their destinations and then save time.

Another typical application of graphs is work-flow. The work-flow could help
the managers get the activities and relevant events, eliminate the redundant tasks
during the working process and combine the same activities together. Thus, it
is useful in improving the efficiency of a job or program. Figure 1.2 shows a
simple instance of work-flow graph. We can see that there are several nodes and
edges in this graph. It is not hard to relate each event with the activity connected.
According to this kind of graph, there is also one kind of graph called ”st-graph”.
It contains only one ”source” node and one ”terminal” node [2]. When used in
business, they separately represent the beginning and the end of one process. In
this case, Figure 1.3 will present an example of st-graph. We can clearly see the
”S” and ”T” node. And the nodes between them are separated into several levels.

1.2 Problems

Graphs, especially st-graph, has been widely used in many areas. One source one
sink model makes it naturally and easily to fulfill the common process in general
business. Taking a look at Figure 1.2, it is not hard for us to distinguish between
each event and activity as the graph is really clear to see. However, if we got
hundreds of events and probably thousands of activities, then using the model
as Figure 1.2 shows will become ineffective because of too many edge crossings.
Taking a look at Figure 1.3, it is difficult to distinguish from different paths with

2

Figure 1.2: Work-flow Graph

Figure 1.3: St-graph

connection of the nodes in different layers.
According to this issue, there is a good layout of st-graph called planar st-

graph [4] shown in Figure 1.4, which has no interleaving between two or more
edges. As defined by McKay, B. a ”Planar graph” is ”a graph that can be drawn
in a plane while do not has edge crossing” [5]. Thus if this kind of graph is ”st-
graph”, then we call it ”planar st-graph” [4].

Comparing with Figure 1.3 who has lots of overlaps and edge crossings, this
kind of graph can give us a better ability to distinguish the nodes and lines. In-
deed, we can implement it even with thousands of edges to draw. However,
arrow lines always have problem with distance C its often difficult for people to
follow the direction or the path of one line if it is too long or too short, especially
when there are many other parallel arrow lines beside it. For example, Figure 1.4
shows an example of a planar st-graph with several long and parallel paths, but
actually, we can even draw one specific path cross 100 or more layers. Now the
problem is how to find a specific path if we need? For instance how to distinguish

3

Figure 1.4: Planar st C graph

the different paths from source node to the sink node? Obviously, the result will
be even disappointed when the path becomes more and more deep. Therefore,
we still need a new layout to make things better. This layout should make a more
intuitive way to represent the nodes and edges in order to overcome or mostly
reduce the problem of overlap and edge crossing.

1.3 Motivations

Taking a look at all the graphs illustrated in Figure 1.2-1.4, it is not hard to see that
they both use a separate node to represent an event and arrow lines to represent
the activities or relations between each node. Actually, in the field of graph draw-
ing, there are many other ways to draw such kinds of structured graph. One of
them called ”Treemaps” [6] which uses rectangles to represent the nodes and the
relations between nodes will be intuitively recognized by the mappings. Figure
1.5 (b) shows an example of tree maps which represent the relationships between
each node in (a). As Mark Bruls et al indicated ”the full display space is used to
visualize the contents of the tree” [6]. Comparing with (a), the tree map (b) adopts
a better topology to represent the relations. As you can see here, the leaf nodes
in (a) are presented by the individual rectangles in (b), and the size of non-leaf
nodes were the sum of their children nodes. In this case, tree map is much more
effective when comes to a large graph.

The features of ”Treemap” provided us the motivation that to use shape seg-
ments to present the nodes (e.g. rectangle, curves etc) and the relationships be-
tween nodes will represented by the mapping relations. The idea also partially
reference I.G. Tollis’s idea when he talked about the numbering assignment of
”st-graphs” [7] and can be better described in Figure 1.6 from (a) to (b) and (c).
It is worth to mention that we are here not using treemap to present the ”planar
st-graph”, instead, we partially adopt the concepts and approaches in treemap to

4

Figure 1.5: Tree map

Figure 1.6: Motivations

make the visualization development to generate a new kind of type for present-
ing ”planar st-graph”.

1.4 Project Goals

Considering the problems of space waste and the difficulties of identifying rela-
tions between two nodes in a long-path planar st-graph, in this project, the final
goal is to develop a new space-filling technique for the visualization of planar st-
graph in order to better fit human intuitions so that the screen space can be max-
imum utilized and the relations between each nodes can be better represented.

1.5 Restrictions

There are several restrictions in this poject: a) The research object is very specific
graph C ”planar st-graph” [4]. In this case, we need the user firstly upload a ”planar
st-graph” as the input resource, this means the users themselves need to have
some knowledge about graph and he or she does know how to make a planar st
C graph; b) We use curves to represent nodes, although it can save spaces since
there is no edges (links) shown in screen, however, since there is less interactions,
when there are too much nodes exist in one layer, it will probably lead to the
situation that some of the nodes are too big (means the curve is too long) while
others are too small; c) The input is a planar st-graph can not guarantee that

5

there is no edge crossing when it drawn on screen. In order to do this, we need
to do the job of ’Layered drawing of digraphs’ which consists of three main steps:
’Layer Assignment’, ’Crossing reduction’ and ’Horizontal Coordinate Assignment’ [4].
Step 1 and 3 will be done automatically by implementing the relevant algorithms,
however, since step 2 is more complicated and it can be seen as an extension part
of this project, so we decide to reduce edge crossing manually. However, this can
become a restriction since there are always some problems with manual works.

1.6 Structure of the report

The whole structure of this thesis will be as follows: The first chapter mainly in-
troduces the background and problems of graphs including: normal work flow
graph, st-graph, tree map, space-filling and so on. And the motivation and goal
of this thesis study will be formulated in this chapter as well. After that, in the
”Related Works” chapter, we will try to cover all the related concepts and ideas and
techniques in this project. E.g. Info -Vis, planar st-graph and graph drawing ap-
proaches and so on. This chapter can give readers a comprehensive view of what
elements are contained in this thesis; then come to the main part of the project:
visualization and implementation. These two parts will mainly talk about how
this project running from an initial text-based file to the final circle-based layout
of new space-filling techniques to show the planar st-graph. At the end, discus-
sion and future work will be conducted to summary the whole working process
and learning outcomes as well as the improvements of this project.

6

2 Related Works

This chapter is about the introductions and explanations of concepts and tech-
niques that will be used in this project. For example, what is the subject area
of information visualization, or what are the concepts and characters of planar
st-graph and so on.

2.1 Information Visualization

Information visualization is an area in computer science which is used for trans-
ferring data and information into visual forms [8]. In information visualization,
we can solve problems in a much intuitive way based on humans‘ natural percep-
tion. Visualization combines computers and our brains together to help people to
analysis and understand data with different methods and techniques in computer
graphic.

Information visualization works in many areas such as biology, medicine, ge-
ography, business and so on. Comparing with original computer graphic, Info-
Vis has many advantages. Static and dynamic data can be available for many
people and groups. Patterns and correlations can be discovered and using In-
teractions to let user to manage or operate different views on the screen to get
different results. The typical example of that is the Info Vis Reference Model as
Figure 2.1 will show the model. In this figure, we can see that there are two
basic part ”DATA” contains ”raw data” and ”data table” and ”visual form” con-
tains ”visual structures” and ”views”. It is very clear to see how raw data is
transferred into views with ”data transformations”, ”visual mapping” and ”view
transformations” and human interactions between each part.

According to this model, in this thesis, the raw data will represent the nodes
and edges which present relations and directions between nodes. And we se-
lect the graphml format as data table to format the raw data. As introduced
in Section 3.1, the graphml file contains the information of nodes ID and edges
which contains the ”source” node ID and ”target” node ID, therefore a graph with
”graphml” format has already been well structured. Then we store the informa-
tion of nodes and edge (the relations between nodes) in different Java vectors.
When all these information are collected, we can start by assigning the layers and
x coordinate positions for each node and drawing links according to the ”edge”
information in graphml file. So far, we already make the graph in a structured
way. After that, we choose a space-filling technique [8] as the visual structure,
and the final representation only consist of circles and curves.

2.2 Planar st-graph

In the Introduction chapter, we have already mentioned the concept of planar st-
graph briefly. In this section, we will bring more and detail explanations about
the relations between ”st-graph”, ”planar graph” and ”planar st-graph”. What is

7

Figure 2.1: Info Vis Reference Model [8]

Figure 2.2: PERT example

more, we will also bring some examples of how planar st-graph are adopted in
the real world to better explain its features.

2.2.1 St-graph

We category graphs in many ways, for example: ”planar” or ”non-planar”; ”di-
rected” or ”undirected”. Here we will introduce one kind of graph called ” St-graph
” [9]. The st-graph also has been widely used in our lives. Some typical instances
like: PERT graph in network work flow model. PERT is short for ’Program/Project
Evaluation and Review Technique’ [10]. It is a technique that makes and evaluates
plans by using network analysis technique. It can coordinate each event in a
whole work plan, arrange manpower, material resources, capital and time in a
proper way so that speed up the completion of one project. It is an important
method and means in ”modern project management ”

Taking a look at Figure 2.2, this graph consist of many nodes represent events
and arrow lines connect each nodes represent activities between two events. Map-
ping to the st-graph, A is the source node means beginning of one program and
K is the sink node represent the end of program. All of the arrows must point at
the same direction. And it is also a planar st-graph since it has no edge crossings.

2.2.2 Planar Graph

As we know, a graph consists of a set of vertices, and a set of edges each joining
two vertices. In this case, a ”planar graph” is a graph which can be embedded in

8

Figure 2.3: Planar and non-planar graph

Figure 2.4: Straight line drawing

the plane so that no two edges intersect geometrically except at a vertex to which
they are both incident [11]. And increasingly, the concept of ”planar graph” has
attracted many computer scientists due to its plenty applications [11]. You can
see the difference of planar and non-planar graph from figure 2.3.

Nowadays, the automatic drawing of planar graph has bring intense interest
in related areas like ”computer network”, ”VLSI layout”, ”information visualization”
etc., and a number of drawing styles are coming out consequently like ”straight-
line drawing”, ”straight-line grid drawing”. [12] The idea of ”straight-line drawing”
approach is the drawing way that draw each node as a point and edge as straight
- line without edge crossing, and in this case we also need to distinguish whether
the graph is a ”planar st-graph” which has direction as shown in Figure 2.4 a) or
undirected planar graph as it is in Figure 2.4 b) since the method for drawing
these two graph is different; the ”straight-line grid drawing” method as shown in
Figure 2.5 is based on an integer grid so that each node will be drawn on the
specific grid point, so that it can eliminate edge crossing by putting nodes to the
appropriate positions. [12]

Here in this project, we will adopt the approach of ”straight-line drawing” in
Figure 2.4 a). The detail information concluding drawing algorithms and ideas
will show in Chapter 3.

9

Figure 2.5: Straight line grid drawing

2.3 Space-Filling

In Chapter 2.1, we have introduced that in information visualization, there are
many techniques solving different problems. Here, in this small section, we will
introduce one of the most popular space-filling techniques: tree maps as well as
radical space-filling in order to motivate ideas.

2.3.1 Treemap

Before talking about Treemaps, we need firstly introduce the concept of hierar-
chical structure. As T. Nishizeki et al described, ”A large quantity of the world’s
information is hierarchically structured: manuals, family trees, computer programs ...”
[13]. Indeed, with the ever increasing data and information storing in our PCs,
mobiles and other storage, a kind of hierarchical structure like the file system in
Windows can greatly increase our working efficiency. However, T. Nishizeki also
pointed out, ”Most people come to understand the content and organization of these
structures easily if they are small, but have great difficulty if the structures are large”
[13].

There are three traditional methods for presentation of hierarchical structured
information: listing, outline, and tree diagram. Listing is a very common approach of
showing hierarchy, and it does can provide structured information when it listing
the entire structure with explicit path [14]. However, it is inefficient since users
need to parse the path manually; Outline approach can provide both structure and
content at the same time, but the limitation exits that users can only see few lines
of information at one time [14]. Actually, both of these two methods are ”out of
fashion”. Nowadays, when talking about hierarchical structure, most people will
think about using tree diagram. Henry, T.R. And Hudson, S.E. [15] introduced
this approach as ”... it has traditionally sought efficient and esthetically pleasing
method for the layout of node and link diagrams... it is excellent visualization tool
for small trees”. The comparison between outline and tree diagram approaches

10

Figure 2.6: outline and tree diagram

is shown in Figure 2.6.
However, even a tree diagram has limitations: a) poor use of available spaces.

For example, in the tree diagram of Figure 2.6, almost half space (pixels) are used
as background, in this case, when graph become really large, the adequacy of
information shown in this tree will be low due to overlaps of nodes and edge
crossings; b) poor quality of content since we need to put each node’s content as
a text standing in the position as the node should be. Therefore, we introduce the
idea of Treemap here to see what are the difference and advantages of Treemap
comparing with traditional approaches.

We can define the main limitations of traditional hierarchical structured ap-
proaches are space and content. While in Treemap, all these two problems can
be solved. Firstly, Treemap use 100% of the designated display space, secondly,
it allows user to see both the structure (e.g. Depth) and content (display prop-
erties such as color mapping) [14]. Taking a look at Figure 2.7 which shows the
corresponding Treemap of the graph in Figure 2.6, we can find there is no gaps
between two rectangles, i.e., there is no space waste. And the content can also be
better represented in nested shapes with color mapping.

2.3.2 Radial Space-Filling

When the Treemap was coined, there appeared many Treemap layout algorithms
for that, such as: slice-and-dice, Cluster, strip, etc [15]. All of these algorithms
using rectangles to represent nodes in the original node-link graph. However, we
can also use radial segments instead the rectangles. There also several examples
of this in information visualization, such as: sunburst, angular details, interring
and so on [16], as shown in Figure 2.8.

This example is also the inspiration of my project. Using radial segments to
present nodes, by the special layout of radial circles, it is easier to arrange the

11

Figure 2.7: Treemap

Figure 2.8: Radial space-filling [16]

proper layer for each node and also easier for users to distinguish different layers
comparing with the rectangle layout.

2.4 Parameterized st-Orientations

I.G.Tollis and C.Papamanthou in their article called ’Applications of Parameterized
st Orientations in Graph Drawing Algorithms’ [7] described a new way to represent
planar st-graph as shown in Figure 2.9. They use red rectangles to represent the
’source’ node and green rectangles to represent ’sink’ node. The yellow rectangles
between them are ’middle’ nodes and we can see they are assigned into different
layers and these are typical structured graphs.

2.5 Processing

To do the project, we need to use one of the most popular languages JAVA to
implement algorithms. Considering the drawing of nodes, lines, and radial seg-
ments, we choose the Processing API to implement this part. ”Processing is an
open source programming language and environment for people who want to

12

Figure 2.9: st-orientation in graph drawing algorithm [7]

create images, animations, and interactions.” [17] Since this project do not need
to use too much visual patterns, using processing is much efficient because it is
easy to learn and use.

13

3 Visualization

The main ideas of visualization for this project will be introduced in this chapter.
It includes the conceptual design of user interface as well as the project running
flows. Moreover, visualization patterns from the orginal planar st-graph data
source to the final representation of space-filling layout will be described in detail.

3.1 Data Source

As in Chapter 2 referenced, the main process of this project is to firstly input a pla-
nar st-graph, in this case, a .graphml file [18]. After eliminating the edge crossings,
then convert it into a new diagram using the spacing-filling technique. Here, we
choose graphml file as the input source. The reason why we choose ”graphml” is
because it is a comprehensive and easy-to-use file format for graphs. It consists
of a language core to describe the structural properties of a graph and a flexible
extension mechanism to add application-specific data. Its main features include
support of almost all kinds of graphs include directed, undirected, hierarchical
graphs and so on [18]. Figure 3.1 a) shows us a simple example of graphml file
with basic elements.

Figure 3.1: graphml file

Graphml is based on XML; taking a look at Figure 3.1 you will find it is similar
with a common XML file if you were familiar with. The difference is the decla-
ration part in order to tell that this is graphml format. The father node ’graph’ has
two children ’node’ and ’edge’, attribute of ’node’ is to identify each single node in
the graph, while ’edge’ element has two attribute ’source’ and ’target’ to identify
the beginning node and the ending node of this edge respectively. The result of
this graphml will be shown as Figure 3.1 b).

The advantage of using graphml file as input is: It is based on XML, so, it
is easy to be parsed. Comparing with other file format for graphs, graphml has

14

Figure 3.2: Initial View (Input)

a better structure which made it easy to be viewed and modified. Example of
Figure 3.1 only shows a common undirected graph. Actually, in this study, the
initial graph we need is so called st graph which means this graph only has one
source node and one sink node, and this graph also need to be conducted in a
directed structure from father node to children nodes, as shown in Figure 2.2. So,
in this case, in the initial graphml file, we need to define a root node ”n0” to be
the source node, as well as the last node to be the sink one. What is more, there
is no leaf node here or in other word all nodes need to have their own father
node(s) and children node(s). So all the content in Figure 3.1 a) can be seen as the
requirement for the content of input graphml file.

3.2 Initial View

The initial view of this program is a Java applet which contains several command
buttons. Users need to first upload the graphml file as the input data by clicking
’Upload’, when they finish uploading, the path of this file will be shown in the left
text-box and then click button ’original graph’ the corresponding original planar
st-graph will be shown in the left-top screen.

In order to make it possible to transfer the input graph into space-filling lay-
out, users need to change some position of nodes in some specific layers to elimi-
nate the edge crossing. This can be down by just click on one node and drag it to
another node in the same layer. After that, click ’Finish’ button and then the new
layout will be shown in the right part. This process will be shown in Figure 3.2
and Figure 3.3.

3.3 Layer Assignment and X Coordinate Assignment

Given by the initial graphml file as described before, how can we make it into a
graphic-based structure and show it out? This is one of the most important steps
in this project-layer assignment. In this section we will cover the main idea of the

15

Figure 3.3: Initial View (Original Graph)

corresponding algorithm as well as when we finish putting all the nodes in the
right layer, how can we assign the X axes for each node in the same layer.

In Section 1.1, we have introduced the concept of graph and its categories. In
this project, the graph is not only a directed but also an oriented graph. Taking
a look at the three figures in Figure 3.4. If we count from left to right. We will
find that the first figure is exactly what we call it ”undirected graph”, here we can
say the ’blue’ and ’yellow’ nodes are the children nodes of the ’red’ node, but we
can also see ’yellow’ node as the father node of both ’red’ and ’blue’; when comes
to the second one, we can already see the difference with the former one that it
has directions between each node, which means there are relations exist among
these nodes. However, given the nodes and edges as the second figure shows,
the output diagram of this graph should be different in this project. The reason is
exactly due to the concept of ”planar st-graph”, in st graph, the depth of each node
is also important since the graph itself should have a direction as you can see in
both Figure 1.3 and Figure 2,4. Therefore, in Figure 3.4 b), if we only abstract the
area in rectangle,i.e., only focus on Yellow node, we can say the the orientation is
from left to right, however, when it comes to the entire graph, the direction is not
unique. In this case, we need to reconstruct the structure of this graph in order
to identify the direction. Figure 3.4 c) shows the idea, here we use an algorithm
to make sure that all the ”target” nodes’ depths should deeper than the ”source”
nodes’ depths. The yellow node is both the ”target” node for the red and blue
node, while blue node is the ”target” node of red one, therefore, we need to put
yellow node in layer 3, as you can see in c), now the edges in both two layers
(layer 2 and 3) are top to bottom.

3.3.1 Layer Assignment

As long as we defined the format of the input graph, we can start to do the algo-
rithm to transfer it into a ’real’ graph. For a planar oriented graph, all of the di-
rected edges should point to the same direction, such as ’top to bottom’ or ’left to

16

Figure 3.4: The direction of graph

right’. We can not mix the directions in the graph. For example, the second graph
in Figure 3.4, there are two directions: top to bottom and left to right, while for
the last one, the relations between each node is the same as those in the second
graph, but all of the edges‘ directions are top to bottom, and thus we can say this
graph’s direction is ”top to bottom”, so this is an oriented graph.

Now the problem is: given by an oriented graph, with the nodes and relations
between them, how can we know the proper layer for each node? To make a
specific analysis, we take the oriented graph (OG) in figure 3.4 as example. This
graph is a simple oriented graph. And it is obvious to see that ’red’ node has two
children ’blue’ and ’yellow’ while ’blue’ node also has two children node ’green’
and ’yellow’. If we give each node a set to store its children nodes, the result of
OG is:

Red: Blue, Yellow
Blue: Green, Yellow

And this is also the first step in this algorithm - putting all the children nodes
into the father node’s set. This procedure can be easily achieved by parsing the
graphml file since the ’edge’ attribute can help us find out the relations between
’father’ and ’children’.

After finishing the first procedure, the layer assignment for each node can be
formulated based on the nodes and the nodes in their sets. Firstly, we set the
depth of each node in this graph to 0 (since we define the number of first layer as
layer 0), then we analysis from the beginning node in this case - red, and we find
that this node has two children nodes: blue and yellow, so we know that these
two nodes’ depth at least should add 1 depth, thus ’depth ++’ for blue and yellow.
Again we find node blue also has two children: yellow and green. Here comes
out a trick situation, we can again let node yellow add 1 depth and therefore its
depth will become 2 which mean it will be assigned into layer 2; however when
comes to the node ’green’, we can not simply use ’depth ++’ since the outcome
will become that the depth of green node is 1, but we all know it should be 2.
In this case, we decide to use ’replace’ approach instead of ’add’ approach. The

17

Figure 3.5: X-coordinate motivation

main idea is: we change the ’green’ and ’yellow’ nodes’ depth into ”blue.depth
+1”. And this process will continue until we reach to the last node.

In this case, we defined an algorithm corresponding to the analysis in this section.

1: We have two empty sets set1 and set2.
2: Initial set1, set2;
3: set1← all nodes; empty set2;
4: for (node x : set1): Initial set A; A← (x.getSourceNode ∩ set1);
set2← set2 ∪ A end for;
5: set1← (set1 - set2);
6: for (node x: set2): x.depth ++ end for;
7: set1← set2;
8: while set1.IsEnd == false; loop from 4 to 6.

The implementing part of this algorithm will be shown in the Section 4.1.1. So
far we have covered the process of layer assignment, but this is not sufficient for
drawing the graph into the screen. Because ’green’ and ’yellow’ are both in layer
2, but this can only means that their Y axes coordinates (2 depth) are different
with ’red (0 depth)’ and ’blue (1 depth)’; however, as shown in Figure 3.5, without
additional steps of x-axes coordinate assignment for these two nodes, they will
be drawn at the same place. Therefore, here we need to do the x-axes coordinate
assignment in order to distinguish the nodes’ positions in the same layer.

3.3.2 X-coordinate Assignment

When we finish all the tasks of layer assignment, we can already get the informa-
tion of what are placed in which layer. So here we define a ’Layer’ class and give it
a Vector to store every node in this layer. Hence, despite the relations of nodes in
different layers, here we can only focus on each specific layer and specific nodes
in this layer. In order to doing this, we initialize every node’s x coordinate to 0.
After all of the nodes been assigned to every specific layer, using a simple ”for”
loop for each layer can easily assign x coordinate to every node in this layer.

18

It is worth to mention that: what we finally gain here is only the node’s depth
(layer) and its position in this layer (e.g. layer (2). Position (1)). When we want
to show the graph on screen, we need to calculate the X coordinates as well as
Y coordinates for each node. And here the key factor that needs to be taken into
concern is the ’scale’. I.e. with the increment of the number of layers in one
graph, the increment of Y coordinate from root to sink should be small, and the
same as the increment of X coordinate for nodes in each layer from left to right.
And what’s more, in order to make it possible for people to recognize the nodes
and edges, we also need to define a threshold to limit the minimum scale.

So far we can say that a graph based on the input graphml file can be shown
out. Still we can not guarantee that there is no overlap or edge crossing inside this
graph although we know it should be. The reason is because the X coordinate,
or to be simple, the position of each node in its layer. We can just take figure
X as example, although we finish the X coordinate assignment, for ’green’ and
’yellow’, there is still one possible situation that shown in Figure 3.6.

Figure 3.6: X-coordinate assignment motivation

In this case, it is difficult for people to recognize that ’red’ is the father node of
’yellow’. Therefore, we need to eliminate the edge crossing and overlap by firstly
adding dummy node and then change position of nodes in the same layer.

3.3.3 Creation of Dummy Nodes

Dummy node is an empty template node that you can use to build new nodes [4].
In order to eliminate edge crossing, adding dummy nodes is important. There are
several algorithms for reduce edge crossing, most of them are based on dummy
nodes. In this project, dummy node is also important. We can just take Figure 3.7
as example.

Actually, this figure was taken from one instance of this project when it starts
running and input a .graphml file. The relationship of this graph should be show
as below:

N0: N1, N2, N3

19

N1: N3
N2: N3, N5
N3: N4, N5, N6
N4: N6
N5: N6
N6: N7

Figure 3.7: Dummy Node

Therefore, N0 should connect directly N3, N2 should connect directly to N5,
however, if we do that, then it will become very difficult when we want to reduce
edge crossing: change the position of edges is difficult than change nodes. Thus
we put a small node between N0 and N3. By adding dummy nodes, the length
of each path between two nodes will become the same: one layer distance. Ac-
cording to the algorithm of edge crossing reduction, [4] this is the key step since
the algorithm its method is to compare the nodes’ and edges’ situation between
two layers. The dummy node will be generated automatically according to the
algorithm shown in next section, but the edge crossing eliminating process will
be conducted manually as you will see later.

3.4 Eliminate Edge Crossings Manually

In this thesis, we only discuss planar st-graph. A planar graph should have no
edge crossing, but after we input a file, this does not mean that the output is a
standard planar graph without any edge crossing. And when doing the space-
filling part of this project, the requirement is also eliminate the edge crossing as
explained in Section 2.2.

We accomplish this function by adopting Processing API and the ideas is as
follows. As you can see in Figure 3.8, the users need to click on the specific node
area (the area represented in rectangle) and drag it to another node’s area from
which they want to change the positions. By doing this, two properties are chang-
ing: If these two nodes have a common father node, then their index in the father

20

Figure 3.8: Edge Crossing Eliminating

node’s ”children node set” will change; and their index in the specific layer will
change as well.

In this example, we start by firstly ’drag’ Node 1 to the dummy node in its
layer which is a small green node, and ’release’ the mouse, then we can see that
the position of these two nodes had changed, and then we drag Node 5 to the
dummy node in its layer in the same way, and at the end the result will have no
edge crossing.

3.5 Drawing Arcs

What we have down so far is the basic and also one of the core processes of this
project – basic graph layout. And the rest part will be another core part: space
filling visualization. As you already see in the introduction part, what we are
going to do is to use arcs to describe the nodes and the relations in each node will
be presented by the projections or connections of each arc.

The general idea is to put a circle in the middle to present the source node
in layer 0, and then we will assign several curves surround this circle to present
its children nodes. What’s more, the small gap will be generated if there is any
dummy nodes exist in this layer. And continue this idea layer by layer. We can
take the example of Figure 3.9 and illustrate the evolution from the source circle
to its connected nodes (arcs) in order to get the whole idea.

We can clearly see the gap here representing the dummy node. Actually, we
do not really ’draw’ this node out, and instead we assign the start and stop pa-
rameters of the curve for this node in order to ’leave’ this space out. i.e. for the
layer 1, we will draw from node 1 instead of the dummy node, and since we had
already assigned the stop parameter of this dummy node, therefore, we can take
use of it to define the start point of node 1. the process of how to implement this
idea including how to assign the parameters and which kind of situations must
we take into consideration will be explained in detail in Chapter 4.

21

Figure 3.9: Motivation of Drawing Arcs

Figure 3.10: Project result

3.6 Interactions

Since this project mainly focuses on the new idea of space-filling techniques for
graph, therefore, what we mostly focus on is the algorithm for new layout, which
means we can not add too much user interactions on it. There are two features
can be seen as interactions on new space-filling graph: labeling and brushing. As
you can see in Figure 3.10, when we put the mouse on one specific curve, the
corresponding node ID will shown on the white tooltip, at the same time, on the
left side the original graph, the homologous node will be highlighted with other
color.

22

4 Implementation

This section will mainly talk about how the ideas or algorithms in Chapter 3 were
implemented. This will cover two main parts:

Part 1: ”Original st-graph visualization” which also concludes four small parts:
1) layer and x-coordinate assignment, 2) generating dummy node, 3) edge crossing re-
duction (manually) and 4) graph presentation.

Part 2: ”Space-filling visualization” which conclude mainly three parts: 1) cal-
culating and assigning parameters to each node as start position and end position of arcs
as well as for the dummy nodes, 2) calculating the number of layers to determine the
length of the gap between two layers and 3) drawing the arc and start and end lines of
each arc.

4.1 Original Planar St-Graph Visualization

In order to let users better distinguish the differences between traditional ap-
proach of drawing planar st-grapph and the new space-filling techniqe, we will
firstly represent the original planar st-graph visualzaition based on the input data
source from the user side. This section therefore is to describe the implementa-
tions of how to transfer the input data source into graph representation.

4.1.1 Layer and X-coordinate Assignment

This section will focus on how to assign nodes to the right layer and the right
place in this layer based on the ideas talked in Chapter 3. In this project, we
have a class called ’LayerAnalyzer’ responsible to do the job of assigning and
changing nodes’ positions, see Figure 4.1.

Here the function named ’DoLayer()’ is used to assign nodes to each layer.
And there is another class with data structured JAVA Vector to store information
of nodes and there relations which called ’LayerSet’ shown in Figure 4.2. The
Boolean function called ’Add()’ shown in Figure 4.3 together with ’Find()’ function
here in this class is used to add new nodes into a set of one specific node. E.g.
in Figure 4.9, Node1, Node2 and Node3 will be added into ’Node0’s LayerSet, this
means they are the children nodes of Node0. In order to implement the algorithm,
the class of ’LayerNode’ is also necessary to store and manage the information
in each node which consists of the information of depth, position and the function
of increase depth, return ID and so on. And for each LayerNode X, we assign it a
LayerSet – ’Set’ to store its children nodes as well as a LayerSet – ’Fathernode’ to
store its father nodes.

Now we come to the ’DoLayer()’ function (shown in Figure 4.5) in class
LayerAnalyzer. This is the implementation of the algorithm mentioned in Section
3.4.1. We start by firstly putting all nodes in LayerSet d1, go though this set and

23

Figure 4.1: LayerAnalyzer.Java

Figure 4.2: LayerSet.Java

24

Figure 4.3: Add (LayerNode node) function

Figure 4.4: UniteSet function

find each node’s own set which contains its children node and UniteSet (shown
in Figure 4.4) with LayerSet d2 and give them depth ++, keep doing this process
until d1 is end and now each node has its own depth. We will then get the depths
and use them to assign nodes to right layers.

When the ’Layer Assignment’ was done, all of the LayerNode X in the ’list’
(which is a LayerSet to store all the LayerNodes) will have their own depths which
means we had already assign them to the proper layers. And then the next step is
to assign X- Coordinate to each layer. This step is simple: we had conducted
a class called ’Layer’ which used to store information of layers as shown in
Figure 4.6. We use the user function ’assignxcoor()’ to implement this step
by using two ’for’ loops functions to go through all the layers and the nodes in-
side each layer in order to finish the X - Coordinate assignment. And changing
the coordinate value was achieved by the function in class ’LayerNode’ called
’IncreaseXcoor (int num)’.

So far, we can already draw an original ’planar st-graph’ on screen since we
have all the nodes’ axis positions. the next step is to eliminate the edge crossing
and this will be divided into two main parts: Generating dummy node and Change
nodes’ positions.

25

Figure 4.5: DoLayer () function

Figure 4.6: Layer.Java

26

4.1.2 Generating Dummy Node

In the class of ’LayerAnalyzer’, the function ’DoAssign ()’ is used for gen-
erating dummy nodes. Dummy nodes’ information also stored in LayerNode, the
difference is its type is ’FLAG DUMMY’. Here the general idea is: we firstly de-
fine an Enumeration set ’e’, and we value the elements x (LayerNodes) in the list
to e, and then we will check the children nodes in each element x to see if their
depths are explicit one deeper more than x’s depth. If not, we will ’cut’ the edge
and insert the dummy node between them. the detail code of this procedure can
be see in Figure 4.7.

Figure 4.7: DoAssign () function (For dummy node)

4.1.3 Edge Crossing Reduction

Since we already have the dummy nodes, we can start the edge crossing re-
duction processing. Now what is needed to do is to find two nodes in one
layer that their X C coordinate positions need to be changed. This is done with
user’s own perspective and experience, which means they should know which
kind of changing can finally eliminate the edge crossing. There is a function in
’LayerAnalyzer’ class called ’changeposition (int layer, int from,

int to)’ of which there are three parameters need to be initialized: the layer,
and the two nodes’ index in this layer which there positions need to be changed.
The idea is also simple: Form a new temp LayerNode C to store one of the two
nodes, e.g. A, and delete A, put B into A’s position and then put C to B’s orig-
inal position. And what is more, in order to make the changing process more
fluently, we will embed this function into the ’mouseReleased ()’ function in

27

Figure 4.8: mouseReleased () function

the ’DrawArc’ class as shown in Figure 4.8, this Processing function will be called
every time when mouse is released.

4.1.4 Original Graph Layout

This project adopts Processing API as the main tool to draw graphs. After finish-
ing the processes of layer and X-coordinate assignment, each node should have
its own axis position which contains both X and Y Coordinates, and together
with the function in Processing called ’ellipse (x-coordinate, y-coordinate, width,
height)’, we can now easily draw the nodes on screen with circles. And the edge
between each node will be drawn with the function of line (X, Y) simply. We dis-
tinguish Nodes (Red) and Dummy Nodes (Green) by the different color and size
of the circles.

4.2 Space-filling Visualization

When the edge crossing reduction process has been done, the next step will be the
presentation of Space-filling layout. And this is one of the key and most difficult
parts in this project.

The class called ’Test1’ is used to present the Space-filling graph layout, and
the function named ’assignarc ()’ is the main function to assign arc param-
eters to each node. Again take Figure 4.9 as example, and we will explain the
whole idea of the visualization process. To draw the arcs we use the function ’Arc
(x, y, width, height, start, stop)’ which taken from the Processing API as well. Here

28

Figure 4.9: An Original Graph

the X and Y will both be 0 since all the arcs’ center axis is 0; the width and height
will depend on the amount of layers of the input graph; and the key parameters
here is ’start’ and ’stop’. Dummy node is exact not a node, which means we do
not need to draw it on the screen; however, it can be one factor to calculate the
parameters for Nodes.

Figure 4.9 is a planar st-graph without edge crossing. Now we need to transfer
it in to Space-filling layout. Based on the idea in Section 3.5, the Node 0 will be
the central circle surrounding by Node 1 and Node 2 and Node 3. Since in this
case, we also need to concern about the dummy node. We assign a position or a
range for it, but we do not draw it.

In order to interpret the idea, we need to reuse Figure 3.10 to illustrate the
ideas and issues that need to be concerned during the implementation. As you
can see in Figure 4.10, here we use a ’double’ variable named darctemp to store
the value of dummy node’s arcs value. While nodejarc is used for store the value
of a node (father node) ’s arcs value. It is clear from Figure 4.10 that we leave a
space gap for each dummy node and therefore allow two nodes away from more
than 2 depths can ’reach to’ each other. Actually, due to the right formulation
of this idea, as long as the original graph shown in left side is a planar st-graph,
we can in the right side draw the nodes by the orders where they should be in
original graph. However, the only thing here may generate bugs is the size of
dummy node, i.e., the value of darctemp. The simplest way to do that is to assign
darctemp a small and fixed value, e.g. PI/12, but this is not a correct way. For
instance in Figure 4.10, if the arc value of node 2 is smaller than PI/12, then the
whole structure will be damaged. So here we will assign the value to darctemp
dynamically:

if(nodejarc>0.5)

darctemp = (float) (nodejarc/10);

else

darctemp = (float)(nodejarc/3);

29

The reason to do it this way is because if the father node which dummy node
belongs to is too small or too big comparing with other nodes, then one fixed per-
centage will make the gap (value of darctemp) too big or small.

Algorithms
Begin by checking the second layer (Layer 1) firstly:

STEP1
1: forevery node in Layer 1:
2: if (node == LayerNode.Node) Nnum++;
3: if (node == LayerNode.DummyNode) Dnum++;
4: nodejarc← node.arcs(node.stop-node.start)
5: Assign value to darctemp;
6: arctemp← (nodejarc-Dnum*dractemp)/Nnum;

STEP2
1: for every node in nodej’s LayerSet:
2: for the first node

check ’start’ switch
if(true)

thisnode.start← nodej.start; switch off
3: check ’stop’ switch
if(true)

thisnode.stop ← thisnode.start + thisnode.arc value (this value differ from node and
dummynode); switch off

STEP3
for the rest nodes
1: check switch
if(true)
thisnode.start← prenode.stop;
thisnode.stop← thisnode.start + thisnode.arc value (this value differ from node and dum-
mynode);
end for
end for

STEP4
loop from layer 2 to the layer (layer.length - 1)

When all this jobs have been done, the final step is to draw all the arcs on
screen with a for loop of a set consists of all the LayerNodes’ information, in this
case is the set called ”output”. Only arcs is not sufficient, we also need to draw

30

Figure 4.10: assign space for dummy node

the lines in order to distinguish the nodes in the same layer. And here we adopt
the cos () and sin () function to calculate the parameters for two lines (from centre
to start, from centre to stop) for each arc in order to conduct the sector.

(cos((float)x.getstart())),x.GetDeep()*templine*(sin((float)x.getstart())));
(cos((float)x.getstop())),x.GetDeep()*templine*(sin((float)x.getstop())));

This part of code is used for drawing the sectors. When the graph is drawn
on screen, we also have two kinds of interactions as discussed in Section 3.6,
brushing and tooltib and all of these two functions will be implemented inside
mouseMoved () with Processing API.

public void mouseMoved()

{int id = picker.get(mouseX, mouseY);

fill(255);

rect(mouseX-175,mouseY-250,50,25);

fill(0);

if (id==-1)

text(’’’’,mouseX-170,mouseY-234);

else

text(’’Node:’’+id,mouseX-170,mouseY-234);

output = analyzer.GetList().GetSet();

id = id; }

The tooltib function can be implemented in this function, and the brushing
function is implemented in the draw() function of DrawArc class in which need
to use the id from this function. The output of the final result will be shown in
Figure 4.11.

31

Figure 4.11: The final output

32

5 Discussion

By providing a new idea of representation with space-filling technique, the final
results of this project overcome the problems for traditional layout of planar st-
graph that waste of space and difficult to distinguish relations between edges
and nodes. Taking Figure 4.11 as example: This is a specific planar st-graph with
52 nodes including both source and terminal nodes. In this figure, traditional
representation of the graph is shown at the top, in which there are three features
that can be identified with first sight: a) the number of layers, b) the number of
nodes and c) whole structure of the graph. However, a lot of space are wasted on
this graph which include both vertical and horizontal dimensions. For example,
the gap between layer 2 and 3, or the space between node 8 and node 17.

From Figure 4.11, the reason of why space are wasted in traditional approach
of planar st-graph representation is because: the connections between nodes are
represented by edges, which implies the increasing utilization of vertical space;
moreover, gap between nodes in the same level also need to be assigned with
a proper space in order to ensure the right distinctions among nodes and their
connected edges. For example, it is hard to follow the path from node 4 to node
45 although there indeed has a path. This may due to the deficient representing
approach for traditional planar st-graph drawing in this project, however, even
given by a better drawing algorithm, it still has the problem of identifying nodes
and edges when too many of them exist in a little space at the same time.

The bottom of Figure 4.11 is another approach for representing the same pla-
nar st-graph but with new space-filling techniques that developed in this project.
In this case, each curve unit represents the corresponding node and space are
maximum utilized because the relations between nodes are represented by the
adjacent relations of curve units. Every curve unit has two kinds of curving
edges: top and bottom, of which two curve units are connected when and only
when one unit’s top curving edge ’adjoin’ another unit’s bottom curving edge.
We can see from the figure, there is no white space in this graph representation
excepting the white lines used for distinguishing each curve unit (node). More-
over, by hierarchical color-coding, people can intuitively distinguish between two
contiguous layers and identify the connections between nodes from different lay-
ers. In addition, the new approach of planar st-graph visualization can better
support user interactions due to its ductility of the representing structure and the
more available space.

What is more, this project can give people who want to improve the graph
drawing area a start point to think about how to make the layout more intuitive
so that it can better fit human’s perspectives, and to think about how to save the
space on screen and how to fulfill the requirement of presenting the overview
and context.

However, as we said, this is only a start point of the whole idea. There are
two main limitations in this project. a) On the original graph aspect, we did the

33

edge crossing reduction manually which will cost a lot time when running the
program and it requires the user do it properly in order to come to the right layout
and structure of the new visualization. b) On the new graph side, we have less
interactions, this can also generate limitations when a node has too many children
nodes – the space for each child node will become too small to distinguish.

34

6 Future Work

As mentioned before, there are some limitations exist in this project, thus here we
will list the corresponding future works on it trying to solve the problems and
improve the quality.

Figure 6.1: RFI algorithm

1 Eliminating edge crossing automatically
Actually, in computer graph drawing area, there are a lot of algorithms to elim-
inate edge crossing. For example, Maxwell, Y. et al [19] had developed several
kinds of minimizing edge crossing algorithms one of which named ”Random
First improvement Iterative Local Search” (RFI) as shown in Figure 6.1. By imple-
menting this kind of algorithm, the limitation a) will be overcomed automatically.

2 Additional interactions on this project
One good interaction is to adopt sunbrust [16] technique to focus on one specific
node and to see how other nodes related to this one. As Figure 2.8 shows up,
when we click radiation node, other nodes which have no connections will be-
come gray and therefore we can highlight the proper range that we may wish to
explore. What is more, we can also make the radiation node become big when we
click on it so that the limitation of too many children nodes in one LayerSet will

35

Figure 6.2: Motivation of interactions [16]

be improved.

36

References

[1] Diestel, Reinhard (2005).Graph Theory (3rd ed.). Berlin, New York: Springer-
Verlag.

[2] Michael T.G. & Stephen G.K. , 2002, Graph drawing:10th international sympo-
sium, GD 2002, Irvine, CA, USA, August 26-28, 2002 : revised papers Berlin :
Springer, cop. 2002

[3] Tube - map. London. Last access: July 15 2011, from http://www.afn.org/
alplatt/tube.html

[4] Tollis, I.G., et al, 1998, Graph Drawing: Algorithms for the Visualization of Graphs.
Prentice Hall; 1 edition

[5] McKay, Brendan; Brinkmann, Gunnar, A useful planar graph generator.

[6] Mark B. Kees H and Jarke J, Squarified Treemaps. Eindhoven University of Tech-
nology Dept. of Mathematics and Computer Science.

[7] I.G. Tollis & C. Papamanthou, 2010, Applications of Parameterized st-
Orientations in Graph Drawing Algorithms, Journal of Graph Algorithms and
Applications. Vol.14, No.2, pp.337-365

[8] Keith A., 2012, Information Visualization. IICM Graz University of Technology

[9] Atallah, M.J., et al, 1998. Efficient Parallel Algorithms For Planar st-Graph.
Computer Science Technical Reports. Paper 1410.

[10] Di B.G., et al, 1989, Automatic layout of PERT diagrams with X-PERT, Visual
Languages.

[11] Boyer, John M.; Myrvold, Wendy J. (2005), ”On the cutting edge: Simplified
O(n) planarity by edge addition”, Journal of Graph Algorithms and Applications
8 (3): 241-273.

[12] Mohamed A. El-Sayed, 2012. GA for straight-line grid drawings of maximal
planar graphs. Egyptian Informatics Journal 13(1)

[13] T. Nishizeki et al, 2008. Planar Graphs: Theory and Algorithms. Dover Publica-
tions

[14] Brian, J. and Ben, S., 1991. Tree-Maps: A Space-Filling Approach to the Visu-
alization of Hierarchical Information Structures. Proceedings IEEE Visualization
(1991) .

[15] Tyson R. Henry and Scott E. Hudson. Viewing largegraphs. Technical Report
90-13. University of Arizona, May 1990.

37

[16] Hans, S., 1994. Space-Filling Curves. Springer; 1 edition

[17] F. Ben & R. Casey, 2007. Processing : a programming handbook for visual designers
and artists,Cambridge, Mass. : MIT Press

[18] GraphML Primer. Last access: May 20 2011, from
http://graphml.graphdrawing.org/primer/graphmlprimer. html

[19] Maxwell, Y. et al, 2003. Stochastic Local Search Algorithms for Minimizing
Edge Crossings in Complete Rectilinear Graphs.

38

SE-391 82 Kalmar / SE-351 95 Växjö
Tel +46 (0)772-28 80 00
dfm@lnu.se
Lnu.se/dfm

