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Abstract
The study of multivariate networks (MVNs, i.e., large data sets where data
points have relations to other data points and both these relations and the points
themselves can have attributed data) is an important task in many different fields,
such as social networks for the humanities, citation networks for bibliometrics
and biochemical networks for life sciences. Furthermore, when dealing with
visualization and analysis of MVNs, many open challenges still exist regarding
both computational aspects (i.e., the challenge of computing different metrics
of a large-scale MVN) and visual aspects (i.e. the challenge of displaying all
the information of a large-scale MVN in a way that is comprehensible to the
user). In the search for efficient and scalable visual analytics methods, especially
for exploratory data analysis, this thesis explores a novel approach of aspect-
driven MVN embedding and the use of ensembles of embeddings for multi-level
similarity calculations. Starting from the observation that there already exist
several different embedding techniques for datatypes that are common for real-
world MVNs, the main question that we will try to answer is: “Could the use
of multiple embeddings provide for new and better solutions for visual analytics on
multivariate networks?" This main question then inspires the formulation of four
more specific research goals regarding: (1) methods for combining embeddings,
(2) the development of a general methodology framework, (3) new visualization
methods, and (4) proof-of-concept applications for real-world scenarios.

The focus of our work lies on similarity-based analysis within the domains
of bibliometrics and scientometrics, and our first major step is to develop
a methodology for combining several different embeddings (for the same
underlying data) to augment the quality of similarity calculations. This step
includes an adaptation of some of the key ideas from ensemble methods to the
field of embeddings, and also an interactive optimization process for finding the
best performing ensembles. Upon this foundation, we develop an aspect-driven
approach which seeks to divide an underlying MVN into separately embeddable
aspects, which in turn allows for the resulting embedding vectors to be used in
flexible analysis scenarios with high level of interaction. We then proceed to
show how the concept of similarity-based analysis can be used to obtain valuable
insights to, and a better understanding of, a large set of scientific publications.
For this, we introduce the abstract concept of similarity patterns which we use to
express how a specific set of similarity criteria are distributed over a data set.
Furthermore, we present proof-of-concept applications which are designed to
allow the user to exploit these similarity patterns at different levels of detail. We
also show that our proposed methodology is generalizable beyond the scope of
MVNs, and therefore could be applied to other fields as well.

Keywords: Multivariate networks, embeddings, ensemble methods, similarity
calculations, visual analytics
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Chapter 1

Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
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In this chapter we will present the main scope, the main goals and the main
limitations of our work, and the first section is based on the content of our
position paper [100]. The study of multivariate networks (MVNs, i.e., large data
sets where data points have relations to other data points and both these relations
and the points themselves can have attributed data) is an important task in many
different fields, such as social networks for the humanities, citation networks
for bibliometrics and biochemical networks for life sciences [47, 53]. Therefore,
methods for computational analysis and visualization of MVNs have become
important research fields and have attracted a lot of attention. One of the many
challenges with visual analytics (VA) on MVNs is that the attributes and the
network structure are equally important for obtaining a correct understanding of
the underlying data. For instance, to better understand the interactions within a
social network we need to consider both the topological structure of the network
(i.e., how “close” different actors are to each other) and the specific values of
attributes such as age, gender, interests etc. For example, if we would like to
predict future friendship relations in a social network, we most probably need to
consider both actor proximity/distance as well as actor similarity/dissimilarity
to obtain a good result.

As we can see from the example in Figure 1.1, for MVN analysis it is often not
enough to use only traditional statistical methods, or only pure graph analysis,
since their scope is too limited. Instead we need more integrated VA methods
that are able to exploit the attributed data in the direct context of the topological

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: When analyzing an MVN, we need to consider both the network structure and the
attributed data for nodes and edges. In this example, there is one attribute for the edges (with two
possible values) and two different attributes for the nodes (with two possible values each). We
visualize the data set as a node-link diagram and encode the edge attribute to the edge line style and
the two node attributes to node color and size. We can now see that a possible pattern emerges: the
links between nodes of the same color differ from the links between nodes of different color, and
nodes with links to nodes of different color are smaller. This pattern may not have been discovered
if the attribute data and the network topology had been visually analyzed separately.

aspects. One major step forward in tackling this challenge has been the recent
development of extending graph-specific embedding technologies to the field
of MVNs. Embeddings are numeric vector representations of underlying data,
and they are normally produced in such a way that items which are similar in
the original data set (according to some domain-specific aspect) are embedded
into vectors that lie close to each other in the embedding space, with regard
to some chosen distance metric [8, 35, 70, 95, 104]. The numeric vector format
usually makes the embeddings more suitable than the original data as input
for computational analysis tasks such as clustering, classification, and similarity
calculations. A recent trend within the field of MVN embedding has been
the development of methods for so-called attribute-enhanced representation
learning which aims to jointly embed the topology of the network together with
the attributed data. While this strategy has proven to be successful for some
scenarios, it also entails some limitations in flexibility since it aims to join several
different aspects of the underlying MVN into a single, inseparable, embedding
(e.g., jointly embedding node text content and node position in the network
topology). To achieve higher flexibility, it would instead be advantageous with
a strategy that allows for using and combining several different embeddings of
the underlying data. In this thesis we present such an approach and use it to
build a framework for similarity-based analysis of MVNs. The strength of the
proposed framework is showcased by proof-of-concept visualizations targeting
several different real-world tasks. Although our examples are mainly from the
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fields of bibliometrics and scientometrics [29, 62, 69], we would like to point out
that our proposed methodology operates on the vector level (i.e., it makes no
assumptions on the nature of the embedded data) and therefore is generalizable
also to other fields.

1.1 Motivation

As we have previously stated, MVNs are important data sets within many different
fields and their analysis continues to be a challenge. Even though important steps
forward have been taken, there are still many open research questions within the
field of MVN embedding, and we are still far from any generic, comprehensive
methodology. Therefore, new paths need to be explored and alternative ways
forward need to be identified. Open challenges exist on the computational side
as well as on the visualization side. For the computations, a great challenge lies
in the fact that algorithms for network topology analysis often scale poorly to
large data sets because of combinatorial explosion of the number of network
paths between nodes. For the visualization, a great challenge lies in the fact
that many MVNs are so big and complex that only a few separate characteristic,
out of many possible, can be displayed in parallel. Thus, helping the analyst to
maintain provenance and build a correct mental model requires solutions that go
beyond standard visual representations.

When assessing the current research frontier, we see an opportunity to
complement the resent efforts focused on developing MVN-specific embeddings.
We therefore propose a more generic approach which seeks to leverage already
existing embedding technology, and apply it in the context of MVNs. By doing
so, we aim to fill a research gap which, to the best of our knowledge, has not yet
been explored.

1.2 Research Goals

The aim of this thesis is to explore the use of multiple embeddings for analysis
and visualization of MVNs, and our focus lies on ways to reuse and combine
already existing embedding technologies. Furthermore, since embeddings can
be used for several different computational tasks (each with its own special
characteristics), we have chosen to specifically focus on similarity calculations
and use a similarity-based approach for our proposed methodology. In other
words, we first intend to use the embeddings vectors from the MVN to calculate
pairwise similarities, and then to use the result from these calculations as the
basis for the visualization and the exploration of the MVN. With this in mind,
we formulate our main research goals as the following:
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• G1: Find a method for how to combine several embeddings in order to
augment the quality in similarity calculations.

• G2: Develop a general framework for MVN embedding which reuses
already existing embedding technologies.

• G3: Develop new visualization methods which use the results of similarity
calculations to reveal interesting characteristics of the underlying MVN.

• G4: Demonstrate how similarity calculations based on multiple embeddings
can be of value for visual analytics on MVNs within the domains of
bibliometrics and scientometrics.

1.3 Research Approach
Since this thesis deals with the elusive concept of similarity (which very much
lies in the eyes of the beholder), we would like to start by pointing out that,
as a general strategy, we will favor human-in-the-loop solutions and the use
of interactive visualization. This bias is based on our firm belief that using
visual analytics applications enables the user obtain important insights (leading
to higher trust) as compared to using purely numerical methods. Furthermore,
similarity-based aspects are challenging to capture with purely computational
approaches, so we are convinced that they are better handled by applications
which also make use of the tremendous pattern-recognition capabilities of the
human brain.

In order to fulfill our research goals, there are several different steps needed.
The first step is a literature review of potentially related work, and the result is
mainly presented in the Related Work section; but it has, of course, also indirectly
influenced other parts of our work (e.g., the design of our proposed visualizations
or the choice of embedding algorithms that we use) and therefore supports all of
our research goals. The second step, which mainly targets G1 and G2, is outlining
and developing a methodology framework which is suitable to use for real-world
scenarios (within the domains of bibliometrics and scientometrics) and which is
anchored on a firm theoretical base. For this, we published/submitted two articles:
(1) a statement report outlining our general ideas for using several embeddings
and the potential this could hold for MVN analysis [100] (the first paper in the
List of Publications), and (2) a paper covering our proposed methodology for
combining several embeddings together with a proof-of-concept tool for visual
optimization of the search for high-performing ensemble of embeddings (the
second paper in the List of Publications). The third and final step, which mainly
targets G3 and G4, is to provide functional proof-of-concept applications which
showcase the use and the potential of our work in the context of MVN analysis.
This step was covered by the publication of a poster paper [99] (the third paper
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Figure 1.2: A schematic overview of the different steps of the research process and how the
corresponding publications are connected to the fulfilment of the research goals. The body of this
thesis has been developed through a series of papers which build upon each other and have the
proposed methodology as a common narrative thread.

in the List of Publications) and by submitting a full paper (the fourth paper in
the List of Publications), both containing the descriptions of the implementations
of prototype VA tools which showcase our methodology on real-world scenarios
from the fields of bibliometrics and scientometrics. An outline of the different
steps, the corresponding publications and their connections to the research goals
is given in Figure 1.2.

As can be seen, the steps and the research goals mentioned in this section
form a narrative thread together, both logically and chronologically. To facilitate
the presentation and the understanding of our work contribution we will use this
thread as a base for the outline of this thesis.

1.4 Main Contributions
The main contributions of this work are:

1. A novel way to apply ensemble methods to embeddings which can be
used as a means to improve the quality of embedding-based similarity
calculations.
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2. A VA tool, called EEVO, that guides the search for better hyperparameter
settings and allows the analyst to build a mental model of the inner
workings of the ensemble calculations.

3. A general methodology for dividing a MVN into separately embeddable
aspects and strategies for combining the resulting embeddings.

4. A VA tool, called Simbanex, which allows the user to explore a large set of
scientific documents by interactive specification of similarity criteria and
assessment of the corresponding similarity patterns and similarity details.

5. The presentation of different use cases which illustrate the strengths of our
proposed approach and showcase the usage of our tools.

Furthermore, as we make no assumptions on the data type of the embedded
items, the generalizability of our method is promising since it can be used for any
similarity-capturing embedding technology. This is demonstrated in Section 3.4
by two example use cases with fundamentally different tasks and data types. We
therefore hope that our contribution could prove to be useful and valuable for a
wide range of applications.

1.5 Limitations
As stated in Section 1.2, we limit our focus to similarity calculations since
we need a manageable scope for the thesis. The consequence of this choice
is that, depending on the circumstances, our proposed methodology is not
necessarily directly transferrable to other computational tasks such as clustering
and classification. The reason for this is that our methodology for combining
embeddings can be viewed as a method for obtaining several yes-or-no-votes
regarding a specific question, which in our case is “Are these two entities similar?”.
However, in the context of clustering, our methodology could be seen as providing
several different measurements of the distance between two items and most
clustering algorithms cannot make use of this extra information.

Furthermore, the chosen similarity-based analysis approach implies that
similarity relations will be our viewport to the underlying MVN and act as a
filter for what is shown or not shown. Since a relation requires at least two items,
this means that this approach is not intended for tasks dealing with single-item
characteristics, such as for instance “Show all items with a value of attribute X that is
higher than 0.5”. Instead, a typical example of similarity-based analysis would
be a request such as “Display all items which are similar to a selected target” (and at
the same time filter out all items which are dissimilar). Therefore, our proposed
proof-of-concept visualizations are designed to highlight, and exploit, the parts
of an MVN where interesting similarity patterns are found, and they should not
be regarded as visualizations for conveying the full details of the MVN. With this
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in mind, we need to clearly state that our aim with this thesis is to showcase the
possibilities and the strengths of the similarity-based approach—but at the same
time we do not intend to give the impression that this approach is relevant for all
MVN analysis scenarios and tasks.

1.6 Data Set

All our proof-of-concept applications are based on the IEEE VIS data set [43]
which contains 18 different features for articles published at the IEEE VIS
conferences. The choice of the data set is motivated by its quality, visibility in
our research community, and our own familiarity with its topic. From this set,
we have extracted roughly 3,000 articles published during the period 1990–2018,
and in our visualizations we exploit the corresponding citation network, the
corresponding co-author network, the abstract texts and two different numerical
citation counts (see Figure 1.3).

Figure 1.3: From the original data set, we extract the co-author network and the article citation
network. For the article nodes of the citation network we also extract the abstract text and two
different citation counts.

The content of the chosen data set naturally makes our proposed proof-of-
concept visualizations lean towards tasks from the fields of bibliometrics and
scientometrics . However, we would like to point out that a great deal of our
suggested approach is generic and applicable to any embeddable MVN. The
reason for this is that the methodology operates on the level of the embedding
vectors, and not on the level of the underlying data.
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1.7 Thesis Outline
So far, the motivation behind our work and the aims and goals of the thesis were
described together the research approach and its limitations. The rest of this thesis
is organized as follows. Chapter 2 presents an overview of previous research from
different fields that are relevant for our specific problem area. Chapter 3 contains
a general methodology for combining embeddings to augment the quality of
similarity calculations. This is a key concept of our contribution and together
with it, a prototype VA tool for helping the analyst to find optimal ensembles is
presented. In Chapter 4, we extend the general methodology to a second level of
combining embeddings by showing how a MVN can be divided into multiple
separately embeddable aspects. We also present a prototype VA application
which implements the full range of our proposed methodology and allows the
analyst to perform similarity-based exploration of the citation network of our
data set. Finally, in Chapter 5, we discuss the overall results and implications of
our work in view of the research goals that were set out for this thesis.
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In this chapter we present previous research that is related to our work. We start
with the key concepts of embedding technology and ensemble methods, which
will both lay the foundation for our novel VA methodology. To set the context
for our proposed prototype applications, we then proceed with an outline of the
field of visual analytics and MVN visualization. Finally, to get an overview of
the use case domain, we conclude with the fields of text similarity calculations,
bibliometrics, and scientometrics.

2.1 Embeddings
Embeddings are (often low-dimensional) numeric vector representations of com-
plex and/or unstructured data, created in order to be suitable for computational
analysis tasks such as clustering, classification, and similarity calculations [8].
The main goal of embedding algorithms is usually to produce embeddings where
items that are similar in the original data set (according to some domain-specific
aspect) are embedded into vectors that lie close to each other in the embedding
space, with regard to some chosen distance metric. This makes embeddings
highly suitable as input for computational analysis tasks, such as clustering,
classification, and similarity calculations. The reason for this is that it is more
straightforward to calculate a distance measure, such as Euclidean or cosine
distance, with numeric vectors than it is with other types of complex and/or

9
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unstructured data [38, 56, 57]. How well the embedding captures the underlying
targeted similarity is crucial since poor quality embeddings will elevate the risk
for poor quality results when used in any further calculations.

2.1.1 Word and Text Embeddings

In general, word embeddings are distributed representations obtained from
unsupervised training of a deep learning model on some large corpus of natural
language text [2, 8, 9, 22, 96]. By using a large amount of training data to predict
words given a specific context (or vice versa), the model will be able to learn
semantic similarities of word pairs, e.g., good is similar to super, and bad is similar
to awful. The algorithm then projects such similar word pairs to embedding
vectors that lie close to each other in the embedding space [3, 95]. Arguably, the
single most influential word embedding technology is Word2Vec, which was
introduced in 2013 [68], and arguably, the current state-of-the-art is the BERT
model [25]. There are different approaches on how to use word embeddings
to obtain embeddings for sentences or paragraph-sized text [61], starting from
the intuitive (but limited) approach to take the average of the embeddings of
each word in the text. However, sophisticated approaches are needed in order to
exploit the syntactical structure of sentences. This is crucial to do since the same
set of words may be arranged to form sentences with very different meanings,
and the same word may have different meaning depending on the context [70]. To
do so, the use of deep learning models is a popular choice, and approaches have,
for example, been developed for recursive neural networks [92], convolutional
neural networks [48], and recurrent neural networks [58]. Arguably, the current
state-of-the-art technology for text embedding is the Universal Sentence Encoder
(USE) [18].

2.1.2 Graph and Network Embeddings

Embedding calculations are not exclusive to textual data, for instance, they can be
applied to various important tasks and applications involving graph and network
data [72, 89]. Technology for graph embedding, also known as Representation
Learning on Graphs [40], targets the pure topological structure of the graph and
ignores any attributed data. The goal is to preserve as much as possible of the
structure information and important tasks are clustering, graph comparison, and
graph reconstruction. Depending on the application, the item(s) to embed may
be: (1) the whole graph, (2) subgraphs, (3) the nodes, or (4) the edges [35, 36].
Furthermore, even dynamic aspects can be taken into account for embedding
purposes [73]. The field of network embedding [104] is closely related to the
field of graph embedding. The main difference is that in addition to the graph
topology some (or all) of the attributed data is also considered, which allows for
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a more elaborated embedding process. Consequently, this type of technology is
sometimes referred to as Attribute Enhanced Representation Learning [23].

2.2 Ensemble Methods

Ensemble methods are a well-studied and successful field of classification opti-
mization. The main goal is to find a combination (called an ensemble) of several
classifiers that provides better results than of the classifiers on its own [26, 76].
The bagging approach [15] involves classifiers of the same type of algorithm that
are trained in parallel, and the final combined result is obtained by applying a
deterministic algorithm (e.g., average or majority vote) to the set of individual
predictions. In contrast, the boosting approach [16] organizes the training of
classifiers of the same type of algorithm are trained in sequence, while each
misclassification is given a higher weight of importance in the training of classi-
fiers. Hence, classifiers added late to the ensemble will have put more focus on
correctly classifying items that were misclassified by early added classifiers. In
this way, the total ensemble will be actively steered towards having the potential
for correctly classifying a major part of all the items. The final combined result is
obtained by taking linear combination (inversely weighted by the error of each
classifier) of the individual results. Another alternative approach is stacking [101]:
classifiers of different types of algorithms are trained in parallel, and the final
combined result is obtained by applying a deterministic algorithm to the set of
individual predictions or by using this set to train a meta-model for making the
final decision.

2.3 Visual Analytics

Previous information visualization (InfoVis) and visual analytics contributions
have provided guidelines for designing, implementing, and evaluating interactive
solutions that allow users to gain and externalize knowledge [5,84] about data
and complex computational analyses. Such approaches often rely on individual
or multiple interactive views [41, 81] designed to facilitate certain user tasks [14],
including comparison [32], provenance [80], and guidance [17], among others.
The existing work in InfoVis and VA covers multiple techniques supporting
various data types, including texts [45, 60] and graphs/networks [53, 75], and
various applications, including the analyses of social media [21] and scientific
publications [29], for instance.

One core idea of VA is the involvement of human analysts in complex
computational analyses via interactive user interfaces. The necessity for such
human-in-the-loop approaches was recognized decades ago, for instance, by the
operations research community [30], and applied for the tasks associated with
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combinatorial complexity [79], human-guided search [59], and multiple criteria
decision making [28]; the survey by Meignan et al. [67] covers this field of
interactive optimization methods in operations research. Some of the relevant
contributions for this problem originated from the VA community, including the
visual optimization techniques for RFID benchmarking by Wu et al. [102], visual
multiobjective optimization approaches by Berger et al. [11,12], and hybrid visual
steering technique for simulation ensembles by Matković et al. [66]. Further
review of visual analytic methods for interactive optimization is provided in
the recent work by Hakanen et al. [39]. Our work shares the idea of involving
the human analyst in the interactive search for optimized configurations via
VA. But in contrast to the approaches discussed above, our work has a focus
on different models and tasks, as discussed next. Recently, the attention of the
VA research community has been drawn to the various problems in ML [19,
27, 82, 83, 88, 93]. Multiple approaches have been proposed for facilitating the
ML training process, including, for instance, ManiMatrix by Kapoor et al. [50],
which supports interactive optimization for multiclass classification problems.
More specifically, VA approaches have been applied for the results of embedding
calculations and also for the purposes of understanding such embeddings better.
For instance, Embedding Projector [91] applies dimensionality reduction (DR)
methods to display a projection plot for embedding vectors while allowing the
users to search and inspect the underlying data items in the original space.
cite2vec by Berger et al. [10] focuses on the particular task of interactive citation-
driven document collection exploration that is based on joint word-document
embeddings. ConceptVector by Park et al. [77] allows the users to construct
lexicon-based concepts for text analysis purposes, which involves interaction
with the output of one of the supported word embedding algorithms. Another
relevant application for document collection analysis is discussed by Ji et al. [46],
who make use of a paragraph embedding approach in their VA system. Word
Embedding Visual Explorer by Liu et al. [63] focuses on the investigation of
semantic relationships in word embeddings; this approach is supplemented by
a case study with a comparison of embeddings produced by two algorithms,
Word2Vec [68] and GloVe [78]. Liu et al. [64] discuss Latent Space Cartography, a
more general approach for interactive analysis and interpretation of latent spaces
and distributed representations, which includes the task of comparing latent space
variants (i.e., embeddings), among others. embComp by Heimerl et al. [42] allows
the user to explore word similarity between two different corpora, or for the same
corpus embedded by two different methods, by analysis of nearest neighbors
within the two embedding spaces. Finally, Parallel Embeddings by Arendt et
al. [6] support exploration and comparison of clusters and cohorts of embedded
data over time. While the contributions discussed above provide an important
foundation for visual analysis of embeddings, with our proposed workflow, the
focus is on investigation and comparison of not only individual embeddings for the
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given data sets, but rather ensembles of multiple embedding types used for joint
decision making. Here, we should acknowledge the existing works discussing
VA support for ensemble learning, including EnsembleMatrix by Talbot et al. [94],
the workflow discussed by Schneider et al. [87], StackGenVis by Chatzimparmpas
et al. [20], and ExMatrix by Neto and Paulovich [71], for instance. However,
these approaches address construction of ML model ensembles for tasks such
as classification, while the focus of our proposed approach is on investigating
ensembles of embeddings for similarity analyses, affecting our methodology
correspondingly.

2.3.1 MVN Visualization

The problem of MVN visualization has attracted considerable attention and
comprehensible overviews of the main ideas, techniques and challenges are given
by Jusufi [47] and Kerren et al. [54]. Furthermore, Nobre et al. provide a state-of-
the-art survey [74] of this field in which they introduce a classification scheme
according to the four different axes: (1) choice of layout, (2) view operations,
(3) layout operations, and (4) data operations. Using the terminology of this
scheme we can conclude that the methodology proposed in this thesis has a
large focus on the so-called Data Operations. In other words, we first use a
computational approach (which in our case includes embedding technology and
similarity calculations) to reveal interesting aspects of the MVN. Then, we design
our visualizations to exploit these specific aspects rather than trying to capture
the whole MVN. Relating this back to the classification taxonomy for visualization
approaches introduced by Jusufi, and also to the choice of layout from Nobre, we
can see that our contribution could, for instance, be displayed as one view in a
set of multiple coordinated views (or any other layout strategy proposed in these
two works) showing different aspects of the underlying MVN.

2.4 Text Similarity Calculations

As shown in the survey by Wang and Dong, calculating text similarity is a generic
task with many important applications within several different fields [98]. There
are two major subgroups of methods for calculating the similarity between two
text documents: word based and embedding based. The main advantage of the
word based group is that it is conceptually simple and easy to implement, while
the main disadvantage is that pre-processing of the text is usually needed and that
semantic similarity is not supported. The main advantage of the embedding-based
group is that it can handle semantic similarity and exploit syntactical structure,
while the main disadvantage is that they are complex to implement and require
substantial training. The disadvantage of training can however be alleviated by
using pre-trained models. One of the earliest word-based methods is the Jaccard
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index/similarity [65] which is calculated by dividing the number of unique
common words by the total number of unique words. A more sophisticated, and
very popular word-based method, is the TF-IDF-method [85] in which a vector
representation of the text is created with a dimension for each unique word in the
corpus and with the values calculated as the number of occurrences of the word
in the document divided by the number of occurrences of the word in the corpus.
The similarity score can then be calculated by using the document vectors for
computing, for instance, the cosine similarity value.

As already mentioned in Subsection 2.1.1, most embedding based text
similarity methods make use of some form of deep neural networks to compute
a vector representation of the text. A similarity metric of choice can then be
calculated by using the embedding vectors.

2.5 Bibliometrics and Scientometrics

The concept of bibliometrics can be described as “the application of mathematical and
statistical methods to books and other media”, and within the subfield of scientometrics
the focus lies on analyzing the quantitative aspects of scientific publications and
their use. Ranking of publications and authors as well as generation of various
aggregated statistical representations are common tasks, often in combination with
visualization techniques to facilitate a better understanding of the underlying
data [69]. So called distant reading (i.e., using representations which convey
information from the underlying text without the need for actually reading it) is
an important concept that has been introduced to alleviate the inherent limitations
of normal reading, which in turn is often referred to as close reading [45]. Since
close reading is time consuming, and time typically is a limiting factor, there is
a high demand for distant reading applications which support the navigation
of large document sets and convey relevant aggregated information, but still
also allow on-demand access to the underlying text for detailed examination.
Natural language processing (NLP) in combination with visualization has proved
to be a successful combination for tackling such challenges. Belinkov and
Glass survey the impressive computational progress that has taken place in the
field of NLP since the introduction of neural network models [7]. Kucher and
Kerren [60] provide a taxonomy for, and an overview of, existing methods for text
visualization. The survey of Federico et al. [29] focuses on visual approaches for
analyzing scientific literature and patents while Liu et al. [62] target visualization
and visual analysis of scholarly data. Finally, the BioVis Explorer by Kerren et
al. [52] provides a way to navigate BioVis publications, and their connections,
based on their respective visualization techniques. As can be noted from several
of these publications, the scholarly domain in general, and the research domain in
particular, are in themselves good examples of the bibliometric and scientometric
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challenges since the publication rate, in many research fields, makes it hard
for any practitioner to maintain an overview and identify the most relevant
information. A final observation that is relevant to our work is that it is not
uncommon for corpus exploration to be in part driven by questions like “Are there
any groupings of similar documents within the set?” or “Are there documents which
are similar to this specific document?”. Therefore, the ability to exploit similarity
relations [33] can be highly relevant for providing useful insights.
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3.1 Introduction

In this chapter, we lay out the foundation of our proposed methodology, starting
with the observation that the search for new and better ways to embed different
types of data has attracted a lot of interest in recent years. For some data types,
such as graphs/networks and words/text, there exist several different algorithms,
each with its specific characteristics and trade-offs [3, 23, 35]. As a consequence,
choosing the best embedding technology for a given application is an important
and often non-trivial task. A straightforward way to handle this type of choice
would be to: (1) choose a quality metric of importance for the current application,
(2) evaluate all algorithms on this metric on a representative data set, and then
(3) choose the one with the highest score. This intuitively appealing strategy
provides a deterministic way for an optimal single-component choice and is in
line with the existing works [13, 49, 95]. However, one might also consider an
alternative approach inspired by the question: “Would it be possible to combine
several different embedding types as a means to achieve higher quality?”, and this is the
path that we will explore in this thesis.

17
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Our starting point for this new approach is the observation that ensemble
methods (i.e., different strategies for combining the results from several classifica-
tion algorithms) are commonly used for augmenting the quality of the results for
supervised classification problems [26, 76]. Hence, much in the same way, if a
similar methodology could be applied to embeddings, this would open for the
possibility to leverage already existing embedding technologies. Furthermore, for
certain situations, this approach could hold the potential to outperform any of
the single embeddings (used on their own) and achieve state-of-the-art results. In
this thesis, we are therefore proposing a novel way to apply ensemble methods
to embedding-based similarity calculations. To the best of our knowledge, there
has been no previous research specifically targeting this possibility.

The task of constructing effective ensembles of embeddings while maintaining
a clear picture of the respective process and results is related to the general
challenges of interpretability, explainability, and trustworthiness in machine
learning (ML) and artificial intelligence (AI) [1, 4, 31, 37]. One strategy proposed
for these challenges is to make use of perceptual and cognitive abilities of human
analysts, allowing them to construct and interact with ML models through the
means of interactive visual analytic (VA) solutions [19, 27, 82, 83]. In particular,
several VA approaches focusing on exploration or comparison of individual
embedding algorithms have been discussed in the literature, including the works
by Smilkov et al. [91], Park et al. [77], or Ji et al. [46], for instance. With this in
mind, and also following the methodology of VA [51,55], we have attempted to
bring the human analyst into the process by developing a prototype VA tool to
help the analyst with the task to construct effective ensembles (see Section 3.4).
While providing a visual representation of the optimization process [39,67], the
use of the tool also gives direct insights to the inner workings of the ensemble
calculations, and hence it supports the construction of a mental model of this
complex process [5, 84]. The high-level workflow of our proposed methodology
is depicted in Figure 3.1, and our hope is that our work will contribute to the
field of human-centered AI in the sense that our application helps to open up the
“black box” of ML, leading to better understanding and higher trust.

In the following sections of this chapter, we first develop a general methodol-
ogy for applying ensemble methods to embedding-based similarity calculations.
Then, we showcase this methodology on two different use cases with the help of
a prototype VA application.

3.2 General Methodology

Although similarity calculations using embeddings are not equivalent to item
classification problems (since the former is a way to score a relation, and the
latter is a way to classify an item), there are some resemblances that we will
exploit to make our adaptation. First, we note that similarity calculations over
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Figure 3.1: Using a visual analytic approach, the analyst can combine multiple embeddings
computed for the given data and investigate the performance of the ensembles with regards to the
specified metrics and the voting scheme. This leads to better-performing embedding ensembles,
better hyperparameter settings, and improved knowledge of—and trust for—embedding calculations
and ensembles of embeddings. This process is inherently iterative (as expressed by the presence of
cycles within the graph) and dashed and dotted edges represent indirect interactions.

a set of embeddings typically will assign similarity scores to all item pairs in
the set. Second, we observe that a common way for applications to exploit the
similarity scores is to introduce the concept of similarity score threshold(s) that
divides the set of all item pairs into (at least) two subsets depending on how
similar/dissimilar they are. We may therefore regard a similarity calculation with
a single similarity score threshold as a classification of a pair of items into one
of the two classes, similar and dissimilar. Loosely speaking, we may view this as
creating a new set (where the items to classify are all possible item pairs from the
original set) and then performing binary classification on these new items. Based
on this reasoning, we therefore conclude that: (1) if it is possible to obtain different
embeddings for the same underlying data item (e.g., by using different algorithms
or by using the same algorithm with different hyperparameter settings), then
(2) it should be possible to combine these different embeddings by ensemble
methods to yield a combined result for the similarity calculations. In other words,
our proposed methodology is to use several different embeddings to calculate
several similarity scores for a given item pair and then combine these scores to
obtain a final classification. For instance, a straightforward way to combine the
results of several embeddings would be to use the concept of bagging (outlined in
Section 2.2) and to apply a majority voting scheme. This combined result would
then, hopefully, have the potential to outperform similarity calculations using
any of the contributing embeddings by themselves (see Figure 3.2 for a generic
example).

In other words, the combiner function handles the pairwise scores (or clas-
sifications), but ignores how they were calculated. Therefore, the different
embedding types might very well differ in aspects such as dimensionality and
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Figure 3.2: A generic example. The underlying data items are embedded in several different ways
(i.e., by using different algorithms or by using the same algorithm with different hyperparameter
settings) and the pairwise similarity scores are calculated for each embedding type. The scores are
then combined to yield a final combined classification of similar or dissimilar. The combiner
function can range in complexity from a simple voting scheme up to a separately trained machine
learning model.

embedding space since they will not be mixed in the calculations. Furthermore,
we observe that when calculating similarity scores, the embeddings are treated
as pure numerical vectors and that no assumptions are made on the type of
the underlying data. Thus, our proposed methodology generalizes to any data
type that can be embedded with a similarity-preserving embedding technology.
Finally, we note that the choice of combiner function and the score threshold
values act both as hyperparameter settings for the ensemble calculations. Hence,
trying to achieve the highest possible quality would be equivalent to searching
for the best-performing hyperparameter settings for the ensemble calculations.

The last vital piece is an equivalent to the training step, during which the
ensemble performance is evaluated against sets of already correctly labeled (i.e.,
correctly classified) training and verification data. The goal for this step is both
to obtain a high performance score on the training data and, equally important,
to obtain a good generalizability to previously unseen data. As an equivalent
to the labeled training set, we introduce the concept of “ground truth” (GT) sets
that are used for the performance evaluation, see Section 3.3. Hence, finding the
best possible hyperparameter settings with regards to the GT set is, in essence,
equivalent to the training process. In our example use cases (see Section 3.4),
we give one example of working with a GT set that is fully known (Use Case 1,
graph reconstruction) and one example of working with a partially known GT set
(Use Case 2, text similarity). By demonstrating that our proposed methodology
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can be used also with partial and small GT sets, we want to highlight the fact
that it is applicable to real-world scenarios and does not require ideal conditions.

To summarize: in complement to the search for high-quality single embed-
dings, we are proposing an alternative strategy that seeks to exploit the variance
and the different advantages of several different embedding algorithms. This
provides an alternative method for situations when training a single algorithm
to achieve the required quality threshold is deemed to be unfeasible. This is
also in analogy with supervised classification, where combining several “weak”
classifiers can be a better choice than opting to train a single “strong” classifier [86].

3.2.1 Task Analysis

We end the presentation of the general methodology by listing, and briefly
outlining, some of the tasks that we find to be the most important in the process
of combining embeddings. Since this is a new methodology, this selection is
mainly based on our experience and best knowledge and it is also inspired by
the review of related literature. As can be noted, the proposed tasks have high
resemblance to those performed when using ensemble methods for unsupervised
classification.

(T1) Assess component interdependency. Assessing the interdependency of the
participating components can give important insights into how a fruitful ensemble
combination can be constructed. Since a high dependency will probably lead to
similar results of each component, a combination consisting only of dependent
components may not handle problematic cases well since all components risk to
be wrong. On the other hand, an ensemble combination of components with
low interdependency may handle such situations better since the diversity of the
individual results can be higher. However, opting for a combination with lowest
possible interdependency among the components does not automatically make
for a successful ensemble.

(T2) Assess one-by-one performance. Assessing the one-by-one performance
is an important step to gain understanding in the strengths and weaknesses of
each component in terms of which cases it handles correctly and which cases that
are problematic. Furthermore, it is also a vital step for finding the best possible
single-component performance score which will then serve as a benchmark for
the ensemble calculations. A suitable performance metric must be chosen before
this task can be executed.

(T3) Assess ensemble performance. Assessing the ensemble performance is
the last step before choosing the final ensemble configuration. In essence, this
step can be seen as a search for optimal hyperparameter settings where the
settings usually consist of a combination of (but not limited to): (1) the specific
components to include in the ensemble, (2) the hyperparameter settings (if any)
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for each participating component, and (3) the combiner function for obtaining
the final ensemble result.

(T4) Choose final configuration. The final ensemble configuration is chosen
with regard to its performance on the test data and with regard to its assumed
generalizability to previously unseen data.

3.3 Process

In this section, we outline the step-by-step process that we apply to our data. This
process is in turn partly supported by our prototype VA tool, called EEVO, which
will be presented in detail Section 3.4. We discuss our process based on two
specific use cases dealing with fundamentally different underlying data types, see
Section 3.4. For Use Case 1 (graph reconstruction), we use the associated citation
network of the articles; and for Use Case 2 (text similarity), we use the article
abstracts. While our use cases could potentially be part of realistic applications
in scientometrics [29, 90, 103], we should emphasize that—for this chapter—these
specific examples are not of the main interest, but rather the generic approach
of combining different embeddings. A proof-of-concept application for MVN
analysis based on the methodology described in this chapter will be presented in
Chapter 4. Below, we describe the process together with specific details for each
use case if needed.

Step 1 – Embed the Data
To obtain the different embeddings, we embed each data item by either using
different algorithms, as in Use Case 1, or by using the same algorithm with
different hyperparameter settings, as in Use Case 2. Of course, it would also
have been possible to use a combination of these two approaches. For practical
reasons, we have limited the number of embedding types to five.

Specific for Use Case 1: We embed the nodes of the citation network with
five different neighbourhood-based embedding algorithms chosen more or less
arbitrary: Node2Vec, RandNE, NetMF, BoostNE, and Laplacian Eigenmaps. The
assumption is that the closer two pairs of nodes lie to each other in the citation
network, the higher the similarity score that is yielded by their corresponding
embedding vectors.

Specific for Use Case 2: We embed the text of each abstract in five different ways
by using USE [18] on different parts of the text, as described below. Hence, the
variation between the embeddings is due to which part of the underlying text
that has been fed into the embedding algorithm. The assumption is that the more
semantically similar a pair of abstracts are to each other, the higher the similarity
score that is yielded by their corresponding embedding vectors.
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Type 1 – Embed the first 400 characters of the text and thus capture similar
beginnings, but ignore everything else.

Type 2 – Embed the last 400 characters of the text and thus capture similar
endings, but ignore everything else.

Type 3 – Concatenation of Type 1 and Type 2. Capture abstracts with similar
beginnings and similar endings.

Type 4 – Embed the full text and thus capture overall similarity, but with the risk
of being “diluted” in the sense that it becomes more and more challenging
to capture “a single meaning” as the text grows longer.

Type 5 – Embed keyword sentences extracted from the text and thus capture
overall similarity, but with the risk of the keywords not being representative.

The rationale for the partitioning of the text is that there is often an implicit
structure regarding what is written in the beginning and what is written at the
end of an article abstract, and therefore this structure could (at least in theory)
be exploited. Furthermore, the limit of 400 characters (which is a somewhat
arbitrary choice) has been set in relation to the average length of the abstracts,
which is just below 1,000 characters (or roughly 150 words in about 8 to 10
sentences). Setting it as a fixed limit instead of a relative limit in percentages
alleviates the problem of ambiguity if a much shorter text is being compared to a
much longer one.

Step 2 – Calculate the Pairwise Similarity Scores
We use cosine similarity to calculate the pairwise similarity scores for all item
pairs and for all embedding types. Thus, for each item pair we obtain five
different similarity scores (one for each embedding type).

Step 3 – Create a Ground Truth Set
To be able to assess and compare the quality of the similarity calculations we
need to have some a priori knowledge of article pairs that are similar/dissimilar.
We therefore create GT sets consisting of pairs which have been manually verified
to be similar and pairs which have been verified to be dissimilar.

Specific for Use Case 1: As GT set of similar pairs we use the (about 13,000)
existing citation links; and as GT set of dissimilar pairs, we use a set of the same
size sampled from the set of node pairs without a direct citation link.

Specific for Use Case 2: As GT set of similar pairs, we use a small sampled set of
58 pairs that have been manually verified as similar, and 58 pairs that have been
verified as dissimilar (coding was carried out by the author of this thesis and one
colleague from the research group). It is important to note that these GT sets are
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not complete (as was the case in Use Case 1); and in Step 4 we will elaborate
on what effects this brings to the calculations and the results. The rationale for
using a small sampled GT set is twofold in that: (1) it is a daunting task to find
all similar pairs within the set, and (2) we want to specifically demonstrate how
the methodology can be used for real-world scenarios where no a priori GT set
exists. With Use Case 2, we show that a small GT set of 58 pairs (out of a total of
almost 5 million possible pairs) is still enough to perform a reasonably accurate
performance ranking.

Step 4 – Calculate Single-embedding Performancet
In this step, the single-embedding ensemble performances are evaluated to get
a benchmark for the coming multiple-embedding ensemble calculations. As
performance metric, we use the 𝐹1 score, which is calculated according to the
following formula:

𝐹1 =
2

1
𝑝 + 1

𝑟

Where p denotes the precision (which is calculated as the number of items from
the GT set classified as similar divided by the total number of items classified as
similar), and r denotes the recall (which is calculated as the number of items from
GT set classified as similar divided by the total number of items in the GT similar
set). For each single-embedding ensemble, we use the following incremental
algorithm:

1. Set the starting similarity score threshold for the embedding to 1 and the
granularity of the steps to 0.01.

2. Pairs with scores above or equal to the current threshold are classed
as similar, and the others are classed as dissimilar. Check the current
classification result against the GT set of similar pairs and calculate the
current 𝐹1-score.

3. Decrement the similarity score threshold by 0.01 and return to the previous
step.

4. When finished (i.e., arrived at threshold -1) the maximal performance of
the current embedding is the maximum of all the yielded 𝐹1-scores.

5. When max performance has been calculated for all embedding types: the maximal
𝐹1-score of all embedding types is chosen as our benchmark.

This benchmark represents the best possible result that we can achieve with a
single-embedding strategy and calculating it answers the question “If we could
use only one type of embedding for this task, which one should we choose?”. Thus, if we
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Algorithm 1 Pseudocode for finding single embedding benchmark
𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘←−1
for all embeddings do

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑← 1
𝑚𝑎𝑥𝑒𝑚𝑏←−1
while 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≥ −1 do

𝑓1← calculate current 𝐹1 score
if 𝑓1 > 𝑚𝑎𝑥𝑒𝑚𝑏 then

𝑚𝑎𝑥𝑒𝑚𝑏← 𝑓1
end if
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑← 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑−0.01

end while
if 𝑚𝑎𝑥𝑒𝑚𝑏 > 𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 then

𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘← 𝑚𝑎𝑥𝑒𝑚𝑏

end if
end for

can find a multiple-embedding ensemble that performs better, we would have
sustained the claim that ensemble methods can work also within the field of
embedding-based similarity calculations. As a final note, we would like to point
out the fact that the process remains essentially the same even if another quality
metric than the 𝐹1 score is chosen.

Specific for Use Case 2: We use the same scheme as above for Use Case 2, but
since we use a sampled GT set, the scores will only be approximative (since
there will most probably exist similar pairs that have not been sampled). It is
important to point out that this means that there are no strict guarantees that
a higher scoring ensemble is actually performing better than a lower scoring
one. To alleviate this problem, our suggested solution is to give the analyst a
possibility to inspect the yields from the ensembles, so that a separate assessment
of the quality of the similarity can be made (see Section 3.4).

Step 5 – Search for Optimal Ensemble Configuration

This process step is the main focus of our proposed visual analytics tool, and it
will be covered in greater detail in the next section. The aim of this step is to
determine: (1) which embeddings to combine, (2) which score thresholds to set,
and (3) which combiner function to use to achieve the highest possible quality
for the similarity calculations.
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3.4 Visualization and Use Cases
In this section, we give an overview of our proposed interactive visual analysis
tool, called EEVO, by showing how it can be used for our data set. EEVO is
implemented as a web-based tool using D3 [24], and makes use of embeddings
computed via the Google Colab platform [34]. As mentioned before, the rationale
for providing a visualization for the optimization process is that the analyst can
get important insights to the inner workings of the similarity calculations, and
therefore in turn tune the process better to meet the current needs. Furthermore,
similarity is an elusive concept (which very much lies in the eye of the beholder)
so it is hard to capture by purely computational methods.

The visualization loads five different embedding types which means that we
will have a total of 25 − 1 = 31 possible ensemble combinations to evaluate (if
counting single embeddings as ensembles as well). The performance of all these
are continuously evaluated by the tool so the user does not need to make an active
choice on which ensembles to track. Furthermore, EEVO allows for three different
combiner functions in form of voting schemes, as specified below. The mental
model of this is that: (1) each embedding type first provides a “vote" on whether
a specific pair is similar or not, and (2) the votes are then combined according to
the voting scheme to arrive at a final, unified classification of similar/dissimilar.

Single – A pair is classified as similar if at least one of the embeddings in the
ensemble has classified it as similar.

Majority – A pair is classified as similar if more than half of the embeddings in
the ensemble have classified it as similar.

Unanimous – All embeddings must classify the pair as similar.

As can be seen in Figure 3.3, the visualization interface of EEVO consists
of three main views: (A) the Embedding View, (B) the Ensemble Performance
View, and (C) the Similarity Assessment View (displayed on demand). In
the Embedding View, the embedding score thresholds can be set, and the
corresponding classification statistics can be assessed directly under the sliders.
In the Ensemble Performance View, the voting scheme can be selected, and
the ensemble performance is displayed on a scatterplot (which can be filtered
using the "Filter on score" slider) and in a high-score table. The ensembles are
represented by circular multi-colored glyphs in the scatterplot and by multi-
colored rectangles in the high-score table. The color encoding (i.e., categorical
attributes) corresponds to the colors of the participating embeddings. For instance,
an ensemble that consists of the blue, red, and purple embeddings will have
these three colors on its glyph and on its high-score rectangle. In the Similarity
Assessment View, details of the text pairs classified as similar can be assessed and
compared. To facilitate the analysis, common words are highlighted with yellow
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Figure 3.3: Using the EEVO tool to visualize the performance of embedding-based ensembles
conducting similarity calculations on paragraph-sized text (see further Section 3.4.2). In the left
view (A), the similarity score thresholds can be adjusted and the corresponding results of the
single-embedding similarity calculations are displayed. In the right view (B), a voting scheme can
be selected and the performance scores of the ensembles are displayed, both in a scatterplot and in a
highscore table. In the bottom view (C), the texts that have been classified as similar can be assessed
and compared.

spans, common authors are highlighted with green spans, and the enclosing
rectangles of text pairs that belong to the GT set are color-coded with light green
background color. When EEVO is loaded, all similarity score thresholds are
put just above the score of the highest scoring pair for each embedding, and
therefore all pairs start out by being classified as dissimilar (see Figure 3.4). When
updating the hyperparameter settings (i.e., the similarity score thresholds or
the type of voting scheme), the performance scores of all possible 31 ensembles
are continuously updated, so that the analyst does not need to make an active
selection on which ensembles to track. The design of EEVO is intended to facilitate
the construction of a mental model of the transformation of single-embedding
classifications (on the left-hand side) to the resulting ensemble classifications (on
the right-hand side). An example of this can be seen in Figure 3.3, where the
number of pairs classified as similar is much higher for some of the individual
embeddings (see the numbers below the sliders) than for the combined ensemble



28 CHAPTER 3. MULTIPLE EMBEDDING SIMILARITY CALCULATIONS

Figure 3.4: The initial view of EEVO. The default slider settings lead to all pairs being classified
as dissimilar and therefore all ensembles have 𝐹1 scores equal to 0 and are hidden. Setting new
score thresholds will lead to pairs being classified as similar and ensemble glyphs appearing on the
scatterplot and highscore table.

results (see the numbers in the high-score table). This is due to the fact that we
are using voting scheme Majority as combiner function, and it has a filtering
effect. Using a different voting scheme would, of course, have yielded a different
result.

3.4.1 Use Case 1: Graph Reconstruction

The mental model of the task (i.e., network reconstruction) is that we will assume
that node pairs classified as similar have a direct citation link, and that node pairs
classified as dissimilar have no direct link. Thus, changing the score thresholds
will yield a different reconstruction of the underlying citation network.

Assess embedding interdepencency.
Before making any adjustments to the hyperparameter settings, the analyst focuses
on the Embedding Score Distribution column of the visualization (see Figure 3.4).
Visualizing the pure score distributions (see Figure 3.5, left) does not allow for any
deeper insights, but by keeping track of the scores of the pairs of the GT set, EEVO
is able to provide more interesting details (see Figure 3.5, right). The analyst
notes that there is a general, and encouraging, tendency for all the embeddings to
assign higher scores to the similar pairs than to the dissimilar. He also observes
the differences in how well the embeddings succeed in separating the two sets
and the variation in distribution shapes (both regarding the upwards-oriented
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Figure 3.5: The score distribution plots from three of the node embeddings of the citation network.
From the pure distributions (left), we can observe that the embeddings distribute the scores
differently over the pairs, but no further detailed conclusions can be drawn. However, adding
the score distribution chart for the GT set (right; green and red for the similar and dissimilar
pairs, respectively) clearly reveals that the different embedding types are not equally successful in
separating the two subsets, and that there is usually no score threshold that yields a perfect split.

total distributions and the downwards-oriented GT distributions) and anticipates
that this could be exploited by an ensemble combination.

Assess one-by-one performance.
By adjusting the similarity score threshold on one slider at a time (leaving the
others at their initial values), the analyst can assess the maximum performance
score for each embedding one at a time. By doing so (and observing the scatterplot
and the high-score table), it is straightforward to verify that the highest scoring
single-embedding ensemble is RandNE and that the worst performing one is
BoostNE (see Figure 3.6). As can be seen in the statistics cell of the high-score table,
the optimal threshold score for RandNE corresponds to a network reconstruction
with a total of almost 14,000 edges and just above 8,000 of those being correct,
which gives a benchmark score of 0.608 (see Figure 3.6). Hence, this is the best
result that we can achieve when using only one single embedding.

Assess ensemble performance.
The analyst now focuses on trying to find an ensemble combination that performs
better than the benchmark score found in the task above. As mentioned before, this
is in essence a search for optimal hyperparameter settings within the parameter
space of the possible voting schemes and the possible similarity score threshold
values. To facilitate the search, the tool continuously calculates and displays
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Figure 3.6: The maximum 𝐹1-scores for individual embeddings in Use Case 1. The higher the score
is, the more to the upper right corner the dot is situated. It is easy to see that RandNE (violet dot)
achieves the highest score and that BoostNE (yellow dot) achieves the lowest. The green bands in
the scatterplot indicate the distribution of the 𝐹1-scores (i.e., any two points on the current border
have the same score) and the border is reclined as higher scores are achieved. This gives the analyst
a visual reference of the target area for new high scores.

directive visual guidance [17], which conveys information on what would be
the consequences of decrementing or incrementing each score threshold by 0.01.
Aggregated guidance information is displayed as “information scent” above
each slider (see Figure 3.7), while the ensemble-specific guidance is displayed in
the high-score table (see Figure 3.8). The aim of the design is that the analyst
would combine the guidance with logical reasoning to augment the chances of
finding optimal performing ensembles. Unfortunately, for most cases, this is not
as easy as just following the guidance since some important aspects need to be
considered:

Inconsistent guidance: A move that is beneficial for one ensemble may not be
so for another, so the sum of all guidance may very well appear inconsistent.

Many vs. few: When in conflict, always choosing the move that is beneficial
for the highest number of ensembles may not be the best strategy, especially
when close to an optimum. Typically, the final moves will only be beneficial to
the very top scoring ensemble(s).
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Figure 3.7: Guidance above the score thresholds sliders indicates what would be the effect of moving
the threshold one step up or down. The bar size encodes the number of affected ensembles, and
the color and direction encode the potential effect: green and upwards for higher scores, red and
downwards for lower scores. A star indicates that a new session high-score can be obtained. The
guidance does not necessarily have to be consistent over all ensembles, since some may benefit from
a move while others might not: here, a move to the left would benefit only one ensemble and be
disadvantageous to several others. Nevertheless, it would still result in a new session high-score.

Figure 3.8: Guidance in the high-score table indicates the moves that would be beneficial for a
specific ensemble. Color encodes the embedding identity, and the arrow direction encodes in which
direction the corresponding slider should be moved to augment the score of this ensemble: left
means lowering the threshold and right means raising the threshold. As can be seen regarding the
different arrow directions for brown and orange embeddings, the guidance does not necessarily have
to be consistent over all ensembles, since some may benefit from a move while others may benefit
from the exact opposite.

Preserving potential: Existing guidance can be viewed as “potential for im-
provement” and is calculated under the premises that all other sliders are kept
fixed. Therefore, if there is guidance on several sliders, moving one of them
might very well “destroy” the potential on the others since the conditions now
have changed. Thus, when given a scenario with potential on several sliders, it is
prudent to proceed in smaller steps on alternating sliders and with readiness to
backtrack. Otherwise, there is a risk of “over-shooting” a branching point where
new (and possibly important) guidance would have been discovered.

The first choices to consider are which initial settings to use on the sliders
and what voting scheme to use. For both, the main options are: (1) a random
setting, or (2) an educated guess. The analyst chooses to set the slider positions
to the values obtained from the previous task to see if this could make for a
suitable starting point, i.e., each slider is positioned at the value which gives the
highest 𝐹1 score for the corresponding embedding. By switching between the
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Figure 3.9: By comparing the visual impressions of using the voting schemes Single (left) and
Majority (right), the analyst concludes that Majority seems to hold a greater potential for success
for the current slider positions. This decision (which might be wrong) is based on the fact that more
of the ensembles appear to be positioned within “striking distance” of the benchmark score, and that
there seems to be consistent guidance/potential on several sliders for several of the ensembles.

different voting schemes and comparing the visual impression of the scatterplots
and the high-score tables, the analyst then concludes that the voting scheme
Majority seems to hold the most potential (see Figure 3.9). By applying logical
reasoning when following the main directions of the guidance and applying the
strategy of alternating which sliders to move, the analyst can now fairly easy
find an ensemble with a score of 0.621 (namely, RandNE + Node2Vec), which
corresponds to an improvement of +2%. This could roughly be considered as the
potential of about 250 links more being correctly reconstructed in the network.
However, this is not the highest score that can be achieved, so the analyst must
now continue the search by trying different starting points and different settings.
By using the tool in this way, we have been able to find an ensemble with 5
contributing embeddings that achieves an improvement of +3% for this use case,
although it might be just a local optimum.

3.4.2 Use Case 2: Text Similarity

The mental model of the task (i.e., text similarity comparison) is that we will
assume that node pairs classified as similar have a high semantic text similarity,
and that node pairs classified as dissimilar have low semantic text similarity.
Thus, each possible combination of score thresholds (one for each embedding
type) will yield a different number of pairs in each set.

Assess component interdependency.
For this use case, the distribution shapes are more similar to each other than in
Use Case 1 (see Figure 3.3), and this is expected since we have used the same
algorithm on different parts of the same text. However, the GT distributions
reveal that there seems to be some variance in how the different embedding types
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Figure 3.10: When setting the sliders to the thresholds optimal for each single embedding, the
analyst observes that using the voting scheme Single immediately yields a score that is higher than
the benchmark for two of the ensembles. Following the guidance leads to even higher scores.

distribute scores over the GT pairs, so the analyst hopes that this will be enough
to be exploited in an ensemble combination.

Assess one-by-one performance.
By using the same methodology as for Use Case 1, the analyst concludes that the
highest scoring single-embedding ensemble is First and last 400 with a benchmark
score of 0.466.

Assess ensemble performance.
Using the same approach as for Use Case 1 (i.e., setting the initial slider values
to the position optimal for the corresponding single embedding), the analyst
observes that a score higher than the benchmark is immediately yielded for the
voting scheme Single (see Figure 3.10). Encouraged by this, the analyst follows
the guidance on alternating sliders and is hereby able to achieve a score of 0.553,
which is an improvement of 19%. However, since this use case makes use of
a sampled GT set, the analyst cannot fully rely on the scores (especially if the
difference is small), since they are approximative. Therefore, the analyst needs to
assess the yielded classifications by using the Similarity Assessment View (see
Figure 3.11) and determine which of the top scoring ensembles is truly the best (if
needed, this view could also be used for Use Case 1). Furthermore, the achieved
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score is not the highest possible one, so the analyst must now continue the search
by trying different starting points and different settings. By using the tool in this
way, we have been able to find an ensemble with 5 contributing embeddings that
achieves an improvement of +25% for this use case, although this might be a
local optimum as well.

As a final remark, we would like point out the fact that the current implemen-
tation of EEVO does not scale exceptionally well when loading many different
embedding types. This is mainly due to the fact that it is very expensive to
calculate the guidance, and this is also the main reason for why the guidance has
been limited to only one step. With an optimized implementation it would be
possible (and very valuable) to extend the guidance to also look “further ahead”,
as well as calculating the results of combinations of moves.

3.5 User Study
Evaluation is an important step for determining if a new interactive visualization
approach is successful or not with regard to certain criteria, for instance, usabil-
ity [44]. Since we are proposing a novel methodology for an area which has not, to
the best of our knowledge, been studied before, it has not been possible for us to
directly compare the proposed approach with any previous baseline approaches
via controlled experiments or long-term case studies involving experts. Instead,
we have opted to perform an initial user study which focused on two specific
questions: (1) how well our proposed tool supports the user in finding high-
performing ensembles, and (2) if the design of the tool is straightforward enough
to allow even users without expert knowledge of embeddings and ensembles to
succeed with the search. The study had a total of 6 participants from the field of
computer science with the following profiles:

Participant 1 – Graduate at Master’s level, general knowledge of ML and visual-
ization.

Participant 2 – Senior lecturer, expert knowledge of ML and intermediate knowl-
edge of visualization.

Participant 3 – Master’s student, general knowledge of ML and visualization.

Participant 4 – Post doc, general knowledge of ML and intermediate knowledge
of visualization.

Participant 5 – PhD student, expert knowledge of ML and intermediate knowledge
of visualization.

Participant 6 – Post doc, intermediate knowledge of ML and general knowledge
of visualization.
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All sessions were individual with a maximal duration of one hour. Each partici-
pant was given an introduction to the EEVO tool and then spent approximately
20–30 minutes on the task of trying to find an ensemble which could outperform
the best single embedding for Use Case 2 discussed in Section 3.4. At the end
of the sessions, the participants were asked to give their overall impression of
the tool and to fill out an ICE-T evaluation form [97] (this heuristic evaluation
approach focuses on self-reported estimates of visualization value aspects such
as its ability to decrease the time necessary for answering questions about the
data, to facilitate discovery of insights, etc.) All of the participants were able to
find an ensemble which outperformed the best single embedding. With regard
to our focus questions, the results hence suggest that our tool can be used for
its intended task, and also that it can be used without prior expert knowledge
within the fields of embeddings and ensembles. Furthermore, the oral feedback
given at the end of the sessions was consistent and could be condensed to the
following:

• The tool was perceived as being user-friendly and having an appropriate
design for the intended use.

• The continuous guidance provided good support for solving the task and
the chosen visual metaphors were straightforward and easy to interpret.

• For better analysis of situations when the guidance is ambiguous or non-
existent, an extended “guidance horizon” (beyond the current limit of one
step left/right) would be beneficial.

Figure 3.12: The ICE-T scores with the participants sorted on average score. The respective ICE-T
categories focus on the ability of the visualization approach to discover insights, decrease time for
task solving, convey essense of the data, and generate confidence about the data [97]. Green is
indicating good results, as opposed to red.

For aggregating the results from the ICE-T questionnaire responses, we
performed a numerical translation of the answer options to a scale from 1 to 7,
with higher scores indicating better results. Figure 3.12 provides an overview
of the scores, indicating that a majority of the participants have graded EEVO
at the higher end of the scale. On the whole, our general assessment of the
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study setting and the obtained feedback is that the consistent and positive results
provide support for the claims that the methodology is working, and that our
proposed application can be used for the intended task.
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4.1 Introduction

In this chapter we will add one more level of embedding combinations to the
foundation that we have already laid. Our starting point is the observation that,
for the specific problem of embedding MVNs, current research has explored
several methods to embed both the network structure and the attributed data
together [23]. However, separate embedding technologies for data types that
are common building blocks for MVNs already exist (e.g., separate embeddings
for network structure, word/text, categorical attributes etc.) [3, 35]. This opens
for an alternative approach where different aspects of the underlying MVN
are first separately embedded and then combined to form the full embedding
representation. Here, we explore such an aspect-driven approach on an attributed
article citation network built from a large set of scientific publications and our
all-embedding approach covers the aspects: (1) citation network topology, (2)
the abstract text, (3) co-author information, and (4) numerical attributes, see
Figure 4.1. On this base we build an interactive application, called Simbanex

39
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(short for similarity-based network exploration), which is intended to be used
within the fields of bibliometrics and scientometrics and allows the user to
perform interactive similarity-based exploration of the underlying set of scientific
documents. To demonstrate the usefulness of this type of similarity-driven
exploration, we present two different use cases, where the first focuses on citation
link analysis and the second on topic similarity. Furthermore, we show that the
proposed aspect-driven all-embedding strategy may be applied to any complex
data that can be broken down into separately embeddable aspects, so the general
methodology is generalizable and not only limited to MVNs. Nevertheless, the
strategy also has some limitations and the main trade-off for the application design
is between having a heterogeneous framework of several different technologies, or
a homogeneous framework based on the same concept (in our case embeddings).
We opt for the latter, since we want to explore how far we can come by mainly
using, and combining, already existing and well-proven embedding technologies.
The early versions of the Simbanex tool had a more narrow focus on text similarity
only, and it was named Simbatex (short for similarity-based text exploration) [99].

Figure 4.1: A schematic view of how the aspect-driven approach has been applied to the data set.
The underlying MVN is partitioned in to several different node-based aspects: co-author information
(blue), position in the citation network (orange), numerical data (green), and the abstract text
(red). Each aspect is embedded separately and then the pairwise similarity classifications (i.e.,
similar, dissimilar, or uncertain) are calculated using the methodology described in Section 3.2.
The possibility to combine these aspect classifications allows for flexible construction of dynamic
queries in the Simbanex application (see Sections 4.2 and 4.3). This methodology can be generalized
to any complex entity which may be divided into separately embeddable aspects.
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4.2 Process
In this section, we outline the step-by-step process that we apply to our data
and the major computational concepts that are used within Simbanex. The main
idea of our approach is is a two-level process which first uses the methodology
developed in chapter 3 to obtain the best possible aspect classifications, and then
combines these partial classifications to arrive at a final classification using the
three classes similar, dissimilar, and uncertain (see further Figure 4.1). In other
words: when comparing two entities we first divide them into several smaller
parts that we can compare one by one, and we then deduce the similarity of the
two entities based on these comparisons. A coarse grained list of the process is:

1. Divide the MVN into several different aspects

2. Embed each aspect separately

3. Calculate the pairwise similarity scores

4. Determine the aspect classifications

5. Save the classifications to file

To better illustrate the above, we will now go through how each step was applied
to our data set.

Step 1 – Divide Into Aspects
To demonstrate the methodology, we have chosen the following four separate
node-based aspects for the publications in our data set, see Figure 4.1.

1. The position in the citation network topology

2. The abstract text

3. The co-author information

4. The numerical citation counts

The rationale for this choice is that is a mix of data types which each provide
a different example on how the embeddings can be combined for the similarity
calculations. Furthermore, although limited, this set of aspects still illustrates
the methodology well enough to provide an understanding of how more aspects
could be added if needed. The advantage of using these four aspects separately,
as compared to trying to capture them all at once with only one embedding, is
that we will have a greater flexibility when specifying our search queries. Instead
of just having the possibility of determining whether two articles are similar or
dissimilar (with regards to all aspects at once) the aspect-driven strategy will
give us the possibility to specify criteria that use separate combinations of them.
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For example: Articles with similar abstract text AND dissimilar authors AND lie far
from each other in the citation network AND have similar citation counts. Furthermore,
we may also choose to exclude some of the aspects totally from a query and, for
instance, search for publications with similar authors and similar citation counts
regardless of the similarity of the abstract texts or the positions in the citation
network.

Step 2 – Embed Each Aspect
For each publication, we now create several different embeddings for each aspect
in the following way.

Position in the citation network: Exactly as in Section 3.3, we use neighbourhood-
aware technology to embed the nodes of the citation network, and the assumption
is therefore that the embedding vectors of article nodes that lie close to each other
will yield a high cosine similarity value; and that the vectors of article nodes
that lie far apart will yield a low cosine similarity value. We use three different
algorithms (RandNE, Node2Vec, and Laplacian Eigenmaps) and therefore obtain
three different embedding vectors for each publication regarding this specific
aspect. The benefit of having several different embeddings for a specific aspect is
that we can apply the methodology outlined in Section 3.2 when determining the
final classification. Thus, we have the potential to obtain a better result than by
using just one single embedding type.

Abstract text: Exactly as described in Section 3.3 we use paragraph text embedding
technology to embed the abstract text of the publications and the assumption is
therefore that the embedding vectors of abstracts that are semantically similar
to each other will yield a high cosine similarity value, and that the vectors of
abstracts that are semantically dissimilar will yield a low cosine similarity value.
We use the Universal Sentence Encoder (USE) [18] to embed the text, and we
obtain five different embedding vectors for each publication by feeding it five
different “portions” of the text as follows:

Type 1 – Embed the first 400 characters of the text and thus capture similar
beginnings, but ignore everything else.

Type 2 – Embed the last 400 characters of the text and thus capture similar
endings, but ignore everything else.

Type 3 – Concatenation of Type 1 and Type 2. Capture abstracts with similar
beginnings and similar endings.

Type 4 – Embed the full text and thus capture overall similarity, but with the risk
of being “diluted” in the sense that it becomes more and more challenging
to capture “a single meaning” as the text grows longer.

Type 5 – Embed keyword sentences extracted from the text and thus capture
overall similarity, but with the risk of the keywords not being representative.
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The rationale for the partitioning of the text is that there is often an implicit
structure regarding what is written in the beginning and what is written at the
end of an article abstract, and therefore this structure could (at least in theory) be
exploited. Furthermore, the limit of 400 characters (which is a somewhat arbitrary
choice) has been set in relation to the average length of the abstracts, which is
just below 1,000 characters (or roughly 150 words in about 8 to 10 sentences).

Co-author information We use neighbourhood-aware technology to embed the
nodes of the co-author network that is associated with our citation network. The
assumption is therefore (in analogy with the embedding of the citation network)
that the embedding vectors of author nodes that lie close to each other will yield
a high cosine similarity value and that the vectors of author nodes that lie far
apart will yield a low cosine similarity value. However, this time we need to
handle the fact that there are usually several co-authors of a publication. So,
to obtain a single embedding vector for each publication, we take the average
of all the corresponding author node embedding vectors. Hence, the resulting
embedding captures information of all co-authors, and it yields high cosine
similarity values with vectors from articles which have co-occurring authors.
We use the same three algorithms as for the citation network and therefore
obtain three different embedding vectors for each publication also regarding this
specific aspect.

Citation counts We embed each of the two numerical citation counts with a
custom embedding which captures the following similarity rules:

1. For counts below 100, a maximum difference of 10 is allowed (e.g., 2 and 8
will be regarded as similar, but 5 and 17 will be regarded as dissimilar).

2. For counts between 100 and 500, a maximum difference of 50 is allowed
(e.g., 122 and 161 will be regarded as similar, but 328 and 381 will be
regarded as dissimilar).

3. For counts above 500 a maximum difference of 500 is allowed (e.g., 537 and
968 will be regarded as similar, but 1,044 and 1,613 will be regarded as
dissimilar).

The rationale for the above set of rules is that it is not uncommon to have
different “similarity binning granularity” depending on where on the scale we are
measuring. For example, many people would probably regard a citation count of
2 to be quite different from 53, but at the same time regard a citation count of 438
to be quite similar to 502, although the distance between the two former is less
than between the two latter. The specific bins have been determined by assessing
the histograms of the citation counts of the data set, see Figure 4.2. Alternatively,
the similarity rules could have been expressed as a maximum allowed percentage
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Figure 4.2: The Aminer citation counts represented as a histogram with bin size 100. As can
be seen, the bulk of the data is heavily skewed to the left with a long tail to the right. From
this distribution, it is reasonable to argue for the use of different “similarity binning granularity”
depending on location on the x-axis. Using only a large bin would make all of the observations to
the left similar, and using only a small bin would make no observations to the right similar.

difference between the numbers (i.e., X and Y are regarded as similar if they
differ less than Z% from each other) but this is not straightforward to capture
with an embedding.

Step 3 – Calculate Pairwise Scores
The next step, after embedding each aspect separately, is to calculate the pairwise
similarity scores. As we have seen, a total of 13 different embedding vectors
have been created for each publication in our data set, and we now calculate
the pairwise cosine similarity scores for each embedding type. This yields 13
different similarity scores (for each article pair) which can be grouped by aspect,
so that every pair now has 3 similarity scores for the position in the citation
network, 5 similarity scores for the abstract text, 3 similarity scores for the author
information, and 2 similarity scores for the citation counts.

Step 4 – Determine Aspect Classifications
First, we find the best possible score thresholds for each embedding (as described
in Section 3.3, Step 4). We then introduce an uncertainty interval around these
thresholds which is used in the following way: (1) pairs with scores above the
interval are classified as similar, (2) pairs with scores below the interval are
classified as dissimilar, and (3) pairs with scores within the interval are classified
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as uncertain. We then apply the following voting scheme: “ (1) If a majority of the
embeddings vote for similar, the pair is classified as similar with regard to this aspect.
(2) If a majority vote for dissimilar, the pair is classified as dissimilar with regard to this
aspect. (3) If none of the previous holds true, the pair is classified as uncertain with regard
to this aspect." Thus, for each article pair this results in 4 separate classifications
which describe how similar (or not) the articles are with regard to each of the 4
chosen aspects. The rationale for using an uncertainty interval is that it is usually
hard to find a perfect single-threshold split for similar/dissimilar, and that it
is often of interest to be able to identify, and further investigate, so-called near
misses.

Step 5 – Save to File
Finally, we store the pre-calculated classifications into files that will be loaded
into the visualization on start. This allows for queries with high responsiveness
since the classifications can be directly mapped to the GUI slider positions (see
further Section 4.3.1). Only minor further calculations are needed, and they can
be performed within the browser which eliminates the need for a synchronous
backend.

As can be noted from the content of this section, one major advantage of the
proposed all-embedding strategy is that it gives a straighforward and homoge-
neous framework for calculating the similarity classifications, even for complex
data types such as network topology and paragraph-sized text. Furthermore,
we note that the methodology is generalizable beyond the scope of MVNs since
the approach may be used on any complex entity that can be broken down into
separately embeddable aspects. On the other hand: (1) it may be challenging
to use embeddings to capture similarity in a way that obtains a good split of
similar/dissimilar pairs, and (2) alternative methods still need to be considered
for data types for which no suitable embedding technology exist. Therefore,
depending on the circumstances, the proposed strategy may not always be the
best choice.

4.3 Simbanex

In this section, we give an overview of the visual design of Simbanex, which is
implemented as a web-based tool using D3 [24]. One of the main design goals
has been to provide a user interface that is conceptually simple regarding the
possible interactions and has high responsiveness. The visualization interface
consists of four main views: (1) the Clustering View (see Figure 4.3 [A]), (2) the
Similarity Network View (see Figure 4.3 [B]), (3) the Target-to-All View (see Figure 4.3
[C]), and (4) the Similarity Assessment View (see Figure 4.3 [D]). The first three
views are accessible (when populated) by the three tab buttons at the top of
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Figure 4.3: The user interface of Simbanex, a Visual Analytics tool for interactive similarity-based
exploration of a large set of scientific publications. In the Clustering View [A], the result of
clustering with the current similarity criteria is displayed. In the Intra Cluster View [B], the
similarity network and the adjacency matrix of a selected cluster can be assessed. The Target-to-all
View [C] shows an overview of the matches and near misses for a selected article. Finally, the
detailed pairwise comparisons can be assessed in the Similarity Assessment View [D].

the application, and the Similarity Assessment View is displayed in combination
with the Target-to-All View. The design seeks to reuse already well-proven visual
metaphors (such as circles for clusters, word-highlighting for text similarity, and
node-link diagrams and matrix representations for networks), and it also provides
a custom design for the target-to-all comparisons. Furthermore, to facilitate for the
user, the visualization continuously provides a textual explanation of the current
settings and the current results in the header banner (see further Figures 4.3 [A],
4.6, and 4.10).

On the conceptual side, we introduce the abstract metaphors of similarity
distribution and similarity patterns as mental models for thinking about what
happens when a combination of similarity criteria is executed over a set of items.
For instance, if we search for pairs with text similarity and citation proximity we
get a different clustering result than if we search for pairs with text similarity
and author dissimilarity (see Section 4.3.1). This could be thought of as the two
different criteria specifications having different distributions over the set, in the
sense that they each reveal the set of item pairs for which its criteria hold true.
Furthermore, we can think of the individual items of the set as being chained
together by similarity links that form different patterns depending on the set of
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active criteria (see Section 4.3.2). We argue that exploring these types of patterns
can give important insights to the underlying data, and Simbanex is therefore
designed to allow the user to assess them at different levels of detail. We will
discuss this in more detail in the following subsections.

4.3.1 The Clustering View

When the visualization is loaded, the articles are represented as unclustered
article icons in the Clustering View (see Figure 4.3 [A]). There are four different
similarity criteria to use (Numeric Attribute Similarity, Citation Proximity, Author
Similarity, and Text Similarity), and the user may select yes/no/unactive for each
individual criterion. In accordance with the pre-calculations described in Section
4.2, setting a slider to YES means “Find all pairs that have been classified as similar
for this aspect", setting a slider to NO means “Find all pairs that have been classified
as dissimilar for this aspect", and setting the slider to the middle, inactive position
means “Do not use this aspect for filtering purposes". The user may dynamically
select any desired combination to be executed over the data set, and the system
will cluster and display all article pairs (if any) that meet the specification. In
the terms of our previously introduced terminology, the clustering result is the
top-level similarity pattern, and it reveals the similarity distribution of the selected
criteria combination over the data set. Clusters are represented as circles where
size encodes the number of articles in each cluster, and where spatial position
and color both encode the average pairwise similarity score within the cluster.
Any changes to the settings results in an animated sequence where each article is
clustered together with the articles that it is similar to (if any) given the current
settings. It is important to note that this clustering method does not necessarily
give a cluster where all items are similar to all other items within the cluster. The
reason for this is that item X may be similar to item Y (which puts them both
into the same cluster) and item Y may be similar to item Z (which puts Z into the
same cluster as Y and X) even though item X and item Z are dissimilar. Therefore,
since a similarity relation is not necessarily always transitive, all members of
a cluster will not always be similar to all others, but all members will always
be connected to each other by at least one path. Finally, since the concept of
clustering on only dissimilarity is somewhat counter-intuitive the system will
handle such cases by filtering and not by clustering. Thus, if all activated sliders
are in the NO position, the system will display the icons of the publications that
are dissimilar to all others with regards to the activated aspects, but it will not
put them into one common cluster.

4.3.2 The Similarity Network View

Clicking a cluster displays the Similarity Network View (see Figures 4.3 [B] and 4.4)
where the similarity links between the articles are displayed both in a node-link
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diagram and in an adjacency matrix. This view allows for analysis of the similarity
pattern of the current cluster which, with regard to our introduced terminology, is
an intermediate level pattern. As previously discussed, depending on the selected
criteria combination different intra-cluster pattern may occur for the same set of
items. For example, when using one set of criteria we might get the pattern “X
and Y are similar AND Y and Z are similar BUT X and Z are dissimilar", and when
using another set of criteria we might get the pattern “X and Y and Z are all similar".
Thus, the pattern reveals information on the transitive property of the selected
criteria as well as on the overall pairwise homogeneity/heterogeneity within
the cluster. This in turn allows for even more nuanced similarity analysis since
two items that are not similar when directly compared may still be connected
by an indirect “similarity-path" and may therefore still be similar in some sense.
Furthermore, the network pattern/topology can also be used to find items which
act as bridges between groups of items with higher inter-connectivity. Since such
items can be important to locate and analyze further, Simbanex highlights nodes
with high betweenness centrality with a golden star. When the user hovers an
article node, the application highlights its similarity matches and any near misses
as well as the corresponding row/column of the adjacency matrix.

4.3.3 The Target-to-all View

Clicking an article icon in the Similarity Network View displays the Target-to-All
View (see Figures 4.3 [C] and 4.5) which supports the understanding of how
similar the selected target article is to any of the other articles in the data set, given
the current criteria settings. The similar items and any near misses are displayed
in a radial layout which aims to provide an efficient at-a-glance overview of the
pairwise comparison of each aspect. By hovering a comparison node, the user can
display a word cloud containing any co-occurring authors and any co-occurring
words.

4.3.4 The Similarity Assessment View

The Similarity Assessment View (see Figures 4.3 [D] and 4.8) is displayed just below
the Target-to-All View and shows the full details of all of the pairwise comparisons.
To facilitate the assessment, the data for the selected target article is color-coded
in blue, and co-occurrences of words and authors are highlighted with colored
spans. Furthermore, all four system-generated aspect classifications are displayed
so that the user can assess them in the direct context of the actual data.

4.3.5 Tracking

To support more specific search and analyses, the user may track articles on
author name and/or keyword in order to filter the results to show matches
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Figure 4.4: The Similarity Network View. Clicking a cluster circle displays the similarity network
of the cluster. As can be seen, similarity is not necessarily a transitive relation, so while the items
are all connected by at least one path they are still not necessarily all similar to each other. The
network pattern/topology reveals the transitive properties of the selected similarity criteria over
this specific subset of the data and can be used to establish an indirect similarity-path between two
objects that are not similar when directly compared. In this example, the user is hovering the mouse
cursor over an article icon to highlight similarity matches and near misses as well as the nodes
position in the adjacency matrix.

only relevant to the current selection. Since matches may still include articles
outside of the selection, the tracked articles will be highlighted in green-colored
frames throughout the views. In the Clustering View, the color coding of the
cluster will now indicate the fraction of tracked articles within the cluster (the
darker the green the higher the fraction). Spatial position will still encode the
average pairwise similarity score within the cluster (see Figure 4.10). The tracking
feature is helpful for answering questions such as if articles that mention certain
keywords also show high overall similarity.
Finally, we want to point out the fact that the current implementation of Simbanex
takes advantage of the fact that similarity is relatively scarce within the data set
with regards to the current aspects (i.e., most of the article pairs are dissimilar
for most of the aspects). In a scenario where similarity would be more common,
we would have less of a filtering effect since the comparisons would yield more
matches and larger clusters, which in turn would lead to a less responsive user
interface.
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Figure 4.5: Clicking an article icon in a similarity network view displays the radial Target-to-All
View. The design of this view is intended to facilitate an at-a-glance assessment of all matches
in the data set for the selected target. The colored charts indicate the current setting of activated
sliders (the small white frames within the colored areas) and marks indicate whether a full match,
or a near miss, was achieved. For non-activated sliders (no white frame present in the colored area)
an indication is given for the setting that would result in a match for the corresponding aspect.
In this case, the user has put the Citation Proximity slider (brown) and Author Similarity slider
(olive) to YES and has initiated a target-to-all comparison which has resulted in 5 matches and 3
near misses. The user is hovering the node of the comparison with article A1644 to display a word
cloud of co-occurring authors and co-occurring words.

4.4 Use Cases

In this section, we outline two different use cases that highlight some of the
strengths of the similarity-based approach. These two use cases have been
selected to showcase how the methodology could be used as a part of realistic
applications in bibliometrics and scientometrics [29, 90, 103].

4.4.1 Use Case 1 – Citation Link Analysis

Simbanex makes it easy to interactively explore and get a better understanding of
some of the citation patterns within the set of publications. The similarity-based
approach makes it possible to distinguish between citations between publications
with similar abstracts and citations between publications with dissimilar abstracts,
and this can be exploited for different tasks.
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Figure 4.6: A search for the keyword clustering results in a total of 135 publications. When in
tracking mode, Simbanex will highlight tracked articles with green frames throughout the views
(see Section 4.4.2 and Figure 4.10).

1. Starting with the simple case of determining the level of intra-set citations
the user puts the Citation Proximity slider to YES and can quickly assess that
there are intra-set citation links concerning roughly 85% of all publications,
see Figure 4.7 [background].

2. Switching the Citation Proximity slider to NO makes it possible to assess
the other 15% of the publications that do not cite publications within the
data set (a so-called outgoing citation link) and are not cited by any other
publication within the data set (a so-called incoming citation link), see Figure
4.7 [middle]. By browsing the abstracts, the user can quickly discover that
an unproportionally large amount of these cases are from early years with
regard to the time span of the data set. The user concludes that this is to be
expected since this means that these publications would have less previous
articles to cite within the data set to cite which will substantially lower
their probability for having an outgoing citation link. Interestingly enough,
very few publications from later years of the time span are found within
the subset although the reverse effect (i.e., a lower probability for incoming
citation links), would be expected for these articles. The user therefore
concludes that citing within the data set is a trend that has grown stronger
over the years and that it is very common for recent publications to do so.
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Figure 4.7: In the first three steps of Use Case 1 (in order from the background to the fore), the user
explores the level of intra-set citation and the level of self-citation.

3. To assess the level of self-citation, the user now sets both the Citation
Proximity and the Author Similarity sliders to YES and concludes that the
self-citation amounts to about 53%, see Figure 4.7 [foreground].

4. The user then decides to explore whether any potentially missing citation
links between similar publications can be found, and therefore sets the
Citation Proximity slider to NO and the Text Similarity slider to YES. This
reveals that there are 11 article pairs with high text similarity and no
citation link. Eight of these pairs have high pairwise author similarity and
three pairs have low pairwise author similarity.

5. The user clicks on a cluster of the three with no author similarity to display
the similarity network, which in this case is trivial. Clicking an article node
displays the the similarity details so that an assessment can be made of
whether the match qualifies as a possible citation that should have been
made or not, see Figure 4.8.

6. The user plans to make a submission to an upcoming conference and does
not want to miss to cite any previous articles with similar content. He
therefore embeds his proposed abstract with USE (as specified in Section
4.2), saves the results, and puts the files into a specified directory of the
application. Then, he selects the Upload Abstract button to display articles
with high semantic text similarity (if any) to make an assessment of whether
they are relevant candidates for outgoing citations or not, see Figure 4.9.
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4.4.2 Use Case 2 – Topic Similarity
For the second use case, we will use Simbanex to locate topic clusters from
selected keywords:

1. In this use case, another user has a special interest in finding out if
there are any specific sub groupings within the set of publications for
which clustering is an important topic. He therefore enters the keyword
“clustering” into the keyword search field and gets a result of a total of 135
articles (which are now highlighted with green frames).

2. Since it is still not an easy task to assess whether these 135 articles form
smaller topic clusters or not (within the larger scope of clustering), the user
sets the Text Similarity slider to YES. The system clusters the publications
and this time also filters the result so that only clusters containing at least
one tracked item remains visible.

3. From the intensity of the green color of the clusters, the user concludes
that there is one cluster containing a high fraction of tracked articles,
although the average pairwise similarity score indicates lower intra-cluster
similarity, which lowers the probability for a sub-topic cluster, see Figure
4.10 [background].

4. To further investigate, the user clicks the cluster to display the similarity
network and notes that one article acts like a bridge between 3 of the others,
which is a pattern that still makes a topic cluster possible, see Figure 4.10
[foreground].

5. By clicking the article nodes of the similarity network and assessing the
abstract texts, the user can conclude that the articles indeed form a cluster
on the sub topic of “visual cluster analysis”. Furthermore, for some of
the articles there are out-of-cluster near misses which are relevant, so the
article set can be expanded further.

6. By noting that the discovered subset of articles would not have been easily
selected only by a combination of keywords, the user concludes that there
are cases when a similarity-based approach can be used for topic detection.
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Figure 4.9: When an abstract is uploaded, the system displays possible matches (if any) based on
semantic similarity. The user can then assess each suggestion individually to verify if it makes for
relevant citations or not.

Figure 4.10: When tracking articles on keywords and/or author names the color intensity of the
clusters indicate the fraction of tracked items within the cluster (the darker the green the higher the
fraction). Clusters that do not contain any tracked articles are filtered. The Similarity Network
View for the selected cluster reveals that all contained articles are not similar to each other. However,
further assessment of the abstract texts shows that they still form a topic cluster on visual cluster
analysis (see Section 4.4.2).
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Arriving at the end of this chapter we can note that we have now presented the
two key concepts of our proposed framework: (1) multiple embedding similarity
calculations (Chapter 3), and (2) the aspect-driven approach (Chapter 4). We
have discussed them both separately and also showed how they can be used in
combination to achieve both high quality and high flexibility in similarity-based
MVN analysis. In the next chapter, we will conclude this thesis by discussing the
most important results and relating them back to the research goals set out in
Section 1.2.
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In this thesis we have explored a novel approach to MVN embedding and pre-
sented a VA methodology which introduces the concept of using, and combining,
several different embeddings for the same underlying data. We have shown
that deploying several different embeddings can allow for higher quality and
flexibility in similarity calculations than when using only a single embedding.
We have also shown the strengths and possibilities of a similarity-based approach
for MVN analysis. Our proposed strategy is generalizable beyond the scope of
MVNs, since it can be applied to any complex data type that may be broken
down into separately embeddable aspects. Furthermore, we have presented dif-
ferent visualizations which showcase our proposed methodology for real-world
scenarios within the field of bibliometrics and scientometrics. We would also
like to remind the reader, once again, that it has not been our intention to give
the impression that our approach is relevant for all problems within these fields.
Nevertheless, we believe that our proposed methodology and applications give
a relevant contribution, and that they provide a novel approach which could
hopefully be relevant to problems also beyond the scope of the ones that we have
discussed. In this final chapter, we will first discuss our results in the context of
the three research goals that we identified in Chapter 1 followed by some general
remarks and “pearls of wisdom”. Finally, we will discuss an alternative approach
for combining embeddings, and why we chose not to use it, as well as outline
possible directions for future work.
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5.1 Fulfillment of Research Goal 1

As stated by research goal 1, G1, our framework needs a method for combining
several different embeddings (of the same underlying data) in order to augment
the quality of the similarity calculations. The method which we have introduced
in Chapter 3 fulfils this goal since it provides a methodology for obtaining several
different embeddings for the same underlying data and for finding ensemble
combinations which perform better similarity calculations than any of the single
embeddings taken on their own, see Figure 5.1 and 5.2. As we have shown, it
is normally possible to obtain different embedding vectors for any embeddable
data item by either using different embedding algorithms or by varying the
hyperparameter settings for the same algorithm. The process also seamlessly
handles embedding types of different dimensionality since it operates on the level
of the calculated similarity scores (which are always calculated within a single
embedding type). Furthermore, the proposed EEVO tool for the optimization of
ensemble configurations is conceptually simple and lets the user stay in control
of the demarcation line between similar and dissimilar. As previously stated,
we believe this to be important since similarity is an elusive concept which is
not easy to capture by purely computational means. Even though there is no
guarantee that the search for an optimal ensemble will be successful for all cases,
our results clearly indicate that an ensemble is often a better choice than only
a single embedding. These results are in line with the results from ensemble
methods for supervised classification, where it has been shown that a well-chosen
ensemble combination is often a better choice than any of the classifiers taken by
its own. In other words: combining the efforts of several classifiers could hold
the potential for achieving higher quality, but it is not always possible to unlock
that potential. Interestingly enough, and much in line with ensemble learning
for supervised classification, it seems that even an embedding which performs
poorly on its own can give a valuable contribution when combined with others.
Therefore, it is in general not possible to predict ensemble performance based on
the individual performances only.

We want to conclude this section by pointing out that our methodology does
not rule out the possibility that there may exist an embedding technology that can
achieve high enough quality on its own—we are instead suggesting an alternative
strategy to use for cases when no such candidate can be identified.

5.2 Fulfillment of Research Goal 2

Research goal 2, G2, states that our proposed methodology should provide ways
to reuse, and leverage, already existing embedding technologies. Using the fact
that several embedding technologies already exist for data types that are common
building blocks for MVNs (e.g., network topology, word/text and categorical data)
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Figure 5.1: With a single embedding of each item, one similarity score can be calculated and
compared to a threshold value to arrive at a decision if the pair is similar or dissimilar.

Figure 5.2: With several embeddings of each item, several similarity scores can be calculated and
fed into a combiner function to arrive at a decision if the pair is similar or dissimilar. This figure is
identical to Figure 3.2 and is replicated here to facilitate the comparison to Figure 5.1.

and by introducing the aspect-driven approach, we have shown examples of how
a complex entity, such as an MVN, can be divided into separately embeddable
aspects. The different aspects may then be separately embedded by any already
existing embedding algorithm for that specific data type. The benefit of this
approach is that we obtain a flexible vector representation of the underlying
data which can then be used for a multifaceted analysis where single aspects
may be included or excluded depending on the needs. This in turn opens for
more subtle similarity analysis than just binary similar/dissimilar since scenarios
like “similar with regards to N out of M aspects” may be identified and further
handled. Furthermore, as we have demonstrated, the methodology developed
to fulfil research goal 1 contributes to the fulfillment of this research goal as
well since it can be used within the context of each aspect (i.e., for each aspect
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several different embedding algorithms can be used). An example of this is the
case of network node topology embedding in Section 3.4.1, which illustrates a
situation where three already existing node embedding algorithms are used and
the individual yields of their similarity calculations are combined. Hence, we see
that our proposed methodology is well suited for reusing and leveraging already
existing embedding technologies. The main advantage of this approach is that
we obtain a flexible framework that can be applied to several different scenarios,
without the need of developing new specific embedding algorithms. As we have
shown, the strategy of dividing a complex entity, like a MVN, into more limited
aspects drastically increases the possible choices of embedding algorithms.

5.3 Fulfillment of Research Goals 3 and 4

Research goals 3 and 4, G3 and G4, are tightly connected since they state that
we should develop new solutions for visualizing similarity-based aspects of
MVNs and also show how this approach can be of value for the analysis. The
fulfillment of these two goals is mainly achieved by the implementation our
prototype VA tools, Simbanex and Simbatex, by which we showcase the potential
of similarity-based analysis within the scope of MVNs generated from a large set
of scientific publications.

Although our selected use cases mainly fall within fields such as Scientometric,
Bibliometric and Science Mapping, the task of searching for “something similar to
what I have already found” generalizes to many fields as a common starting point
for analysis, and hence, it can be relevant for very different scenarios in many
different fields. In our proposed applications, we show that the similarity-based
approach can be used for: (1) obtaining a better general understanding of the
given data set (for instance, the number of items pairs that fulfill a specific
set of similarity criteria), and (2) for searching for items that are similar to a
selected target (for instance, when recommending possible citation suggestions
for an uploaded article abstract). These two tasks are the principle building
blocks of a similarity-based analysis and to develop a richer terminology for
the mental model we introduced the abstract concept of similarity patterns as a
generic term for the yielded result. As we have seen, such similarity patterns
may occur at different level of abstraction and come in the form of clustering
results (showing how the set is partitioned by the selected criteria), similarity
networks (showing how specific items are connected by similarity links) or as
the details of the pairwise comparisons (showing exactly how similar/dissimilar
two selected items are). In our tools, we have shown several different scenarios
for how to visualize and exploit these patterns in order to obtain important
insights to the underlying MVN, see Figure 5.3. A key step for this is to to
unlock the pattern-recognition capabilities of the human analyst by the specially
developed visualization techniques which are implemented in all our proposed
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Figure 5.3: The two main scenarios of similarity-based analysis: (a) assessing the number of pairs
that are similar given a set of criteria, and (b) a target-to-all search to find items which are similar
to a selected target. In both these examples, similarity is indicated by a link between the items (i.e.,
items connected by a link are similar to each other).

visualizations. In this way the purely computational steps may be used to quickly
direct the analyst to the parts of the MVN where interesting similarity patterns
occur, and the analyst may then be in control of the subtler parts of the analysis
on the greyscale between similar and dissimilar. As we have shown with the
use cases for our tools, this human-in-the-loop approach allows for advanced
exploration scenarios of the underlying MVN.

5.4 General Remarks and Insights
As we have seen in Chapters 3 and 4, our proposed strategy is based on two
different conceptual levels of embedding combination. Ideally, the targeted MVN
would first be partitioned into several different aspects, and then each aspect
would be embedded by several different embedding techniques. This two-level
process yields a highly flexible vector representation of the MVN which can
be used for a variation of analysis scenarios. As we have shown, the multiple
embeddings for each aspect can be used for augmenting the quality of the
similarity calculations, and then a similarity criterion can be mapped to each
individual aspect, see Figure 5.4. This in turn allows for high flexibility when
searching since each aspect criterion can be activated, deactivated or even negated
depending on the search interest. This fine-tuning ability is important since,
for many real-world scenarios, we can find item pairs along a floating scale of
“somewhat similar” (i.e., the items are similar to some extent for some of the
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aspects) between the pairs that are “indeed similar” and “indeed dissimilar”.
Therefore, being able to analyze this greyscale range can provide better insight
to the similarity relation between any two items. An example of this would
be comparing individuals using the five different criteria height, weight, age,
gender, and eye color. Intuitively, if person A and person B are similar on 4 out
of these 5 criteria many people would probably regard them as “more similar”
than C and D who are similar only on 2 of the criteria. Since there is usually no
unambiguous demarcation line for where similarity begins or where it ends, it
is a challenge to find the right trade-off for the computational process so that
the classification of similar, dissimilar and “somewhere in between” corresponds
to the user expectation. Classifying too many item pairs as similar distorts the
analysis and leads to lower user trust, while classifying too few pairs limits the
possibilities for a correct analysis and leads to less correct insights regarding
the data set. To handle this challenge, we have introduced the concept of “near
misses” in our proposed applications as a way to alert the user of items which
almost fulfill the selected set of similarity criteria. In this way the analyst can
choose to assess these items further to see if they are relevant for the current task
or not.

5.4.1 Alternative Method
Handling the different aspect embeddings as separate vectors is not the only
possible method that could have been used. One alternative way for combining
the embeddings, which we have also explored, is to concatenate all the separate
embeddings and thus obtain one joint embedding for each item in the data set.
We could then use these joint vectors in the similarity calculation to yield a
single overall similarity value, see Figure 5.5). With this method, item pairs with
similar aspects embeddings will yield a high cosine similarity value for their joint
embeddings. The reason for this is that if V1 and V2 yield high cosine similarity
and V3 and V4 yield high cosine similarity, then the concatenation of V1 and V3
will yield high cosine similarity with the concatenation of V2 and V4. However,
using a joint embedding means that the only hyperparameter for controlling
the classification would be the unique threshold value for the single similarity
calculation. This would in turn mean that the concept of ensembles and voting
schemes would no longer be applicable and that there would be no corresponding
way of combining the different aspect embeddings to augment the quality of the
similarity calculations. Furthermore, to the best of our knowledge, there is no
theory for deducing the cosine similarity value for a pair of joint vectors based
on the cosine similarity values of their constituent vector parts. In other words,
knowing the cosine similarity value for V1 and V2 and the cosine similarity value
for V3 and V4 does not allow us to easily deduce the cosine similarity value
for V5 = concatenate(V1, V3) and V6 = concatenate(V2, V4). Therefore, with a
similarity calculation using two joint embeddings, it would be much harder to
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reason about any aspect-specific similarity, and it would not be possible to use
the concept of aspect-specific criteria. As a consequence, using the concatenation
would result in a more coarse-grained control of the similarity calculations than
if we use the different embedding types by themselves—and that is why we have
chosen not to use this method in our framework.

5.5 Future Work
In this work, we have mainly focused on combining embeddings for similarity-
based analysis of MVNs. Looking ahead, we see several potentially interesting
directions for future work which are highlighted in the following.

Multi-embedding clustering As discussed in the introduction of Chapter 1, embed-
dings are commonly used for clustering. However, most clustering algorithms
can not handle several different embeddings for the same data item. Therefore,
we see an interesting opportunity in exploring VA solutions for multi-embedding
clustering. This would most likely include algorithm-specific adaptation, as well
as the development of generic solutions for how to combine partial results to a
final, unified outcome. Since this direction would lead to a more general context
than that of only MVNs, it will however not be one of our first to explore.

Ensemble optimization As discussed in Chapter 3, the optimization of embedding-
ensembles (which is supported by the EEVO tool) is a complex process with many
challenges, both regarding computation and visualization. A natural direction for
future work would therefore be to explore this process further to find even better
ways for optimization, visualization, and interaction. As we have mentioned, one
idea would be to explore how to extend the “horizon" of the user guidance in the
EEVO tool, and another idea would be to look into the possibilities of more direct
computational optimization. This is something that that we are planning to do.

Non-embeddable aspects In this work, we have shown how to make use of embed-
dable aspects for MVN analysis. However, there could very well exist interesting
aspects of an MVN for which no suitable embedding technology exist. Therefore,
a direction for future work could be to explore how the methodology framework
could be extended to include also these aspects. More specifically, this would
mean incorporating the results of similarity calculations that are not embedding-
based, and our assessment is that this would be relatively straightforward to do.
This is something we will consider to do if such cases present themselves within
our ongoing work.

Other data types As discussed in Section 3.2, our proposed methodology is
generic in the sense that operates on the level of numeric embedding vectors
and makes no assumptions on the underlying data type. Therefore, there is
potential for using the same methods on any complex data type that can be
broken down to separately embeddable aspects. Our assessment is that this will
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be straightforward to do since the framework makes no assumption that the
underlying data entity must be a MVN. However, since this direction would lead
to a more general context than that of only MVNs, it will not be one of our first
to explore.

The aspect of time In this work, we have shown how to combine and make use of
several common aspects of MVNs. However, we have not covered the aspect of
dynamic MVNs that change over time. Therefore, there is interesting potential
for future work in exploring what possibilities the multi-embedding approach
could bring for VA solutions for dynamic networks. Our assessment is that
this direction is the most challenging of the ones that we have presented in this
section, and that it is also the hardest to predict in terms of more concrete steps
or ideas to start from. However, since this is also one of the directions that we
find the most interesting, it is something that we are planning to explore.
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