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Abstract

Access to and understanding of data plays an essential role in the increasingly
digital world. Representation and analysis of relations between various data
entities, i.e., graph and network structures in the data, is an important prob-
lem for various industries. In contrast to simple graphs that focus on edges
with two endpoints only, a hypergraph provides a natural method to represent
multi-way interactions with an arbitrary number of endpoints for each edge,
and it can be a better alternative than a bipartite graph for comparable applica-
tions. However, traditional approaches for visually representing hypergraphs
are purely static diagrams without support for interaction, which can be com-
plex to perceive and do not scale well with regard to the number of nodes and
edges. They are not adequate for representation and interactive exploration
of large or dense hypergraph data sets found in real-world applications. The
ISOVIS (Information and Software Visualisation) research group at Linnaeus
University has previously introduced a novel radial visualization approach for
undirected hypergraphs called Onion. The Onion tool focuses on solving the
issues of edge clutter, overlaps, and edge crossings. However, certain open
challenges and suggestions for improvements were identified for the respec-
tive implementation, and there is an opportunity to fill a gap in the hypergraph
visualization research by building upon the original Onion approach study. In
this thesis project, we implement the new version of the Onion approach based
on the principles and challenges established previously. The contributions of
this work include evidence regarding the effectiveness and efficiency of a hy-
pergraph comparison technique, the usability of edge bundling in the context
of hypergraph exploration tasks, and the scalability of the interactive visual-
ization through an entirely new web-based version of the Onion approach. To
obtain the respective results, the new implementation is applied for two case
studies involving real-world data sets, and further validated through a user
study with several participants. The results of this work can be helpful for
researchers of network visualization and practitioners in need of approaches
for representing and exploring data that can be modelled as hypergraphs.

Keywords: hypergraph, hyperedge, cardinality of hyperedges, edge bundling,
edge crossing, network visualization, information visualization, interaction
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1 Introduction

Access to and understanding of data plays an essential role in the increasingly dig-
ital world. Analysis and explanation of relations between various entities and data
points is a fundamental problem for various industries [1]. Such relational data can
typically be modelled as graphs or networks (i.e., graphs with additional attributes
attached to its constituent vertices/nodes or edges). People need an intelligible and
concise way to illustrate and interact with complex network structures.

Information visualization is a research field that studies visual representations
used for data interpretation and effective information communication, such as vari-
ous charts, and interaction techniques can be used alongside such representations [2].
Visualization is not meant to only provide aesthetically pleasing renderings of the
data, but rather, it should help us establish relationships and patterns in our minds
that cannot be observed naturally by looking at numerical data directly [3]. Infor-
mation visualization can be further combined in workflows involving intense ap-
plication of computational approaches, which is the focus of the visual analytics
field [4, 5].

Visual representation of graphs has long been in the focus of the field of graph
drawing [6], which is mainly concerned with computation of layouts of so-called
node-link diagrams. Within information visualization research, the respective sub-
field focusing on graphs and networks is known as network visualization, and it is
mainly concerned with various representations, interaction techniques, and applica-
tions involving such graph and network data, for example, visual analysis of large
graphs [7] or social networks [8].

While the simple, ordinary graph model only includes nodes and edges that
connect pairs of nodes, there is sometimes a need to represent a relationship between
more than two nodes, for example, to indicate the membership of several social
network actors in communities [1]. One way of addressing this task with edges
connecting two vertices/nodes only is by using a bipartite graph [9] that introduces
additional nodes corresponding to such communities. The disadvantages of such an
approach are the growth of the number of edges and, consequently, more cluttered
and space-demanding visual representation, which can make it more difficult for the
users to understand the overall structure and particular relations in the graph.

To describe a complicated network for such a scenario, a hypergraph is a better
option than the bipartite graph. A hypergraph provides a natural method to represent
multi-way interactions with an arbitrary number of nodes, i.e., its hyperedges can
be connected to more than two endpoints at a time [10]. A hypergraph is compu-
tationally more efficient and can better model complex non-pairwise relationships
for many data sets than simple, ordinary graphs [9]. The hypergraph approach has
been demonstrated to be widely applicable in many areas, for example, for efficient
storage of large databases on disks and data mining [11].

However, traditional approaches for visual representation of hypergraphs are
purely static diagrams without any support for interaction, and they can be complex
and do not scale well for larger data sets [11]. They are often not adequate for han-
dling the data sets used in modern real-world applications. The ISOVIS (Informa-
tion and Software Visualisation) research group at Linnaeus University focuses on
the big data challenge by combining human-centered data analysis and interactive
visualization. The ISOVIS group has previously introduced the Onion tool [12] that
provides a new radial visualization method that can display undirected hypergraphs
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without clutter, including a set of possibilities to interact with them. As this previ-
ous study shows, the Onion approach has advantages over many other hypergraph
layout approaches, especially on the performance of hyperedge representation [12].
However, the authors of the study concluded that further work was needed to offer
an efficient Onion tool for the visual analysis of hypergraphs, based on certain open
challenges and opportunities identified as part of their study.

In this project, we carry out a further study of hypergraph visualization based
on the Onion tool. We find evidence about the effectiveness and efficiency of a
hypergraph comparison technique, the usability of edge bundling in the context
of hypergraph exploration tasks, and the scalability of the interactive visualization
through an entirely new web-based version of the Onion approach using JavaScript.

1.1 Background

This section will prove the background knowledge regarding our Onion visualiza-
tion approach in detail, such as the critical theories and the terms we will use in this
report.

1.1.1 Hypergraphs

A hypergraph preserves a network structure in which more than two relationships
are involved. In mathematics, the definition of a hypergraph is a graph in which
an edge can join any number of vertices. Such edges are thus called hyperedges.
Moreover, they can be treated as non-empty subsets of the vertices in the hyper-
graph. More formally, a hypergraph is a pair H = (V,A), where V is a finite vertex
set, and A represents a set of edges that are connected with at least one node [13].
The definition of a hypergraph is related to the definition of a graph G = (V,E)
such that each hypergraph H induces a connected subgraph of G. Hypergraph is a
model of multi-adic [14] relationships in structures where the traditional pairwise
relationship of graphs is insufficient [15]. It has been used in many fields and do-
mains, such as social networks [16], chemical reactions [17], genome [18], and
VLSI design [19].

1.1.2 Edge Bundling

Based on the previous study [12], one of the problems of the original interactive
Onion tool is that support for edge bundling for ordinary edges (i.e., edges connect-
ing two vertices) is not complete. In this project, we try to find evidence about the
usability of edge bundling in the context of hypergraph exploration that suits the
Onion tool.

Limited space is one of the reasons that may lead to edge clutter. Edges play an
essential role by encoding the relationships of the nodes as well as the associated
data. However, graph/network visualizations face edge clutter problems when the
number of data items increases. Moreover, edge clutter constitutes a challenge for
users with regard to obtaining information and insights from the visualization. Edge
bundling methods are one potential solution to this issue.

Edge bundling provides an abstract and uncluttered view of the original edge-
cluttered visualization. Different edge bundling algorithms exist, such as geometric
graphs, trees, or parallel coordinates plots, where each node has a predefined loca-
tion that is used as input for generating the curved representations of each edge [20].

2



1.1.3 Visualization Scalability Issues

In the field of information visualization, scalability is an open problem with mul-
tiple facets, as the data sets used in critical real-world applications can potentially
include massive networks, huge multi-dimensional heterogeneous data sets, and
complex data streams. Representing such data sets can require advanced and rather
complicated visualization techniques. However, this issue also leads to the question
of perceptual scalability of visualizations [21, 22]. Regarding the limitations of hu-
man vision, a human perceives a restricted number of pixels in a specific observed
distance. In general, information visualization researchers have limited screen space
to use for representing complex data, and it is not always clear if the chosen rep-
resentation can scale up to larger data sets without becoming difficult to perceive,
and also too slow to compute, render, and interact with. In this project, we find evi-
dence about the scalability of the interactive visualization approach implemented in
Onion.

1.1.4 The Original Onion Tool

As shown in Figure 1.1, the Onion tool [12] is a hypergraph visualization tool that
has been developed by Prof. Dr. Andreas Kerren and Dr. Ilir Jusufi in 2013. The
Onion tool focuses on solving the issues of edge clutter, overlaps, and edge cross-
ings for hypergraph data representation. The following requirements guided the
prototypical implementation of the original Onion tool [12]:

• User-friendly metaphor that is intuitively understandable;

• GraphML [23] files should specify input hypergraph;

• Support for standard interactions [2, 24], such as zooming, filtering, or re-
ordering of hypergraph elements;

• Hypergraph edges should not overlap (no crossings of hyperedges);

• Hypergraph and ordinary edges (hypergraph of cardinality two) should be
treated and shown separately.

Besides, the Onion tool considered several tasks that the visualization and associ-
ated interaction techniques should support [12]:

• Find the hyperedge nodes of a selected hyperedge (or set of hyperedges);

• Determine all hyperedges that share specific node (or set of nodes);

• Filter nodes/hyperedges utilizing topological features, such as node degree;

• Estimate the cardinality of hyperedges;

• Support editing of nodes and hyperedges if needed.

This thesis project is based on the previous research on the Onion approach. Many
developments in information visualization have been realized since the first version
of the Onion tool was implemented. Nevertheless, hypergraph analysis and visu-
alization are still active fields of research with many possible domain applications.
We believe that there is a possibility of further research of hypergraph visualization
based on the Onion approach.
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Figure 1.1: Main window of the original version of the Onion tool. The hypergraph
view is on the left-hand side, and the control panel is on the right. The small sample
hypergraph has six nodes and ten hyperedges (four of them being ordinary edges
with a cardinality of two). Edge e1 was selected by the user (highlighted in pink).
Figure by Kerren and Jusufi [12].

1.2 Motivation

Information visualization is the practice of turning unstructured bodies of complex
data into visual form and actionable insights (as well as a research discipline fo-
cusing on such methods) [2, 3]. With regard to network data, people usually endow
the investigated objects with pairwise relationships for both analysis and visualiza-
tion [1]. However, in many real-world problems, relationships among our objects
of interest are more complex than pairwise. Therefore, we can use the hypergraph
model to handle the complicated relationships among the entities of interest.

After decades of information visualization research, hypergraphs have attracted
increasing attention due to their flexibility and efficiency in modeling complex data
relations. Hypergraphs have found success by generalizing regular graphs in many
applications, such as clustering, classification, and prediction [25].

The Onion hypergraph visualization tool [12] was developed in 2013. It aims to
address the problems of edge clutter, overlaps, and edge crossings. However, some
issues are not addressed, for instance: 1) the edge bundling method for ordinary
edges is not entirely supported; 2) the original research paper does not focus on
hypergraph comparison; and 3) it does not provide concrete evidence about the
interactive visualization approach’s scalability in the Onion tool. So, we want to
contribute to the hypergraph visualization research by building upon the original
Onion tool study.
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1.3 Problem Statement

According to the prior research on hypergraphs, we know that hypergraphs can
provide a natural method to represent multi-way interactions. The Onion approach
was shown to be promising for hypergraph visualization and interactive exploration,
however, several challenges and opportunities for further improvements were iden-
tified. By addressing these issues and collecting evidence about the resulting ap-
proach via validation, we aim contribute to the ongoing research on hypergraph
visualization.

The main research aim of the original Onion approach was to solve the issues
of edge clutter, overlaps, and edge crossings of the hyperedges. Onion uses a radial
layout approach to avoid edge clutter. The nodes of the hypergraph are evenly
distributed on a virtual circle. However, the current representation of ordinary edges
(i.e., edges connecting two vertices) in the center of the main view is arbitrary. We
want to find an existing edge bundling method that is applicable for this view and
facilitates hypergraph exploration tasks.

Another shortcoming of original approach is related to the lack of support for
comparison of several hypergraphs. We should thus extend the previous implemen-
tation accordingly and collect evidence about the usability of hypergraph compari-
son functionality for the new version of Onion.

Furthermore, we do not know the precise boundary evidence of the Onion ap-
proach scalability concerning computational performance and usability, such as the
maximum number of nodes and edges that Onion can represent without running
into issues perceived by the users. Our analysis and evaluation will expose all the
problems mentioned above.

In order to find answers to the respective research questions, we will implement
an entirely new version of the Onion tool as a Web application. We expect that
we will be able to answer the research questions after the study and that we will
be able to provide evidence to prove the advantages and identifying the remaining
shortcomings of the Onion approach.

1.4 Research Questions, Objectives, and Contributions

Our project investigates the properties of our new Onion hypergraph approach im-
plementation compared with the old, original version of the Onion tool with regard
to data representation and interaction aspects. To attain our research purpose, we
define three research questions and related objectives presented below.

With this thesis project, we intend to address the research questions specified in
Table 1.1, each of which is further discussed below.

Table 1.1: Thesis project research questions.
RQ1 Does the edge bundling approach implemented in the new version of Onion

for binary edges facilitate hypergraph exploration?
RQ2 Can the interactive visualization approach implemented in the new version

of Onion support the comparison of several hypergraphs effectively and
efficiently?

RQ3 How does the interactive visualization approach implemented in the new
version of Onion scale to larger hypergraphs with regard to computational
performance and usability?

5



An edge (or a link) is an essential visual primitive mark for representing rela-
tional data in information visualization. Edges provide a visual encoding of rela-
tions between nodes in graph/network data and other scenarios (for example, high-
lighting relations between several similar or connected items in a scatter plot). How-
ever, visualizations frequently suffer from edge clutter issues when numbers of vis-
ible data items become large, as a mass of edges can overwhelm the performance,
and hide underlying patterns [20]. Edge bundling has appeared as an essential tech-
nique for decreasing visual clutter in visualizations. With RQ1, we want to explore
if edge bundling can improve the performance of the binary hyperedges (i.e., edges
connecting only a pair of nodes) in Onion with regard to representation and explo-
ration of hypergraph data.

With RQ2, we argue that comparison of several hypergraphs is an independent
and important issue that should be addressed in our project. Data analysis often
involves comparison of complex objects. According to the research of Gleicher et
al. [26], better support for such comparisons helps with the increasing data amounts
and complexity of data analysis, and it is thus sought after in interactive visual
approaches. How to represent several hypergraphs for comparison purposes, how to
highlight their similarities and differences for the user, and similar non-trivial design
issues and their outcomes must be investigated in order to address this question.
The aspects of effectiveness and efficiency mentioned in this question are related
to the problems of usability and evaluation in visualization and human-computer
interaction fields; effectiveness is associated with the accuracy and completeness of
the solution supported by an interactive visualization approach (e.g., whether the
users are able to solve their tasks with low error rates), while efficiency refers to the
resources necessary to achieve the users’ goals (e.g., whether the users are able to
solve their tasks with low response times when using the interactive visualization
tool) [27].

With RQ3, we investigate the scalability of visualization of hypergraph data.
Visual scalability is the capability of visualization tools to display large datasets in
terms of the number or the dimensionality of particular data elements [28]. Further-
more, higher-resolution displays are becoming accessible to more users as display
technologies decrease in cost and software for the displays improves [29]. As we
explore these opportunities to improve the scalability of the Onion tool, we use
existing techniques to break both technical limitations (for instance, the issues of
memory consumption and ability of the implementation to render the updated visu-
alization and react on user interaction without critical delays) and usability limita-
tions (for instance, the issues of visual clutter and perception of a larger number of
nodes and edges).

We expect this thesis project to result in the contributions corresponding to the
objectives formulated in Table 1.2.
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Table 1.2: Thesis project objectives.
O1 Analyze the improvements of the new version of Onion with regard to

visual representation and interaction capabilities
O2 Collect and analyze evidence of the usability of edge bundling in the con-

text of hypergraph exploration tasks supported by the new version of Onion
O3 Collect and analyze evidence of the effectiveness and efficiency of a hy-

pergraph comparison technique supported by the new version of Onion
O4 Collect and analyze evidence of the scalability of the interactive visualiza-

tion approach implemented in the new version of Onion

As we mentioned before, our project is a further study of the Onion approach,
and we try to address the challenges and opportunities for improvements identified
in the original study of Kerren and Jusufi [12] mentioned in Section 1.1.4. The first
steps of this thesis project will be concerned with the analysis of the relevant prior
works, which will motivate the design and implementation efforts. By reflecting
on the outcomes of the implementation and validation stages, we will reach the
objective O1.

The research question RQ1 is concerned with finding a solution for edge bundling
that is not implemented in the previous approach implementation. The evidence
necessary for answering this question will be collected as part of the work on O1,
but also O2, more specifically, the questions and tasks involving edge bundling will
be included in a user study that will form an important part of the validation of this
work.

With our research question RQ2, we want to find an effective and efficient way
to support the comparison of several hypergraphs. By achieving O1 and O3 (which
means that the hypergraph comparison functionality will also be included in the
evaluation of the new implementation), we will be able to answer this question.

Finally, the research question RQ3 is related to the scalability of the visual
approach. According to the original study [12], it was assumed that the original
Onion approach would be able to scale up to hypergraphs with approximately 100
nodes and 150 hyperedges. By achieving O1 and O4 (with both the results of the
user study and the results of case studies with real-world data), we intend to collect
the sufficient evidence to address this assumption and answer the respective research
question.

1.5 Scope and Limitations

This thesis project focuses on design, implementation, and evaluation of an interac-
tive visual representation approach, and this work aims to solve the common prob-
lems of the hypergraph visual representation, such as the clutter, overlaps, or edge
crossings, in the scope of the proposed implementation. The implementation will
be evaluated through (1) case studies with real-world data and (2) a user study in-
volving participants who have experience and relative knowledge of information
visualization. However, to ensure that our study will not become a too broad topic
and out of control, we limit our hypergraph study area and only focus on undi-
rected/disordered hyperedges.

With regard to the implementation, we intend to use two different libraries, D3.js
and React, to implement our hypergraph visualization as a web-based tool. How-
ever, since these two libraries do not have a perfect compatibility with each other,
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there are some implementation limitations that will not be addressed within the
scope of this thesis project (these will be discussed in further detail in the respective
section).

Finally, it should be mentioned that this thesis project does not focus on longi-
tudinal studies of the Onion tool application beyond the scope of the case studies
presented in this report.

1.6 Target Groups

As with most productive mathematical theories, the theory of hypergraphs has been
widely used in various fields. Hypergraphs model many practical problems in many
different sciences such as psychology, genetics, and various human activities [30].
Hypergraphs have an enormous potential capability as a tool to resolve optimization
problems such as minimization of logical functions [31] or partitioning of a discrete
system [32].

Our study might interest researchers who study hypergraph data analysis. Fur-
thermore, researchers in information visualization and visual analytics may find the
design concepts or results discussed in this report useful for their own work. One
example is the ISOVIS group, which has initiated this thesis topic, motivated by the
first version of the Onion tool. Other information visualization experts and students,
who want to analyze their experimental data using the Onion tool or the evidence
about the effectiveness and efficiency of Onion compared with their approaches,
might also be interested in the results of this work.

1.7 Report Structure

The following Section 2 focuses on the methodology of this work: there, we define
the problems we will solve and the solution methods we intend to use. In order
to study the existing approaches and ideas applicable to our efforts, we conduct
an analysis of the related work in Section 3. Afterwards, we dive into the issues
of design and implementation of our visualization approach in Section 4. There,
we discuss the main design ideas for our Onion tool. Then we will describe the
technologies and design concepts we used behind the Onion tool in detail. This
section will also proceed with a detailed discussion of the resulting implementation.
Next, we conduct the evaluation of our approach in Section 5. First of all, we apply
the tool to real-world data sets and discuss the outcomes of the respective case
studies. Then we discuss a user study conducted with our approach; afterwards, we
look at the collected opinions from our survey, find out the better potential methods
related to our visualization, and discuss additional aspects of the behavior of our
implementation. After the analysis is finished, in the final Section 6, we summarize
our evidence to answer the research questions we defined for this thesis project. We
discuss if our study could meet the research questions and mention other learning
directions that we can select to continue working on this topic.
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2 Method

To build up an integrated study process to solve our problems, defined in Sec-
tion 1.4, we follow a structured methodology explained in this section. The study
method includes four steps: Literature Review, Model Implementation, Evaluation
of the Implementation, and Results Analysis.

2.1 Scientific Approach

The approach taken in this work follows the overall process of designing and val-
idating novel information visualization techniques, as discussed by Munzner [33],
with a focus on collecting empirical evidence about the properties of the imple-
mented approach via evaluation, as discussed by Purchase [34] or Elmqvist and
Yi [35], for instance. The research methods used in this project thus include the
analysis of related work, the analysis of requirements and design alternatives, case
studies, user-based evaluation, and critical discussion. With regard to the analysis
of the collected empirical data, we mainly focus on qualitative methods.

2.2 Method Description

In this subsection, we discuss the main steps of our approach in detail. Based on the
research questions and objectives mentioned in Section 1.4, we design the method-
ology for our study. Figure 2.1 shows the interconnection of the methodological
steps and the objectives from each step.

Figure 2.1: An overview of the methodological steps and outcomes planned for this
thesis project.

2.2.1 Literature Review

To answer the research questions for this project, we need to have enough knowl-
edge about building an effective and efficient hypergraph visualization tool, thus we
start with an analysis of related work. The literature study includes deciding on the
sources of information, retrieving and studying the respective scientific and techni-
cal articles, and discussing the corresponding methods and techniques. Please note
that we do not pursue a rigorous systematic literature review [36] process here,
but rather focus on the literature that is relevant for our research questions and
objectives. We look for the entry point based on the following four points: visu-
alization interaction, visual evaluation, visual analysis of hypergraphs, and avail-
able visualization implementation technologies. Thus we start our inquiry by using
the databases of the LNU library to search for different types of references from
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reputable sources, using the respective keywords such as “hypergraph visualiza-
tion”. Furthermore, we inquire information about methods and algorithms for edge
bundling, hypergraph comparison, and visual interaction, using the respective key-
words. Besides searching for such publications directly, we also consider following
relevant references from the found publications (similar to the “snowballing” ap-
proach [36]), including the original study by Kerren and Jusufi [12]. Collection of
knowledge from the literature review will be part of direct work on O1, as it will
affect the design choices for the implementation (the other objectives and research
questions will be affected indirectly).

2.2.2 Model Design and Implementation

Here, we apply the existing methods to our hypergraph visualization model based
on the knowledge obtained from the literature review. Following the Onion tool
design of Kerren and Jusufi [12], we will build an entirely new web-based Onion
tool using JavaScript. New algorithms and visual design ideas may be required
during the development, while keeping the research questions and objectives in
mind. Moreover, finding the solution will be discussed with the supervisors and
probably with other specialists from the field. This part of the project work will
indirectly contribute to the objectives.

2.2.3 Evaluation of the Implementation

Evaluation of the implemented tool is a necessary process for the information vi-
sualization project during our hypergraph visualization model development. More-
over, collecting evidence for O2, O3, and O4 in the evaluation section is essential
for validating our hypotheses. As motivated by the existing work on evaluating visu-
alization approaches [35,37,38] and discussed in the respective part of the literature
review, we plan to use several validation approaches. First, we apply our implemen-
tation to real-world data to test its feasibility and support for arriving at relevant
findings and insights, which will take the form of case studies. Then we conduct a
user study with multiple participants to test the usability of our approach for several
analytical tasks, with the subsequent analysis of effectiveness and efficiency [27].
We also collect user feedback necessary to answer several other research questions
as part of this step.

2.2.4 Results Analysis

As the outcome of the previous step, we will collect the empirical data as part of
the user study. While some of the results might be available in quantitative form,
we do not expect the number of participants to be sufficient for obtaining data sets
suitable for in-depth statistical analyses, thus, we will mainly focus on descriptive
analyses of the collected quantitative data, and otherwise, rely mainly on qualita-
tive methods. The feedback received from the users will also be analyzed using
qualitative methods. The analysis of evaluation results will help us finally achieve
the objectives O1–O4 and thus answer the research questions RQ1–RQ3. Further-
more, the outcomes of results and discussion will allow us to share key findings
and recommendations with the users, also and share our hypergraph visualization
model’s mechanism and good practice with other experts from the field.
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2.3 Reliability and Validity

Reliability and validity are the vital features that can make the reader consider our
project results convincing and definitive.

Reliability of the approach is related to the concerns of reproducibility (i.e., ob-
taining consistent computational results) and replicability (i.e., obtaining consistent
results of a complete study), as discussed by Fekete and Freire [39]. Regarding
the reproducibility in visualization information, the others who want to reproduce
our particular visualization results can quickly get a similar visual illustration using
our approach with the same data set and same parameters configurable via the user
interface, as most of the implementation aspects will rely either on deterministic
algorithms, or on stochastic algorithms with pre-defined random number generator
seeds, e.g., for edge bundling purposes [20]. However, regarding the case study
findings and user study results within the implementation evaluation stage, sev-
eral factors might cause the same method to create different output assessments.
To replicate the evaluation result as in this work, the examiners who attend the
implementation evaluation should have a related background and experience in in-
formation visualization. Furthermore, the examiners need to go through the same
implementation evaluation process with the same data set as this work. The details
of the implementation evaluation can be found in the the respective section.

When viewing the validity of this project, we ensure to analyze as many aspects
as possible regarding the evaluation of this work. To reduce problems with construct
validity, we assure having a concrete reference and comparison as our evidence to
support our theoretical assumptions.

In the context of information visualization, internal validity is associated with
the confidence that the outcomes of the study are affected by the controlled param-
eters and are not distorted by other confounding factors, as discussed by Elmqvist
and Yi [35]. Considering the internal validity, we explain the steps that produced a
particular result in the respective part of the report. Moreover, the previous study of
the Onion tool can also help us design the respective evaluation steps and avoid the
internal validity problems.

External validity is a relatively common problem in studies, which is related
to the degree with which the lab findings can be generalized to further data and
problems, for instance, for real-world applications [35].

To address this concern, we apply our approach to several real-world data sets
from various domains as part of the case studies; and furthermore, besides testing
the implementation ourselves as the users, we collect and analyze the feedback on
usability as part of the user study with several knowledgeable participants.

2.4 Ethical Considerations

First of all, we should note that the implemented visualization approach is data-
agnostic as long as the provided input files conform to the established GraphML [23]
format for hypergraph data, as discussed in the following sections; thus, this ap-
proach is not associated with any particular applications initiated by the users with
their own data sets.

While the current prototype implementation is implemented as a web-based
tool, it does not make use of any backend components or persistent data storage,
and thus no personal information of the respective users is collected or stored. The
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materials used for the case studies were also based on publicly available data from
external sources, as discussed in the respective sections.

With regard to the user study conducted as part of the validation of this project,
a procedure similar to the typical human-computer interaction study protocol [34]
was followed. The participants were informed that their involvement was voluntary
and could be stopped at any moment, and that only their feedback, responses to the
study tasks, and post-study questionnaire results would be used, with no personal
information recorded or used afterwards.
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3 Related Work

In this section, we discuss the important prior work relevant to the problem ad-
dressed in this thesis project. The related work includes literature on hypergraph
data structures (used for the data modelling for our work), existing representation
and interaction approaches in information visualization in general (establishing the
basis of our proposed approach), edge bundling techniques (as required for achiev-
ing one of the objectives of this project), and existing interactive visual analysis
approaches focusing on hypergraphs in particular (in order to allow us compare our
proposed approach to the existing solutions).

3.1 Hypergraphs

In the past few years, the emergence of larger and more complex data sets in var-
ious academic, industrial, and public settings has driven a new larger demand for
representation and analysis of more complex graph/network data structures than had
been employed previously.

In general, graphs are combinatorial models for representing relationships be-
tween particular objects. Hypergraphs provide a natural way that encodes relation-
ships between a arbitrary number of objects/entities in data, i.e., more than two
objects at a time could be part of the same relationship. Hypergraphs thus can be
related to and applied in scenarios involving sets as data structures, e.g., for repre-
senting membership of several objects in several sets simultaneously, while being
able to use the terminology and most of the methods from graph/network analysis.

Hypergraphs have been recognized as a viable and useful data model in several
application fields such as computer vision [40], bioinformatics [41], and informa-
tion retrieval [42].

As we mentioned in Section 1.1.1, hypergraphs generalize simple, ordinary
graphs by allowing edges to be incident to multiple objects, resulting in so-called
hyperedges. In this thesis project, we only discuss hypergraphs with undirected hy-
peredges. Undirected hypergraphs can help model such problems and data sources
as satisfiability problems [43] or databases [44]. Besides, undirected hypergraphs
have been widely used in machine learning tasks as the data model and classifier
regularization [45]. As a simple definition, simple undirected graphs can be viewed
as an exceptional case of hypergraphs, in which every hyperedge contains two nodes
only [41]. In mathematics, an undirected hypergraph H can be defined as a pair
(V,E), where V is a set of vertices, and E is a set of hyperedges between the ver-
tices; thus, each hyperedge is a set of vertices: E ⊆ ((u, v, . . . ) ∈ 2V ) [46].

As shown in Figure 3.1, the work by Klamt et al. [41] illustrates an excellent
example to explain the fundamental concepts of an undirected hypergraph by using
the protein-protein interaction networks.

There is a large amount of literature on hypergraph partitioning, which arises
from various practical problems, such as partitioning circuit netlists [47], categorial
clustering data [42], and image segmentation [48]. Besides, hypergraph learning
can be seen as passing information along with the hypergraph structure in analyz-
ing the structured data and solving node classification [49], link prediction [50],
and community detection [51] problems. Hypergraph learning models investigate
the high-order correspondence among data, which leads to a noble capability of
association modeling in practice.

13



Figure 3.1: An example to explain the fundamental concepts of an undirected hy-
pergraph by using the protein-protein interaction networks. Based on the work by
Klamt et al. [41].

3.2 Representation and Interaction in Information Visualization

As discussed in Section 1, information visualization focuses on interactive visual
representation of abstract data that can facilitate the users’ exploratory and analyt-
ical tasks [2]. The information visualization reference model is an example of a
reference model for dealing with visualization information, introduced in similar
forms by Chi [52] and Card et al. [2]. The reference model successfully modeled a
wide array of visualization applications and was functionally equivalent to the data
flow model used in existing graphics toolkits such as VTK [53]. The information vi-
sualization reference model defines three main stages: data tables, visual structures,
and views.

• Data tables: relations (cases by variables) + metadata

• Visual structures: spatial substrates (i.e., layout regions) + visual elements +
graphical properties

• Views: graphical parameters (scaling, zooming, clipping, etc.)

Furthermore, these particular components end up in an interactive representation
presented to the user, who can adjust all of them iteratively via various interactions.
As shown in Figure 3.2, initially, raw data with a specific idiosyncratic format is
loaded and then represented as structured data tables to generate the desired infor-
mation. Then data tables are manipulated and transformed into one or more visual
representations. The end-user conducts and interacts with the visual representation
in one or more views at the last step. One of the main benefits of the information
visualization reference model is that it explicitly represents interactions. Moreover,
it provides a general template for structuring visualization applications that separate
data and visual models to enable multiple visualizations of a data source, particular
visual models from displays to boost various visualization views, and use modular
controllers to handle user input flexibly and reusable fashion.

The particular purposes and possible interactions to be supported by a visual-
ization approach are typically established according to the specific user tasks, i.e.,
functional (and in some cases non-functional) requirements for the respective ap-
proaches. Multiple taxonomies or typologies of such user tasks exist in information
visualization and visual analytics literature. One of the classic taxonomies was in-
troduced by Shneiderman [24], who formulated the so-called visual information
seeking mantra: “Overview first, zoom and filter, then details-on-demand”. Shnei-
derman’s mantra is an influential organizing principle for the creation of visual-
ization systems [54]. It addresses several steps. Firstly, in the overview step, the
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Figure 3.2: The information visualization reference model. Based on the work by
Card et al. [2].

software system needs to interpret the entire data set and present it visually in a
suitable way, which brings a quick understanding to the users and provides context
to the next steps in the visualization. Secondly, zoom and filter are the interaction
techniques that allow the user focus on subsets of interest in the data. The user can
zoom into each attractive container in turn and filter extraneous data based on the
desired attributes. Finally, the details-on-demand technique gives the user control of
the data with further exploration. The most common implementation of details-on-
demand is a tooltip. The tooltip presents more details about a particular data point
as the user hovers the mouse pointer over the respective visual item. Furthermore, it
allows the user to peruse data and gather insight at their leisure dynamically, without
cluttering the main view.

As we mentioned in Section 1.1.3, scalability is an open problem with mul-
tiple facets in the study field of information visualization, including massive net-
works, huge multi-dimensional heterogeneous data sets, and complex data streams.
Besides, this issue also leads to the question of the perceptual scalability of vi-
sualizations. Hence, we apply the information visualization reference model and
Shneiderman’s mantra model for the Onion’s visualization interaction implementa-
tion regarding the above problems, as the design of the visual representation on its
own can be insufficient without proper support from interactions.

Based on the information visualization reference model, we first implement a
basic version of the Onion tool based on the data format and small-scale sample
raw data offered by the ISOVIS group. We also play a role as a user in iterative
testing of the information visualization reference model to find the answer of scal-
ability in larger hypergraphs regarding computational performance and usability in
the new implementation of Onion. Exporting the displayed graph in different image
formats and as a GraphML file is also possible if the user edited the graph itself. Be-
sides, Shneiderman’s mantra offers a standard principle of visualization interaction.
Moreover, it brings up the essential features that facilitate the analysis process.

3.3 Evaluation Approaches and Performance Measures for Information Vi-
sualization

Evaluation of a visualization technique is an important activity that can provide evi-
dence about the usability of a new technique, including such aspects as effectiveness
and efficiency [27], for instance. Performance and preference measures are widely
used in the assessment of visualization techniques [35, 37, 38].

The graphs, for instance, are often visualized as the node-link diagram, where
nodes are depicted as points and edges as line segments connecting the correspond-
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ing points. Multiple studies examine the readability of node-link diagrams. For in-
stance, the studies by Purchase [55] and Purchase et al. [56] examine how the draw-
ing aesthetics such as edge crossing and display of symmetries influence perfor-
mance for graph visualizations. Several studies conducted by Huang et al. [57–60]
focus on testing the optical network perception by using eye-tracking.

From the above studies, we understand that the performance depends on the par-
ticular graph layout. In terms of path searching tasks, the edges alongside the paths
of nodes affect drawing’s readability and trigger extra eye movements, and the edge
crossings create confusion during reading. Furthermore, these studies performed
several practical tests on the human understanding of various aesthetics criteria.
The aesthetics considered were: bends, edge crossings, minimum angles, orthog-
onality, and symmetry. The experimental results confirmed that conditions relying
on symmetry took significantly less time than the minimum angle and orthogonal-
ity with regard to task completion time, suggesting that symmetry has a significant
positive effect than the other aesthetics when it is at a maximum value.

The proposed Onion tool uses a radial layout approach. A radial layout [6, 33]
makes the center of the circle model compactly displaying summary statistics or
indicating points of interest. We believe that a radial layout can effectively reduce
eye movements compared with a matrix arrangement. Besides, the symmetry stud-
ies inspire us in using the mirror image layout when two hypergraphs have been
imported. This becomes important as we consider support for comparison [26] of
several hypergraphs, which constitutes one of the objectives of this thesis project.
To collect the respective evidence as part of the evaluation, we will include tasks
related to comparison of several hypergraphs for our validation approaches, so that
we can investigate if the user can quickly find out the difference between two hy-
pergraphs with the mirror image layout.

Different types of evaluations have been proposed and applied to assess the
visualization approaches, ranging from controlled experiments to longitudinal stud-
ies [35, 37, 38]. Nevertheless, the choice of an evaluation strategy and design of
a particular evaluation study is a difficult and non-trivial issue. One example is
evaluating a visualization’s utility to measure accuracy and time in a study where
participants perform benchmark tasks. Such an approach can provide particular
quantitative measurements, but it would not be adequate for assessing visualiza-
tion’s more nuanced expressive power [61].

To understand the feasibility of a proposed interactive visual analysis approach
for real-world data, a case study can be conducted by the authors of the respec-
tive technique, sometimes in collaboration with domain experts [38]. However, one
could argue that a case study focuses more on the data-oriented outcomes and in-
sights rather than the perceived usability of the visualization itself. Thus, while
we intend to conduct case studies, we complement them with another user-centered
evaluation approach. Based on the work by Stasko [62] that argues for multi-faceted
evaluation of the value of visualization, ICE-T, a heuristic evaluation methodology,
has been proposed by Wall et al. [61]. The title of ICE-T is an abbreviation of four
concepts, Insight, Confidence, Essence, and Time. The purpose of these evaluation
criteria is the following [61]:

• Insight: A visualization’s ability to spur and discover insights or insightful
questions about the data.
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• Confidence: A visualization’s ability to generate confidence, knowledge, and
trust about the data, its domain, and context.

• Essence: A visualization’s ability to convey an overall essence or take away
the sense of the data.

• Time: A visualization’s ability to minimize the total time needed to answer a
wide variety of questions about the data.

ICE-T thus defines the particular criteria that multiple raters can understand and
apply with consistency. The approach itself uses a questionnaire form with ques-
tions/statements corresponding to the four concepts discussed above (for exam-
ple, “The visualization exposes individual data cases and their attributes”), which
the raters reply to using a 7-point Likert scale [63] (from “Strongly disagree” to
“Strongly agree”) or skip the question. The results can afterwards be quantified,
averaged over multiple raters, and aggregated over the respective criteria. ICE-T
thus provides an effective method to evaluate the visualization, it is practical to im-
plement with even a small number of study participants (which is another important
consideration for the scope of this thesis project), and it helps pinpoint some of the
shortages of the visualization. It is meaningful and able to evaluate research proto-
types of visualization applications. ICE-T has been successfully applied in a range
of visualization research studies recently, including the evaluation of multivariate
network visualization techniques by Nobre et al. [64]. Thus, we have chosen this
approach for conducting a user study of our interactive hypergraph visualization
approach as part of this project.

3.4 Edge Bundling Approaches

Node-link visualization approaches generally suffer from visual clutter induced by
many edge crossings and node-edge overlaps when the visualization contains an
enormous number of nodes and edges. This problem can easily overwhelm the
users and obscure the underlying data patterns. Moreover, it becomes even more
critical when nodes’ positions are fixed. Edge bundling techniques can help to
alleviate these issues by visually clustering edges along comparable routes. Many
edge-bundling methods are introduced in the literature, e.g., the survey by Zhou et
al. [20] discusses several groups of approaches, such as hierarchical edge bundling
and geometry-based edge bundling. Hierarchical edge bundling methods [65] are
used to visualize graphs that contain a hierarchical structure. Geometry-based edge
bundling algorithms [66] search for the plane for the configuration of each edge in
discretization grids of the visualization plane.

Compared with these approaches, force-directed edge bundling [67] does not
require the graph to contain a hierarchy architecture and no control mesh. On the
contrary, it follows a self-organizing approach to bundling in which edges are mod-
eled as flexible springs that can attract each other.

Most of the graphs are generally visualized as node-link diagrams, in which
dots depict the nodes, joined by lines or curves for the edges [67]. A straightfor-
ward way to allow groups of edges to be merged and drawn together in the graph
would provide a clean and disordered layout graph and efficiently handle the un-
cluttered problem when graphs comprise many nodes and edges [65]. One standard
bundling method is hierarchical edge bundling, as mentioned above. However, it is
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not trivial to create a suitable hierarchical edge bundling for a general graph. This
issue motivates us to use a self-organizing, force-directed approach. The behavior
of force-directed edge bundling is easy to understand because of the straightforward
physical model; the core algorithm can be implemented in a few lines of code and
can quickly be extended to accommodate additional layout models. As the Fig-
ure 3.3 shows, in each iteration step, each subdivision point updates its position
by moving a small distance toward the direction of the combined force Fpi. For a
subdivision point pi on edge P , the combined force Fpi exerted on this point is a
combination of the two neighboring spring forces Fs exerted by pi−1 and pi+1, and
the sum of all electrostatic forces Fe [67].

To solve the edge crossing problems mentioned in Section 1.2, we have thus
implemented a force-directed edge bundling approach for binary/ordinary edges in
our Onion implementation.

Figure 3.3: Two interacting edges P and Q considered for the force-directed edge
bundling approach. The spring forces Fs and the electrostatic force Fe that are
exerted on subdivision point p2 by p1, p3, and q2 are shown. Based on the work by
Holten et al. [67].

3.5 Interactive Analysis and Visualization Approaches for Hypergraphs

As mentioned in Section 1.1.4, the Onion tool is a novel radial visualization ap-
proach for undirected hypergraphs that has been developed by Prof. Dr. Kerren
and Dr. Jusufi in 2013 [12]. Many current network visualization tools handle hy-
pergraphs by extending standard graph layouts with vertices and edges. Cluttering,
overlapping, or numerous edge crossings are the typical issues encountered in the
hypergraph visualization research. However, standard graph layouts are hard to
render or scale with larger hypergraphs. Besides, there are still many problems
with standard hypergraph layouts stopping users from investigating the data with
a deeper perspective, such as data editing, filtering, comparison, and data statis-
tics. The Onion tool aimed to solve these issues for undirected hypergraphs. Our
approach discussed in this work extends the original Onion approach and aims to
address the shortcomings and opportunities for improvements identified previously.
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Besides the original Onion approach, we should also analyze other existing ap-
proaches for hypergraph visualization and analysis. One basic approach would be
to introduce a number of extra edges to replace a single hyperedge, which leads to
additional clutter and loss of context for the users. Drawing a hypergraph as a bi-
partite graph [1] adds nodes to describe hyperedges and extra edges to attach them
to the actual vertices [68], which also potentially increases visual complexity and
causes confusion for the users. Other strategies for representation of hypergraphs
can also be considered when thinking of each hyperedge as a set of nodes. Alsallakh
et al. [69] discuss the existing set visualization approaches in their survey. Some of
these techniques have been applied to hypergraph data, including Kelp Diagrams
by Dinkla et al. [70] or variations of node-link diagrams in EGAN by Paquette and
Tokuyasu [71]. However, those visual approaches exceed the available options for
visual encoding (e.g., unique color hues necessary for visual marks) after one or
two sets of hyperedges. Edge crossings and issues of clutter are also an issue here,
e.g., the force-based hypergraph drawing approach by Arafat and Bressan [72] rep-
resents hyperedges as enclosing curves around sets of respective nodes—when a
node belongs to several hyperedges, cluttering issues arise.

A different strategy would be to rely on a custom layout in order to represent
hypergraph/hyperedge data. Hyper-Matrix by Fischer et al. [73] and the Parallel
Aggregated Ordered Hypergraph (PAOH) approach by Valdivia et al. [68] use a lin-
ear matrix layout to avoid cluttering problem. They display elements like columns
and hyperedges as rows. Furthermore, both of these approaches make use of the
timeline concept, as they are dealing with dynamic or temporal hypergraph data.
Compared with the other hypergraph graphs, we should note that while such a ma-
trix representation has benefits regarding edge crossing issues, it can become prob-
lematic when considering restricted display space for larger hypergraphs. However,
the literature review showed that these novel temporal hypergraph visualization ap-
proaches aim to support a broad set of interaction features helping users explore the
hypergraph data. We shall use this observation as a guideline when designing and
implementing a new version of the Onion approach, as discussed in the following
section.
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4 Design and Implementation

This section discusses the Onion tool in this project, including the steps, tools, tech-
niques, and technologies we used. These design and implementation steps will be
necessary in order to proceed with finding out the evidence answering our research
questions. We divide this section into several parts. First, we provide a high-level
overview of our Onion tool design. Next, we address the issues related to the sup-
ported data formats and models, and the details of the implementation stack used.
Afterwards, we proceed with a detailed discussion of the functionality of our im-
plementation.

4.1 High-Level Design Concerns

This section will describe a general idea about the Onion approach implemented in
this project.

Figure 4.1: The main visual metaphor used for the Onion approach.

4.1.1 Main Visual Metaphor

As the Figure 4.1 shows, we layout the hypergraph on a circle to solve the clutter and
many edge crossings, which happens in primarily temporal hypergraph tools. The
metaphor used is of a common bulb onion vegetable, which is the source of the title
of our approach. A bulb onion is formed by several outspread layers, as we can see
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if we cut it. Our visualization approach follows the similar principle, with multiple
concentric layers laid out around the inner area, and all the layers being dependent
heavily on the core layer. The nodes of a hypergraph are represented with larger
dot marks located on the core layer. To represent their incidence to hyperedges,
additional endpoint marks are displayed for each node, following a radial layout
principle. Thus, there is an endpoint for each node–hyperedge combination present
in the hypergraph data. Ordinary edges (i.e., hyperedges with cardinality of 2) are
represented by links drawn in the inner (central) area instead. This design is the
same as the original Onion approach described by Kerren and Jusufi [12].

4.1.2 Intended Workflow and Functionality

To understand the process of using the Onion tool from the user’s perspective, we
draw a flow chart below that describes the respective workflow (see Figure 4.2). To
proceed with the improvements and collection of evidence regarding the Onion ap-
proach, we first need to build a similar implementation as the previous study, with
the requirements and improvements mentioned in Section 1.1.4 and Section 1.3,
respectively. Our plan is to implement a Web Onion version with a standard inter-
action, such as zooming, filtering, or recording the hypergraph elements, by using
React and D3.js. We assume that these libraries can offer a suitable web-based plat-
form while maintaining considerable performance, allowing us to eventually reach
the objectives O1 and O4 (see Section 1.4). To specify the input hypergraph file(s),
the new Onion tool only accepts the GraphML format [23] for the time being.

Figure 4.2: Interactive hypergraph exploration workflow with the Onion tool.

To address the previously identified challenges and suggestions [12], we have
added several improvements to this project implementation. First of all, we imple-
ment the related mode helping users to determine all hyperedges that share specific
nodes. Moreover, our plan is to implement two visual modes assisting the user
in gaining information from the hypergraph model: cardinality mode for hyper-
edges’ cardinality propose and sorting mode for efficient data interpretation. Fur-
thermore, our plan is to implement filtering and editing methods to allow users
analyze and change the topology of the hypergraph data according to their needs.
However, due to the communication limitation between React and D3.js libraries,
the nodes/hyperedges editing method is only supported with a single hypergraph
model currently. These improvements should help us fulfill the objective O1 and
will also facilitate the tool use when collecting further evidence.
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Regarding further improvements, we should note that finding a solution to the
hyperedge crossing is one of the Onion tool’s core design principles. Since the new
Onion approach implementation follows the same architecture as the original one,
hyperedges do not overlap with others in the outside layers. However, the issue of
edge crossing within the inner/central area—where the ordinary edges with cardi-
nality of 2 are drawn as arcs/links—should be addressed. Thus, in order to fulfill
the objective O2 and answer the research question RQ1, we use force-directed edge
bundling for the central area of the Onion representation.

Another important task that should be supported by the new Onion workflow
is comparison of two hypergraph files, as demonstrated in Figure 4.2. In order to
reach the objective O3 and answer RQ2, we implement a visual comparison mode
for our approach inspired by a mirror image metaphor.

Moreover, as we mentioned in Section 1.1.3, scalability is a generally open
problem within information visualization, and the scalability of Onion is also in
question, as discussed previously. To show further details of a visualization to the
user in limited screen space, we want the details of the hypergraph to be hidden
when the user does not need them. To achieve the above demand, we position the
control panel in a navigation drawer, which will only be displayed on demand on the
left side of the screen. In addition, with the single hypergraph model, the editing
functionality of the Onion tool is displayed by pressing a floating button. These
improvements should help us reach O4 and finally answer RQ3.

4.2 Data Model

Similar to other hypergraph tools, the Onion approach deals with graph/network
data that describes relations between entities. Motivated by the original implemen-
tation [12], we use GraphML [23], an XML format for graph structures. GraphML
is a format that widely accepts and suits particular data in graph drawing, editing,
and storage. Additionally, it is simple to parse and understand for both humans and
computers. Users can also extend the format in a well-defined way to represent
additional data, while the data stored in GraphML can be easily identified and ex-
tracted by various visualization systems [23]. One of the principles of GraphML
is to separate various layers of information conceptually (see Figure 4.3), such as
graph structure, application data, topology, geometry, or graphics [23].

A hyperedge in the hypergraph model can connect any number of vertices [74].
A valid GraphML file that can be used to represent such data comprises at least one
of the <node> elements (see an example in Figure 4.4). Furthermore, the <hyper-
edge> element contains any number of <endpoint> elements, which, in turn, refer
to unique <node> elements. Hyperedges are the generalization of edges, and ordi-
nary edges could hence be represented as hyperedges [23]. As Figure 4.4 shows,
when considering two different <hypergraph> elements, the parser can immedi-
ately distinguish between them based on the incident endpoints/nodes. Besides, to
allow more information for the parser to analyze, all elements in the data can use
the XML attribute description to interpret the elements’ details of the hypergraph,
such as node or edge labels. The data used with the original Onion implementation
is also provided by the ISOVIS group in GraphML format.
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Figure 4.3: The design of the GraphML format. The basic graph model of GraphML
is labeled mixed multigraphs with optional node ports, hyperedges, and nesting.
Graph drawing information is planned to be divided into topological and geometric,
with a graphics layer on top. Like any other associated data, it will be encapsulated
in a unique tag. Based on the work by Brandes et al. [23].

Figure 4.4: Example hypergraph in the GraphML format. The shaded area in the
drawing represents a hyperedge with three vertices: v1, v2, and v4.
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4.3 Implementation Stack

React The Internet (World Wide Web) has become an integral part of society, and
the web has evolved from a theoretical concept to a daily part of human life [75].
When a growing technology such as the Web is first introduced, Web development
is driven by businesses demanding to build Web-based applications stable and ef-
ficiently. React is born for the above request. React was created with a single fo-
cus: to develop components for Web application frontends. According to the 2019
StackOverflow survey 1, React had a high level of popularity among the developers
compared with most other Web development libraries. In other words, React is a
mature and well-known technology that has good support from the framework de-
velopers and the user communities. It can save time for us to develop some essential
functions but only focus on the Onion tool designing. React’s API is straightfor-
ward to learn. Furthermore, React is being developed by Facebook and has further
widespread community support. Considering that React is the one we have the
most practical experience for Web development and contains all the tools we need
to implement a Web-based tool for this experiment, we prefer it over other Web
development libraries.

D3.js In the 21st century, human society is drowning in data, but starved of ade-
quate tools for extracting essential information [76]. Because of the excellent hu-
man visual neural system, people rely on their sight more than anything else [77].
That is also why presenting data in a diagram can be more effective than in plain
numbers.To make raw data easily analyzed, we need a framework to transform the
data into visualization, and D3.js comes into play. D3.js is a JavaScript library
for visualizing data using web standards. D3.js efficiently manipulates documents
based on data. And it avoids exclusive representation and affords remarkable ver-
satility exposing the full capabilities such as HTML, SVG, and CSS.

Based on our experience and the above considerations, we use React for our
Web development and D3.js for this project’s visualization implementation.

4.4 Visualization Design and Implementation

Following Figure 4.5, this subsection describes the details of the newly imple-
mented version of the Onion approach. The central part of the user interface is
dedicated to the Onion hypergraph representation. The panel on the left provides
controls for various interactions and representation parameters. The import and ex-
port functions are available via the controls located on the top right. Furthermore,
there is a floating button on the bottom right, which the user can click in order to
view detailed data tables. The users can edit the underlying hypergraph data and fil-
ter various visible elements of the Onion view using these interactive options. The
particular views and controls will be described in detail in the following subsections.

4.4.1 Data Import

As discussed above, our implementation allows data import in GraphML file. While
the usual scenario is for loading a single file, the user can also load two GraphML

1URL: https://insights.stackoverflow.com/survey/2019 (accessed: August
22, 2021)
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Figure 4.5: A screenshot of the web-based Onion tool. The new Onion tool with a
single hypergraph loaded. The main view is located in the center and the right part
of the interface, and a panel with various controls is located on the left. Further con-
trols are available on the top right and bottom right. According to the current view
and the legend, we know that the file’s name of the hypergraph is "ggg.graphml",
the number of nodes is 19, and the number of hyperedges is 20.

files to the Onion tool by pressing the import button displayed in Figure 4.6. To
address the research question RQ2, we have implemented the comparison function-
ality in the Onion tool, and this is the reason why importing of two GraphML files
simultaneously is supported.

Figure 4.6: The file import interface.

4.4.2 Main Hypergraph Representation

Onion representation view is the core part of the Onion tool. It transforms the
GraphML into a radial layout visualization. As displayed in Figure 4.7, the hy-
pergraph nodes are equally placed on a virtual circle as the yellow dots. In this
implementation, the position of the nodes is random. As discussed in Section 4.1.1,
only the hyperedges with a cardinality of at least three are represented as blue arcs
surrounding the circle, and the inner area displays the binary/ordinary hyperedges
as the purple curves that connect pairs of nodes. Considering the display space ef-
ficiency, we believe presenting the hyperedges in which the cardinality is less than
two spawns unnecessary space occupied. Because of the above reason, we decide
not to illustrate the hyperedges with a cardinality lower than two (however, the user
has access to such data via the data editing dialog discussed below). The green dots
of the blue arcs represent the endpoints of the hyperedge and indicate which nodes
are part of the hyperedge. Hence, the user can follow the green dots towards the
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core layer to identify the hyperedge nodes (i.e., the yellow dots). Besides, we add
the dotted lines to assist the user in locating the nodes and the endpoints.

Figure 4.7: The main view of the new Onion tool with a single hypergraph loaded.
According to the current view and the legend, we know that the file’s name of the
hypergraph is "deneme1.graphml", the number of nodes is 10, and the number of
hyperedges is 27.

In the bottom left corner of the main view, a legend shows the basic details of
the current hypergraph model. The legend displays the file name of the hypergraph
and the number of the hypergraph’s nodes and hyperedges. Besides, selecting and
highlight are the primary functions to distinguish the item which the user selected.
The element itself is marked with translucence to distinguish it from the others
by mouse hovering. The user can highlight the arcs, nodes, and endpoints in red
by pressing the left mouse button. Moreover, the user can drag the mouse during
the highlight mode for selecting multiple objects. To remove the highlight of the
elements, the user needs to press the left mouse button again to cancel the highlight.
The Onion diagram allows dragging and zooming events to present more details of
the hypergraph to the user. If the user clicks and drags on the hypergraph model, it
moves.

4.4.3 Tooltip

Tooltip is a graphical interface element that hovers over a screen object, and a text
box displays the element’s information nearby the element. Moreover, it is dis-
played as long as the mouse pointer is hovering the element. In the Onion tool,
when the tooltip function is activated, the tooltips display a text label to identify
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the object. Except for some same features, such as file name and type, the tooltip
shows different features depending on the objects. The explanation of each feature
is following;

• File Name: The name of the file where the element belongs with.

• Type: The type of the element—a node, hyperedge, or endpoint.

• Difference: It is a unique feature only used when two hypergraphs were com-
paring with each other. The default value is false, and when two hypergraphs
have a similar element, the value of the difference turns true.

• Description: A feature that provides additional information about the element
to the user, if available in the source GraphML file, for instance.

• ID: A unique symbol of node and hyperedge to identify the element. The
system assigns the ID to the hyperedge automatically. Besides, the node uses
its own ID.

• Cardinality: A unique feature uses in the hyperedges. It provides a clear view
for the user with the number of nodes connections the hyperedge has.

• Name: A unique feature uses in the endpoints. The name of the endpoint
depends on which node is the endpoint projecting.

• Path: A unique auxiliary feature of the hyperedges that presents which nodes
the hyperedge is connecting.

4.4.4 Dual Hypergraph Representation

To answer the research question RQ2 of this project, we have implemented a func-
tion of the Onion tool to import two hypergraphs and compare them with each other.
Inspired by the mirror image metaphor, following Figure 4.8, two hypergraphs are
laid out as reflections of each other, but are reversed in the direction perpendicular to
the mirror surface. When two hypergraphs are placed as a mirror image, we believe
that the user can efficiently detect variations among two hypergraph models. This
approach can be compared to a variation of the juxtaposition strategy for supporting
comparison, as discussed by Gleicher et al. [26], albeit requiring a customization of
the layout in contrast to naïve juxtaposition. Besides, we have implemented the
comparison visual mode to assist the user in data analyzing, as mentioned in Sec-
tion 4.4.8. However, we have faced a rather severe issue: we cannot find an adequate
solution to identify and track an element after two hypergraphs are imported. Since
we cannot accurately distinguish the element which the user selects, we disable the
data editing function when two hypergraphs are loaded simultaneously.

4.4.5 Control Panel

If the Onion diagram is the skin of the Onion tool (as it is the main view that the
user is presented with immediately), then the control panel is the skeleton of this
tool. The control panel controls the encoding and behavior of the interactive Onion
visualization. It has different custom options to interact with the view and help the
user discover the structure of the input hypergraph and analyze it further. A number

27



Figure 4.8: The main view of the new Onion tool with two hypergraphs loaded. Ac-
cording to the current view and the legend, we know that "custom2.graphml" has 22
nodes and 17 hyperedges, and "a.graph.graphml" has 19 nodes and 14 hyperedges.

of standard techniques are offered as in the previous Onion tool version, such as
changing a set of layout parameters (distance between nodes and arcs, the thickness
of arcs, or the radius of the nodes). Of course, it is also possible to hide, display,
disable, and highlight the hypergraph’s elements when the user wants to concentrate
on particular ones. In the following, we concisely review the essential features of
the control panel that facilitate the analysis process.

Firstly, since we add force-directed edge bundling to our Onion approach, we
have Edge Compatibility Score and Node-Link Step Size sliders that providing the
parameters of the force-directed edge bundling method to organize the adjacent
relations between edges to increase/decrease the clutter and providing a different
observed aspect in complex networks. We will provide more details in Section 4.4.7.

Additionally, we implement different visual modes for our visual project: sort-
ing mode, cardinality mode, comparison mode, and related mode are the visual
modes for aiding the user to export further information of the hypergraph model.
Besides, the comparison mode only can be used when two hypergraphs are im-
ported. Regrading the visual modes, we will present them in Section 4.4.8 with
further details.
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Figure 4.9: The user can change the Onion visualization by manipulating the pa-
rameters of the control panel. We provide more details in Section 4.4.5.
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4.4.6 Data Editing

To complete the requirements of the previous Onion future study mentioned in Sec-
tion 1.1.4, we develop the data editing functionality to support creation, removal,
and filtering/hiding the hypergraph elements for our Onion tool.

Figure 4.10: The nodes table shows the IDs and the visible status of the nodes. Each
node has its unique ID. If the visibility of the node is true, it means it is currently
displayed in the main view, and vice versa.

As Figure 4.10 shows, the user opens the nodes table by clicking the floating
button on the right corner (the design for the hyperedges table is similar in this
regard). We can see it has two columns (ID and Visibility) and a checkbox control
element. There is a text input component on the top of the table. The user can
add a new node to the hypergraph by entering the ID of the node. However, to
ensure the uniqueness of the elements, the nodes are not allowed to have the same
ID. Following Figure 4.11, the user can select the nodes by checkbox, and then
the action selections will show on the top of the nodes table to remove, show, or
hide the nodes. When the element has been hidden, the value of the elements’
visibility feature will turn to "false", but the layout of the Onion diagram will not
be affected. It is because we believe changing the layout of the Onion diagram may
create confusion for the user. For removing the element, the user can press the bin
icon to remove the nodes of the hypergraph.

As Figure 4.12 presents, the hyperedges table has four columns: ID, Cardinality,
Visibility, and Path. Compared with the nodes table, the ID of the hyperedge is
assigned by the system automatically. Besides, the hyperedges table follows a more
complex scenario than the nodes table with regard to editing. To elaborate on this,
the scenarios of the hyperedges data editing are the following:

• Creating a new hyperedge with existing nodes

• Adding nodes to existing hyperedges

30



Figure 4.11: Selection example. Here, three nodes’ n18, n19, and n20 backgrounds
turn red and have been selected in the nodes table.

To support the above scenarios, we add a select component for listing and select-
ing all the existing nodes (see Figure 4.13). When creating a new hyperedge, we
can select the node names in the select component and press the cross icon button.
Moreover, we select the hyperedges after selecting the nodes in the select compo-
nent to add new nodes into the existing hyperedges (see Figure 4.14).

Figure 4.12: Compared with the nodes’ table, the hyperedges table shows more
features. The system assigns IDs of the hypergraphs automatically. Cardinality
provides the number of nodes connections the hyperedge has. Furthermore, the
path shows the IDs of the nodes which are connected by the hyperedge.
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Figure 4.13: Selection example. Here, two hyperedges h0 and h1 have been selected
in the hyperedges table.

Figure 4.14: Data editing example. Here, the node n11 has been selected and is
currently being added to the existing hyperedges h1 and h2.

4.4.7 Edge Bundling

Edge bundling is a method that combines geometrically close edges into bundles,
which use much less screen space [78]. To find a solution to answer our research
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Figure 4.15: Under the same hypergraph data, the results of force-directed edge
bundling are different with various paraments. When the compatibility score = 0.1
and step size is 0.5, the hyperedges are bundled together and hard to distinguish.

question RQ1, we apply edge bundling method inside the inner area of the main
Onion view. There are many options available for us with regard to edge bundling
approaches, as we discussed in Section 3.4. One of the standard methods is the
hierarchical edge bundling. Hierarchical edge bundling is a flexible and generic
method used in conjunction with existing tree visualization techniques [65]. How-
ever, in this project, we only consider undirected/unordered hyperedges. One of the
undirected hyperedge characteristics is that each hyperedge does not have a strong
correlation with the other. Moreover, it is not evident which hierarchical clustering
scheme or spanning-tree generation method would suit such a task. To apply the
hierarchical edge bundling to our project, we need to pay a high price in inventing
an algorithm to alter the hypergraph structure, so a different solution is required.

As we mentioned in Section 3.4, force-directed edge bundling behavior is easy
to understand because of the straightforward physics model. Force-directed edge
bundling uses an intuitive, self-organizing approach to bundling by modeling edges
as flexible springs that can attract each other without generating a control mesh or a
hierarchy data structure [67]. Thus, we follow this approach in our implementation.

Force-directed edge bundling has two parameters that essentially harmonize the
algorithm to produce functional diagrams for graphs. Compatibility score considers
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the compatibility between the parting edges. The range of compatibility scores
should be between 0 and 1. The most crucial argument of force-directed edge
bundling is the step size, which is considered when moving the subdivision points
after forces have been computed. The step size calculation method is also affected
by the scale of the graph, i.e., the number of edges and nodes contained. A low
step size value will produce node-link-like graphs, while too high values will over-
distort edges. An example in Figure 4.15 demonstrates the results with different
parameters values.

4.4.8 Visual Modes

Visual modes (see Figure 4.16) provide further visual assistance to help the user
to explore the data. There are four visual modes in the Onion tool: sorting mode,
cardinality mode, related mode, and comparison mode.

Figure 4.16: The supported visual modes of the new Onion tool. The Onion tool
does not support the comparison mode when two hypergraphs are imported.

Sorting mode arranges the hyperedges with a cardinality that is larger than two
from low to high. It means that an hyperedge with low cardinality is placed closer
to the inner layer (see Figure 4.17). On the other hand, a hyperedge with high
cardinality is laid out closer to the outer layer (Figure 4.18).

Displayed in Figure 4.19, cardinality mode provides a different aspect for the
user to observe the hypergraph. Cardinality mode divides the hyperedge into six
groups based on the hyperedges’ cardinality and gives each group a color. The user
can discover hyperedges’ cardinality with an approximate number by the legend
displayed in the left top corner of the main view panel.

To address the future work suggestions of the previous study of Onion, we have
implemented the related mode to help the user quickly determine all hyperedges that
share a specific node (or set of nodes). The related hyperedges/nodes are highlighted
only if a specific hyperedge or node is hovered over by the mouse pointer. Both
nodes and hyperedges can be alternatively selected using the lists in the control
panel, as shown in Figure 4.20.

Our Onion tool can import two hypergraphs. For helping the user investigate
more details of the data, we have implemented the comparison mode. From Fig-
ure 4.21, when the comparison mode turns on, the system will compare the element
IDs between two hypergraphs to find the elements they match. If such elements are
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detected, the value of "difference" is equal to true and the color of the respective
visual elements is changed to green. Otherwise, the value of "difference" is set to
false and the color of visual elements is set to brown. Besides, the elements with
duplicate IDs become translucent when the mouse pointer is hovering over them.

Figure 4.17: A hypergraph before the sorting mode is turned on. All hyperedges
with a cardinality of at least three are placed randomly.

Figure 4.18: A hypergraph after the sorting mode is turned on. All hyperedges with
a cardinality of at least three are placed from lower to higher layer according to the
cardinality.
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Figure 4.19: The user can divide the hyperedges into six groups based on the car-
dinality value when the cardinality mode is turned on.

4.4.9 Data Export

As well as the previous Onion approach, our implementation provides a method for
the user to save the data in different formats, namely, PNG, JPEG, or GraphML.
However, we cannot provide a solution to transform two hypergraphs into one
GraphML file without significantly changing the focus and scope of this project,
and thus our approach does not support saving the data as GraphML when two
hypergraphs are imported.
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Figure 4.20: The related hyperedges/nodes are highlighted when a specific hyper-
edge or node is hovered upon by the mouse pointer while the related mode is turned
on.
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Figure 4.21: The comparison mode helps the user detect the difference between two
hypergraphs in a quick way. The elements which have identical IDs change opacity
to translucent when the mouse pointer is hovering over them.
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5 Evaluation

Evaluation is an important part of the design and implementation process in human-
computer interaction [34] and visualization [35,37,38], which helps the designers to
validate their proposed solutions and estimate its usability and further characteris-
tics. This project will use several methods to determine the usability of the proposed
web-based Onion approach, such as (1) case studies that involve real-world data to
handle several hypergraphs that share some of the nodes and edges, and (2) a user
study that mainly focuses on qualitative user feedback and questionnaires that aim to
analyze how the conceived visualization fits the requirements. Then we concentrate
on analyzing the results. Afterwards, we discuss the scalability of the implementa-
tion in several aspects. Finally, we discuss the pros and cons of our implementation
in comparison with other related approaches.

5.1 Case Studies

A case study is a research methodology that is commonly seen in information vi-
sualization investigation [37, 38]. It can be described in this context as a data anal-
ysis study involving a visualization approach in which the researchers (potentially
together with experts from other disciplines or domains) examine real-world data
in-depth using the respective interactive visualization technique or tool.

This part of the project investigates our Onion approach using several actual
data sets collected from the real world and provided by the ISOVIS group. Fol-
lowing our research targets mentioned in Section 1.4, we conduct two case studies
with different real-world data sets. In the first study, we concentrate on the inter-
sections of the bus routes in Växjö, Sweden in 2012 and 2020. Then, in the second
study, we investigate two hypergraphs based on the publication data fetched from
the Linnaeus University bibliographical database DiVA. All of these data sets were
provided by the supervisor of this project, Dr. Kostiantyn Kucher.

5.1.1 Case Study: Bus Route Intersections in Växjö, Sweden in 2012 and 2020

The data is based on the bus route maps for Växjö, Sweden as provided by Län-
strafiken Kronoberg in 20122 and 20203. It uses the information about each bus
line’s stops as nodes and intersections between the lines (i.e., shared bus stops) as
(hyper-)edges. The data has been transformed into GraphML and is analyzed in the
Onion tool.

We firstly take a look at 2012, as demonstrated in Figure 5.1. This data set
contains 8 nodes and 39 hyperedges. Following the sorting mode, according to the
endpoints number, we quickly find out that Lines 2 and 6 have the largest number
of transfer stations in this data set. This is an expected outcome, since these two bus
lines in Växjö are designed as almost exact mirror copies running in opposite direc-
tions; however, discovering this insight in Onion helps us verify that the tool parses
and represents the respective data faithfully. Next, the second most intersections
are concentrated on Lines 7 and 8 (which shared large parts of their routes with

2URL: http://assets.wm3.se/sites/16/media_files/175/2VFWkE5y4OV_
ROzKk6x2Hg/original_linjeschema_2012.pdf (accessed: August 20, 2021)

3URL: http://static.wm3.se/sites/268/media/466009_Linjekarta_V%
C3%A4xj%C3%B6stadstrafik_31_augusti2020_webb.pdf (accessed: August 20,
2021)
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Figure 5.1: Exploration of the 2012 Växjö bus routes data with the Onion tool.
According to the number of endpoints, we quickly find out that Lines 2 and 6 have
the largest number of transfer stations here.

other bus lines). Under the sorting mode, we can see that Lines 2, 6, and 8 share
six transfer stations. Besides, Lines 1, 5, and 7 have three shared transfer stations.
Then, with the cardinality mode (Figure 5.2), we notice that most lines have 3 to 4
shared transfer stations, and the Resecentrum station has the largest number of bus
lines passing through (this finding also makes sense, as Resecentrum was the main
hub of town and regional bus traffic as well as the train station in Växjö in 2012).

Next, we concentrate on the 2020 bus routes data set, as presented in Figure 5.3.
It includes 11 nodes and 39 hyperedges. Based on the layout of the Onion, we can
discover that Lines 2 and 6 are the main routes that connect most of the bus lines.
Lines 1, 3, and 5 have three overlapping bus stops. Besides, Lines 2, 6, and 8 also
have three shared bus stops. Line 15—which connects the town center with one
of the industrial areas—does not have a strong connection with other bus stations;
if people want to take Line 15, they can only go to Stortorget station. Using the
cardinality mode (Figure 5.4), we can find out that the Stortorget bus station has
the largest cardinality number compared with the other bus stops (i.e., hyperedges),
which is true, as that station has acted as the primary bus transfer hub as of 2020.

Finally, we import both the 2012 and 2020 bus route data sets to Onion and
investigate the difference under the comparison mode, as displayed in Figure 5.5.
With the help of comparison mode, we can quickly notice that the number of trans-
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Figure 5.2: Using the cardinality mode with the 2012 Växjö bus routes data. Here,
we can find out that most lines have 3 to 4 shared transfer stations, and the Rese-
centrum station has the largest number of passing bus lines.

fer stations has not changed, but three new bus lines (indicated with orange-colored
nodes) have emerged in the newer data set: Lines 9, 12, and 15. Besides, by the mir-
ror image layout assisting, we can confirm that the paths of Lines 2, 6, and 8 have
not changed (as represented with some of the green-colored hyperedges). Four of
the intersection stops of Line 7 have been abolished — this finding is related to the
fact that historically the routes of Lines 3 and 7 went through a major revision in
2013.
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Figure 5.3: Exploration of the 2020 Växjö bus routes data with the Onion tool.
According to the number of endpoints, we quickly find out that Lines 2 and 6 have
the largest number of transfer stations in this data, similar to the older data set.

While we have been able to investigate these real-world data sets and confirm
a number of our expectations (based on the respective real-world knowledge), we
have also faced several challenges, primarily during the Onion central area inves-
tigation. The first problem is edge bundling. Since some of the hyperedges are
merged, it is hard to recognize the connection between the nodes intuitively. Sec-
ondly, some of the nodes overlay the middle hyperedges. Finally, while we were
able to associate the nodes and hyperedges with the respective labels and descrip-
tions as part of the interactive exploration process, the labels are missing from the
figures provided in this case study—the alternative would involve further severe
cluttering, though.
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Figure 5.4: Using the cardinality mode with the 2020 Växjö bus routes data. Here,
the Stortorget station has the largest cardinality number compared with other hy-
peredges, and thus we can identify that the Stortorget station is the primary transfer
bus station according to the respective year’s data.
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Figure 5.5: Comparison between Växjö bus routes for 2012 and 2020 using the
comparison mode in the Onion tool. In the 2020 data set, three new bus lines have
emerged Växjö compared to 2012 (denoted by orange nodes in the inner layer).
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5.1.2 Case Study: Departmental Publication Data for 2019 and 2020 from
DiVA

The data used for the user study is based on publication data fetched from the Lin-
naeus University bibliographical database DiVA4. It includes two data sets with
peer-reviewed publications authored by the Department of Computer Science and
Media Technology staff at LNU during 2019 and 2020, respectively. The data sets
were extracted from DiVA and converted to GraphML files. Each of these GraphML
files includes nodes representing the faculty members (using internal IDs, such as
“kokuaa” for “Kostiantyn Kucher”, when available) and hyperedges corresponding
to the publications co-authored by these faculty members through the respective
year. However, former LNU staff or collaborators from other departments or fac-
ulties within LNU are also included (due to the peculiarities of the data extraction
process). Thus, the two resulting files include a number of common nodes (same
staff members) and some hyperedges with the same endpoints (indicating collabo-
ration between the same groups of paper co-authors).

We start our analysis with the 2019 data set, which includes 62 nodes and 74
hyperedges, as demonstrated in Figure 5.6. When using both the sorting mode and
the cardinality mode, we get a good overview of the structure of the hypergraph as
well as the most prominent nodes and hyperedges. Compared to the previous case
study, we can also witness better outcomes of the edge bundling algorithm in the
central area, which allows us to quickly grasp the main two-node interactions with
less edge clutter (thus, we can surmise that the effectiveness of edge bundling in
our tool depends on the size of the hypergraph and the available central area space,
respectively). With regard to the data, we quickly find out the most frequent car-
dinality of the hyperedges is 2–4; however, some hyperedges involve 5 nodes (i.e.,
paper co-authors), and there is even a hyperedge with 6 nodes, which corresponds
to the 2019 publication by Alissandrakis et al. [79]. By using the related mode, we
can also notice the publications corresponding to a particular author, while hover-
ing over the respective node. By using Onion for this data set, we are also able to
focus not just on the number of publications of a particular author, but rather on the
co-authorship pattern, e.g., whether an author preferred to publish alone or with 1–2
collaborators, or a relatively large group of co-authors.

Next, we switch to the analysis of the 2020 data set, which is presented in Fig-
ure 5.7. It includes 62 nodes and 55 hyperedges, which are figures comparable to
the 2019 data, with a somewhat lower number of publications reported. Once again,
we make use of several interaction modes supported by Onion, including the sort-
ing, cardinality, and related modes. The overview of the data set is rather similar
to the previous year’s data, and we can find out that the hyperedge with the largest
cardinality in this case also connects 6 nodes. This hyperedge corresponds to the
publication by Backåberg et al. [80]—interestingly enough, the respective publica-
tion actually includes 7 co-authors, but one of them is an external collaborator with
no LNU affiliation, who is therefore not allocated a node in the extracted data set.

Finally, we load both data sets in Onion and activate the comparison mode, with
the results displayed in Figure 5.8. The first note to make is that the hypergraph
on the left appears to include a larger number of two-node edges in the central area
(which makes sense, given the larger overall number of (hyper-)edges in that data
set), however, the central views of both left and right hypergraphs are perceived

4URL: http://lnu.diva-portal.org/ (accessed: August 20, 2021)
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Figure 5.6: Exploration of the 2019 publications data set. The hypergraph includes
62 nodes and 74 hyperedges.

without severe edge cluttering issues due to the use of edge bundling. Given the na-
ture of the data, the next question to ask is “who are the authors (i.e., nodes) missing
in either data set?”. The color-coding used in the comparison mode facilitates us in
answering that question, and we are able to discover the authors who were either not
affiliated with the department or university, or did not publish during the respective
year. Despite various reasons and circumstances, a rather large part of the nodes
(i.e., authors) appears in both data sets, as indicated with green-colored nodes in
Figure 5.8. The final task that we could cover with the comparison mode for these
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Figure 5.7: Exploration of the 2020 publications data set. The hypergraph includes
62 nodes and 55 hyperedges.

data sets would be “which collaborations were active in both years, and vice versa,
which collaborations were only active (with regard to publications) in one of the two
years?”. In contrast to the previous question (related to the nodes only), only sev-
eral collaboration/co-authorship configurations remain present across both years,
including collaborations between (1) Kastrati and Kurti, (2) D’Angelo and Capor-
uscio, and (3) Hönel, Ericsson, Löwe, and Wingkvist. This is an interesting finding,
which is also rather unexpected, since researchers often work and publish together
in similar configurations over the course of several years.
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Figure 5.8: Comparison of two publication data sets in Onion. The total combined
number of the nodes in the data is 124, and the total number of the hyperedges is
129. It proves that the Onion tool can scale up to more than 124 nodes and 129
hyperedges.

The final remark about this case study is related to the fact that the combined
size of both data sets, as presented in the comparison mode view in Figure 5.8, is
124 nodes and 129 hyperedges. By being able to load these data sets, work with
them interactively, and make observations and findings, we can confirm that the
new Onion implementation is able to scale up—both with regard to the technical
performance and the visual design—at least to the hypergraphs of comparable sizes
and complexity.

5.2 Usability Study

In this subsection, we discuss the design and outcomes of a usability study con-
ducted with Onion. The study was designed to collect primarily qualitative feed-
back from several users about the usability of the new Onion implementation, while
asking them to complete several tasks and fill out several questionnaires afterwards.
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5.2.1 Study Design

According to the research of Stasko’s holistic set of metrics that assess the value of
visualization [62], a methodology to evaluate the visualization approach is provided,
literally called ICE-T [61]. ICE-T quotes the first letter from four value objectives.
They are Insight, Confidence, Essence, and Time.

To investigate and assess the Onion tool with regard to usability and quality
aspects, we apply the ICE-T methodology in our project. ICE-T is a heuristic-
based methodology and it employs a series of low-level, detailed questions to be
answered or benchmark tasks to determine the perceived value of the visualization
approaches [61]. In the ICE-T questionnaire, each question receives a 7-point Likert
scale score [63], and the aggregated average score of 4.0 indicates a neutral result
of the visualization approach. Furthermore, a higher score is considered a positive
result. Otherwise, a score lower than 4.0 means a shortcoming of the visualiza-
tion. According to the requirement of ICE-T, the user study of this project involves
six participants who have experience or knowledge about developing visualizations.
Besides, all participants of the user study are volunteers, which means they could
stop their participation and quit at any moment. Our users are three master students
and three PhD students who have completed a minimum of one course on data vi-
sualization. All of the user study sessions lasted around 30 minutes. They were
conducted online via Zoom, and they included 5 minutes long Onion tool introduc-
tion and 10–15 minutes operation tasks.

Figure 5.9: The user study workflow.

We have designed a user study procedure for this project as shown in Figure 5.9.
Initially, we ask the users of their knowledge of hypergraphs, and explain the respec-
tive concept, if necessary. Next, we demonstrate to users some primary functions of
the Onion tool via the small IMDB data set. The IMDB data set (Figure 5.10) is col-
lected from IMDB, a well-known online database of films and actors, and recorded
into GraphML files. It contains 21 actors as nodes and 16 related movies as hyper-
edges. Concretely, each node represents one actor and hyperedges corresponding to
the movie co-actors. The user study participants are free to ask any questions about
the data or the tool at this point.

After the operation illustration of the Onion tool, we get to the central part of
the user study—the user operation tasks. In order to engage the users in interaction
with the tool and analyze the user behavior, we determine the tasks for the same
case study data, 2012 and 2020 Växjö bus routes, as in Section 5.1.1, for the four
following questions:

• Task 1: Check if there is any intersection between Line 3 and Line 8, and if
there is any, name it and mention if any other lines cross at the same bus stop.
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Figure 5.10: The small movie data set fetched from IMDB. It contains 21 actors as
nodes and 16 related movies as hyperedges.

• Task 2: Find the bus stop(s) with the second largest number of bus lines
intersecting, and name the bus lines missing from that stop(s).

• Task 3: Name the bus lines that are present in one of the data sets, but missing
from another one.

• Task 4: Find the highest cardinality frequency in both data sets, i.e., the car-
dinality number that appears the most in the graphs.

Please note that while the same data set is used here as for the case study in Sec-
tion 5.1.1, the user study is independent of the case study with regard to its goals,
participants, procedure, and results. The motivation for choosing this particular
real-world data set was that we considered it to be potentially more interesting and
engaging for most participating users than academic publication/collaboration data,
for instance, or synthetic hypergraph data. However, other suitable hypergraph data
sets could be used for the user study instead.

For the first two tasks, the users need to focus on the single hypergraph of the
2012 Växjö bus routes. Task 1 carries out the usability of edge bundling in the
context of hypergraph exploration. Task 2 focuses on finding evidence about the
effectiveness and efficiency of a hypergraph comparison technique based on the
Onion approach. In this task, users must quickly discover the answer through dif-
ferent visual modes of the Onion tool, such as related mode and sorting mode. Next,
for the last two tasks, we want to test the capacity of the Onion tool under two hy-
pergraphs. The users need to find out the answer by comparing 2012 and 2020
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Växjö bus routes. We want to understand if the user can easily find the answer by
comparison mode of the Onion tool in Task 3 and the performance of cardinality
mode with two hypergraphs in Task 4.

The results of the usability study and the feedback provided by the participants
are discussed next.

5.2.2 Study Results

During the introduction, the main problem of the Onion tool has turned out to be
that the users have a hard time understanding the difference between the node and
endpoint, which we had not expected. Besides, half of the users were confused with
the binary/ordinary hyperedges, which occupy the inner area of the Onion tool,
and the radial hyperedges. The latter issue has also contributed to another problem
during the user operation phase, as we found out later.

In the user operation task, all users finished their tasks in under 12 minutes.
Moreover, they have spent most of their time on Task 1. Half of the users could
not find the target element during Task 1, and consequently, the responses have the
lowest accuracy among the four tasks. As we mentioned, some users have a problem
understanding the difference between the binary/ordinary hyperedges and the radial
hyperedges. Half of the users excessively concentrated on the radial hyperedges,
but ignored the existence of binary hyperedges in the inner area. The others also
spend more time than we had expected in Task 1. Besides, we have discovered
that the Onion tool does not effectively assist the users in finding the answer for
this particular task: the related mode only highlights the hyperedges relative to the
target node, but not the related nodes that are existing in the same hyperedge group.
However, as a different positive outcome, we have recorded a perfect accuracy in
Task 2 with a single hypergraph data file. Compared to the issues with the previous
task, the related mode highlights the related nodes in the same hyperedge group
and helps the users find out the missing nodes quickly, as the results of Task 2 have
demonstrated. The results of Tasks 3 and 4 are also quite positive. The users have
been able to answer these questions under 4 minutes using Onion. Some of the users
initially misunderstood the question of Task 4, however, it did not affect the users
in finding out the correct answer eventually. We would say that the performance of
the visual and interactive functions of the Onion tool for this tasks was solid, as we
had expected.

According to the ICE-T questionnaire results (see Figure 5.11), the cumulative
average score of our Onion tool is 5.75, which means it is a decent visualization
score. However, we think there is still a long way to us to achieve a higher score.
Analyzing the aggregated average score of the ICE-T, each section of the ICE-T
test is analyzed independently to detect opinions for each metric [61], and it shows
that the average value of Confidence (as defined by ICE-T) is the lowest within a
passing level. Digging into the average score of confidence, we determine that the
lowest scores were provided for the following question: The visualization helps un-
derstand data quality—If there were data issues like unexpected, duplicate, missing,
or invalid data, the visualization would highlight those issues.

The low score for this question can be considered in relation to the current Onion
tool limitations. Since the space of the inner area is small, all users have mentioned
that the binary hyperedges can not be recognized. When many binary hyperedges
exist in the inner area, the edge bundling cannot offer a straightforward observation
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experience for the users to target the element. In contrast, it results in deteriorated
performance and user experience, so that the users had to turn off the edge bundling
functionality. Next, each group’s color of the cardinality mode is similar, and each
group of the cardinality mode does not give the users an accurate number of the
cardinality. The above problems lead the users to erroneous data. The discussion of
the limitations of the current implementation continues below.

Figure 5.11: The data that represents the average and detailed score of the ICE-T
questionnaires filled out by the user study participants. Aggregated average scores
are presented on the left hand side. The detailed responses are presented in the
table on the right. Each table row is the users’ question score, while each column
points to a single participant. The final column is the aggregated average for each
question. The value of 0 means the user has not provided an answer to the question.
The values 1–7 correspond to a Likert scale, with 4 indicating a neutral result.

5.3 Discussion

In this subsection, we discuss the computer performance of the Onion tool and the
results of the research questions based on the data gathered.
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5.3.1 Limitations and Scalability

Our own experiences and the short evaluation cannot provide concrete evidence to
identify a maximum number of binary/ordinary hyperedges that the Onion tool can
handle before the view becoming too cluttered, too small, and unreadable for the
user. One observation that we can reinforce is that the capabilities of edge bundling
are restricted when the visible drawing area of the inner circle is small, for instance,
when loading a hypergraph with a small number of nodes and a large number of
binary/ordinary hyperedges. According to the results we have obtained, we can
conclude that the edge bundling approach brings rather negative user feedback with
binary hypergraph exploration in the new version of Onion in most scenarios.

The support for comparison of several hypergraphs of the new version of Onion
is effective and efficient. We have receive positive feedback from both case and user
studies. The users can instantly find out the difference between two hypergraphs
with the Onion tool. We want to point out that all users in the user study finished
the respective tasks (Tasks 3 and 4) under 4 minutes. However, as we mentioned
above, using the Onion cardinality mode, the colors of the cardinality groups are
similar; thus could drive the users to erroneous conclusions in certain scenarios,
and could thus be considered an opportunity for further improvements of the visual
encoding.

According to the data we observed from the Chrome browser inspector, when
the loaded hypergraphs have more than 120 nodes and 120 hyperedges, the heap size
in use by the live JavaScript object stays under 16.8 MB. The heap size trend in the
last two minutes can increase to 15.1 MB/s at the beginning of the loading processes.
Then the heap size trend over in the last two minutes drops to approximately 1.2
KB/s after 30 seconds. Moreover, we cannot see an apparent time lag reaction in the
Onion tool during the user operation. We found evidence that the new version of the
Onion tool can scale to larger hypergraphs concerning computational performance
and usability, as demonstrated in the case studies. Based on our experiences and the
evaluation results, we believe that the new version of the Onion tool scales well up
to 150 nodes and 200 hyperedges.

5.3.2 Comparison with Previous Approaches

Considering and comparing with existing approaches, the new version of the Onion
tool has its pros and cons. We will review these considerations in this subsection.

Figure 5.12: The original (left) and the new (right) implementations of the interac-
tive Onion approach.

First of all, we start with a comparison with the original Onion implementa-
tion [12]. Figure 5.12 (left) presents the original tool, which was developed in Java.
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The right side of the figure presents the new Onion tool that was developed from
scratch using JavaScript and web-based technologies for this thesis project. In the
new Onion tool, besides using the same visual metaphor and following the main de-
sign principles described for the original approach, as mentioned in Section 1.1.4,
we have aimed to address the previously identified challenges and introduce further
functionality to improve the usability of this visualization approach.

The major new contribution is the support for several interactive visual modes
that provide visual assistance to the user in exploring the data (see Section 4.4.8),
including the support for visual comparison of two hypergraphs, which was not
available in the original Onion implementation and is supported by few of the ex-
isting hypergraph visualization approaches. Related to this improvement, we can
also mention support for visual encoding adjustments and interactions for hiding,
displaying, disabling, and highlighting of hypergraph elements (as discussed in re-
lation to the control panel in Section 4.4.5) and viewing further details on demand
via tooltips (see Section 4.4.3). Support for the control panel as well as data edit-
ing and filtering functionality with table views (see Section 4.4.6) has also been
implemented while taking the visual scalability into account. For instance, the
old tool would use a significant portion of the available screen space for various
controls, while the proposed implementation allows these panels and dialogs to be
hidden/closed in order to focus to the main view.

Furthermore, the new version of the Onion tool can easily handle more than
120 nodes and 120 hyperedges, which are values larger than reported by the resuls
of the original study [12], and only considered as potentially possible at that time.
In our opinion, it is more potent than many other hypergraph approaches (see Ta-
ble 5.1), especially concerning the number of hyperedges. Additionally, supporting
the GraphML format [23], the Onion tool offers an flexible data editing function
for a single hypergraph data set. The users can change the data with simple opera-
tions. Moreover, as mentioned above, the new Onion tool supports the comparison
of two hypergraphs effectively and efficiently, and none of the previous hypergraph
approaches do support this functionality.

Of course, the Onion tool has some obvious shortcomings, too. It does not have
support for dynamic/temporal hypergraphs, and thus, the users cannot observe the
changing of the hypergraph or predict data behavior over time, in contrast to the ap-
proaches such as Hyper-Matrix [73] and PAOH [68]. However, this was not part of
the requirements for our project. Other shortcomings identified for the current im-
plementation are that the Onion tool still cannot effectively solve the edge crossing
and clutter in the inner area, even with the edge bundling approach implemented.
Addressing these issues could be considered part of the future work.

Table 5.1: Comparison of the hypergraph visualization approaches.

Property Onion (new) Hyper-Matrix PAOH Traditional
approaches

Visual scalability Yes Yes Yes No
Data editing Yes∗ Yes∗ No No
Edge crossing issues Yes No No Yes
Hypergraphs comparison Yes No No No
Interaction Yes Yes Yes No
Timeline No Yes Yes No
Data prediction No Yes No No
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6 Conclusions and Future Work

In this project, we focused on the investigation of visual representation and interac-
tive analysis of hypergraphs. Based on the previous study of the Onion representa-
tion, we implemented an entirely new web-based Onion tool that follows the respec-
tive visual metaphor. In order to address the shortcomings and potential extensions
of the previous Onion tool implementation, we made the respective changes and
improvements for our proposed visualization approach, such as the scalability im-
provements, hypergraph data editing support, and support for visual comparison of
hypergraphs. To complete this project, independent research efforts were required
in relation to 1) analysis of the existing visualization, interaction, and evaluation
techniques, 2) design and implementation of interactive web-based visualizations,
3) design and realization of several evaluation approaches (namely, case studies and
user studies), and 4) analysis of the results, reflection, and critical discussion.

In this section, we briefly summarize the results of project work in relation to the
research questions formulated in the beginning of the report. Moreover, we discuss
what we are looking forward to as part of our future study of the Onion hypergraph
visualization approach.

6.1 Project Summary

In this subsection, we will shortly discuss the answers to the research questions
formulated in Section 1.4, based on the results gathered throughout the project.

• RQ1 Does the edge bundling approach implemented in the new version of
Onion for binary edges facilitate hypergraph exploration?

Both case and user studies show that the usability of the edge bundling ap-
proach is rather poor. The Onion inner area restricts the performance of the
binary/ordinary hyperedges. In limited space, the capabilities of hyperedge
observation are restricted. Additionally, since all binary/ordinary hyperedges
have the same color due to the same cardinality value, bundling makes them
more challenging for users to differentiate and pick the target they want.

• RQ2 Can the interactive visualization approach implemented in the new ver-
sion of Onion support the comparison of several hypergraphs effectively and
efficiently?

Yes, we have received positive feedback from our studies regarding the com-
parison function of the new Onion tool. The users can instantly find out the
difference between two hypergraphs using the Onion tool. Based on the case
and user studies, and considering the ability to solve the comparison tasks
within reasonable time using the implemented comparison approach, we can
conclude that our Onion tool supports the comparison of several hypergraphs
effectively and efficiently [27].

• RQ3 How does the interactive visualization approach implement in the new
version of Onion scale to larger hypergraphs with regard to computational
performance and usability?

As we have discussed in this thesis report, the new web-based Onion tool im-
plementation was able to handle hypergraphs with more than 120 nodes and
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120 hyperedges, with rather low values of the random memory usage reported
by the web browser compared to the typical specifications of the modern com-
puters. Besides memory consumption, it is important to notice that the visual
interface of the tool remained responsive and no evident lags were noted ei-
ther by us, or by the users participating in the evaluation. Regarding usability,
we have collected evidence that the new Onion tool has received positive user
feedback and demonstrated rather good usability qualities, albeit the scale of
our evaluation was limited to two case studies and a single user study with six
participants.

6.2 Future Work

In this project, we have presented an entirely new version of the Onion approach
for interactive visual analysis of hypergraphs. However, it is still not perfect. The
primary purpose of the Onion tool is to facilitate exploration of hypergraphs, while
addressing the issues of edge crossing and clutter. However, we have found evi-
dence that edge bundling is not a perfect solution to the above problem. Here, the
performance of the binary hyperedges is strongly restricted by the inner area range.

For future work, we can consider moving the binary/ordinary hyperedge repre-
sentations outside of the inner area. However, this solution will raise the issue that
the inner area will not be effectively used. Thus, we still want to find out how to
effectively use the limited display space of the Onion without any edge crossing for
ordinary edges. Secondly, the color of the cardinality group is the other issue we
want to solve. We plan to improve the current color of the Onion to make the ele-
ment becomes recognizable. Otherwise, the user can lose his/her mental map [81].
Furthermore, the currently implemented comparison mode affects the layout of the
hypergraph visualization, and thus we could consider comparing it to a pure juxta-
position approach [26], i.e., displaying two independent Onion representations side
by side as part of the comparison approach. In this case, the effectiveness and ef-
ficiency of both approaches for hypergraph comparison tasks could be evaluated
with a controlled user study [34]. Finally, improvements for the related mode of
the Onion tool are also part of future work. Since the related mode of the Onion
only highlights the hyperedges relative to the target node, but not the related nodes
that are existing in the same hyperedge group, we need to improve the respective
implementation in the future.
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