Visualising and evaluating the effects of combining active learning with word embedding features

Maria Skeppstedt1, Rafal Rzepka2,3, Kenji Araki2, Andreas Kerren4
1The Language Council of Sweden, the Institute for Language and Folklore, Sweden
2Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
3RIKEN Center for Advanced Intelligence Project (AIP), Tokyo, Japan
4Department of Computer Science and Media Technology, Linnaeus University, Växjö, Sweden
maria.skeppstedt@sprakochfolkminnen.se, andreas.kerren@lnu.se,
{rzepka,araki}@ist.hokudai.ac.jp

Abstract
A tool that enables the use of active learning, as well as the incorporation of word embeddings, was evaluated for its ability to decrease the training data set size required for a named entity recognition model. Uncertainty-based active learning and the use of word embeddings led to very large performance improvements on small data sets for the entity categories PERSON and LOCATION. In contrast, the embedding features used were shown to be unsuitable for detecting entities belonging to the ORGANISATION category. The tool was also extended with functionality for visualising the usefulness of the active learning process and of the word embeddings used. The visualisations provided were able to indicate the performance differences between the entities, as well as differences with regards to usefulness of the embedding features.

1 Introduction
To acquire large training data sets by the use of low-cost crowdsourcing is not a universal solution for all annotation tasks. The ethical aspect could be one concern, as the concept of low-cost crowd annotations implies low-paid annotators (Martin et al., 2017). Other obstacles might be data privacy restrictions (e.g., when annotating clinical health records), or a lack of specialised competence among crowd workers, e.g., competence in the annotation task or in a specific language. Strategies for facilitating annotation are therefore important, also in the age of crowdsourcing.

A possible strategy for facilitating annotation is to minimise the amount of manually annotated data required, e.g., data required for the task of training a machine learning model. This could be achieved by (i) using active learning to actively select training samples useful to the model and (ii) training the model on information that has been derived in an unsupervised fashion. There is a large body of research that has shown the effectiveness of using each one of these strategies individually, and there are also annotation tools/annotation tool extensions that incorporate these two strategies (Skeppstedt et al., 2016; Kucher et al., 2017). However, to the best of our knowledge, there are no studies that evaluate the effectiveness of this combined data reducing strategy provided by the tools. The first aim of this study is therefore to evaluate the effectiveness of one such tool, i.e., to evaluate whether using the tool leads to the expected decrease in data size required to train a machine learning model.

Also the annotation of a smaller data set can however be a time-consuming, and potentially boring, task. Gamification of the task is one previously explored strategy for solving this problem (Dumitrache et al., 2013; Venhuizen et al., 2013).

Another potential strategy for increasing the intrinsic motivation for the annotation task, is to make the annotator aware of the usefulness of the data that is being annotated. The second aim of this study is to take a first step towards exploring this strategy in the context of an active learning process. We aim to provide a suggestion for a visualisation of how the increasingly larger training data set, which results from the manual annotation effort, changes the model that is trained on this annotated data set. That is, a visualisation that has the potential to increase the human understanding of the active learning-based annotation process.

2 Background
The tool whose performance we have evaluated, and whose active learning process we have visualised, is the tool “PAL – a tool for Pre-annotation and Active Learning” (Skeppstedt et al., 2016). PAL is meant to be used as an extension to another annotation tool, e.g., BRAT (Stenetorp et al., 2012), for annotating data to be used for training
a named entity recognition (NER) model. While high performance is often reported for the NER task, e.g., for newswire texts (Sang and Meulder, 2003), the task is more difficult for noisy texts and when small training data sets are used. For instance, the best system on the ACL 2015 Workshop on Noisy User-generated Text achieved an F-score of 0.74 for PERSON, 0.50 for COMPANY, and 0.66 for GEO-LOCATION when using a training set of 2,950 tweets (Baldwin et al., 2015; Yamada et al., 2015).

PAL provides functionality for active data selection, as well as for incorporating unsupervised data in the form of word embeddings when training the models that are used for active data selection. The tool also offers annotation support in the form of pre-annotations. This is achieved by repeatedly retraining a NER model on the data that the annotator produces in BRAT and on information incorporated from word embeddings. The trained model can then be used for two purposes: (i) to actively import new annotation data into BRAT, i.e., to actively select data useful for improving the model, and (ii) to simplify the annotation by providing the annotator with pre-annotations in BRAT format. To allow the annotator to add, delete or change the span length of pre-annotated entities — instead of annotating from scratch — has been shown to reduce annotation time (Lingren et al., 2014).

PAL could, for instance, be used according to the annotation process suggested by Olsson (2008). That is, to first annotate an actively selected subset of a corpus to achieve a model that can perform pre-annotations with acceptable accuracy, and thereafter use this model for providing the annotator with pre-annotations when a larger corpus is annotated. Such a corpus might, for instance, be used for training a model that requires a large training data set to perform well. The current study focuses on the first part of such a use case, that is on the process of actively selecting training samples to achieve a model that recognises named entities with acceptable performance.

2.1 Approaches for minimising training data

To use active learning, instead of a random sampling of training data, has led to a reduction of the number of samples needed to train classifiers to recognise different entity types (Shen et al., 2004; Tomanek et al., 2007). The technique builds on the following idea: Data samples estimated to be useful to a machine learning model are actively selected from a pool of unlabelled data. The selected samples are presented to an annotator for manual annotation, and the newly annotated data is then added to the set of labelled data that is available for training the model. This expanded training data set is then used to retrain the model, which in turn is applied in the next iteration in the process of actively selecting data. The estimate of a sample’s usefulness can, for instance, be based on the level of disagreement among different classifiers (Olsson, 2008, pp. 25–29), or on properties specific to the type of model used, e.g., a confidence measure provided by the model (Settles, 2009).

The other technique included in PAL for reducing the training data size is to incorporate features gathered in an unsupervised fashion, through the use of text distributional properties of word types. There is a large body of research that shows this technique to be effective for named entity recognition, e.g., the use of features in the form of Brown clusters (Miller et al., 2004) and more recently in the form of different types of word vectors automatically derived from large corpora (Sahlgren, 2006; Mikolov et al., 2013). Word vectors have for instance been incorporated in the feature set when using conditional random fields classifiers (Turian et al., 2010; Guo et al., 2014; Henriksson, 2015; Copara et al., 2016), or used as input to different types of neural network-based classifiers (Godin et al., 2015; dos Santos and Guimarães, 2015; Yang et al., 2016; Lample et al., 2016; Reimers and Gurevych, 2017). There is, however, less research that investigates the effects of using the two strategies of unsupervised features and active learning in tandem; in particular their effects on small data sets, i.e., the use case that we explore here.

2.2 Functionality of PAL

Each iteration in PAL is run in two steps. First, data positioned in PAL’s “folder for labelled data” is used for training a machine learning model; a model which is then used for selecting new data samples from PAL’s “folder for unlabelled data.” The model also provides BRAT-format pre-annotations for the selected data, enabling it to be directly imported into BRAT (Figure 3b). In the second step, which takes place after the data has been manually annotated, the data annotated in BRAT is moved into PAL’s “folder for labelled data”, to enable the next active learning iteration.

A basic feature vector for training the model, x_n, is constructed through representing each token by a concatenation of (i) the one-hot encoding for the token with (ii) the one-hot encoding for a configurable number of neighbours to the token.

The functionality of incorporating features derived in an unsupervised fashion is provided in PAL through an extension of the basic vector by a vector derived from pre-trained word embeddings. This is achieved by concatenating the basic feature vector with the word embedding vector that represents the token, as well as with the word embedding vectors that represent the neighbours of the token.

Information from gazetteers or information on which words were capitalised were not included in the feature set, to focus the experiment on the effects of the different strategies compared. This also makes the results somewhat more generalisable, e.g., to entity types that are not typically capitalised or for which gazetteers do not typically exist, or to languages that do not use an initial capital letter as a signal for names.

With the focus on making the data selection and model training process as comprehensible as possible for a human, we used the main classification method included in PAL, which is a token-level logistic regression classifier. That is, a classifier for which a human-interpretable confidence measure can be returned for each token in the pool of unlabelled data. The output of this unstructured predictor, is then post-processed into B/I-labels for tokens classified as an entity.

The confidence is then used for carrying out uncertainty sampling from the pool of unlabelled data (Settles, 2009). More specifically, the measure used is the difference in certainty level between the two most probable classifications for each of the tokens in the data pool. Given c_{p1} as the most probable classification and c_{p2} as the second most probable classification for the observation x_n, the uncertainty measure would be:

$$M_n = P(c_{p1}|x_n) - P(c_{p2}|x_n)$$ \hspace{1cm} (1)

The smaller M_n, the higher is the uncertainty of the classifier and the higher is the sample ranked in the active selection process (Schein and Ungar, 2007).

PAL represents each training sample by the lowest M among the tokens it includes. For each iteration in the active selection process, samples that contain tokens with the lowest M-values are thereby selected. To achieve a variation among the samples selected, PAL also imposes the constraint of not allowing the selected texts to include the same word twice, if this word is predicted by the model to be included in a named entity.

PAL accesses embeddings through Gensim (Rehůřek and Sojka, 2010) and uses Scikit-learn’s (Pedregosa et al., 2011) logistic regression classifier with a regularisation strength determined through cross-fold validation.

3 Method

The evaluation of PAL was carried out using the Broad Twitter Corpus (Derczynski et al., 2016), which consists of English tweets annotated for the three entities PERSON, LOCATION, and ORGANISATION. The corpus is sampled across different regions, temporal periods, and from different types of Twitter users, to ensure a large diversity of the entities included. Each of the three entity types was annotated separately.

We removed metadata in the form of hashtags and usernames starting with @, to make the task more similar to most previous NER tasks, where entities are mentioned in a textual context. The corpus is divided into six segments, each of them with a different signifying property, e.g., tweets from popular individuals, tweets from mainstream news, or tweets focused on one specific event. For performing the experiments we, however, sampled randomly from the corpus (as described below), without taking this structure into account.

3.1 Simulation of active learning

The active learning process in PAL was used in simulated mode as follows: the machine learning model was first trained on a small labelled data set consisting of 200 randomly selected tweets, i.e., a set representing an initial seed set. The task of the active learning algorithm would then be to select the most informative data points from the pool of unlabelled data. In the experiment, the “pool of unlabelled data” was simulated by the texts from the pre-labelled tweets in the Broad Twitter Corpus, and the corpus labels were used to simulate input in the form of manual annotations performed by the annotator.

For the experiment performed, we selected 20 tweets in each iteration. These 20 tweets and their corresponding labels were thus added to the set of labelled data, to simulate the process of them being manually annotated. The model was, thereafter,
retrained, and a new iteration in the process of actively selecting tweets was then carried out, until the set of labelled data contained 1,000 tweets.

A context window of the two most immediate neighbours was used, with a frequency cut-off of three occurrences for a neighbour to be included. Word embeddings from a word2vec skip-gram model, which had been pre-trained by Godin et al. (2015) on 400 million tweets, were used as unsupervised features.

3.2 Evaluating the active learning simulation

The strategies used in PAL for decreasing the training data size required were compared to a baseline strategy. A total of four different strategies were thus evaluated for their performance on a small training data set: (i) the baseline, with random data selection and a basic feature vector, (ii) data selection through active learning and the basic feature vector, (iii) random data selection and the feature vector extended with word2vec features, and finally (iv) data selection through active learning and the feature vector extended with word2vec features.

4,000 tweets were randomly selected from the Broad Twitter Corpus to simulate the pool of unlabelled data, and 2,000 other tweets were randomly selected to be used as evaluation data. From the simulated pool of data were then 200 tweets randomly selected to form the seed set.

Starting with this seed set, an evaluation was carried out of the four different strategies investigated. For one of the active learning strategies, the basic feature vector was used, and for the other, the word2vec extension. For every step in the iteration, the performance of the model was evaluated against the 2,000 tweets that formed the evaluation data, i.e., after 20 new training data samples had been actively added to the training data set.

For the two strategies that did not include active learning, each iteration instead consisted of a random selection of 20 new tweets from the simulated data pool. A new model was trained on data including these newly selected tweets, and then evaluated against the 2,000 tweets in the evaluation set. The same randomly selected data sets were used both for the setting with word2vec features and the setting without these features.

As results of the study were heavily dependent on the random selection of a number of small data sets, it was particularly important to make sure that results achieved were not due to chance. The entire experiment was therefore repeated 10 times, each time with a new random selection of data pool, evaluation and seed set, as well as training data for the strategies not using active data selection. A separate experiment was carried out for each one of the three entity types LOCATION, ORGANISATION and PERSON, i.e., matching the manner in which the evaluation corpus had been annotated. Entities were represented by the BIO-encoding, and the classifications were evaluated using the CoNLL 2000 NER script (Tjong Kim Sang and Buchholz, 2000).

3.3 Visualising the active learning process

We extended PAL by enabling it to record statistics for the pool of unlabelled data for each iteration of active data selection. We also extended the tool by adding a command which allows the user to generate a visualisation of this recorded data. The visualisation aimed to increase the human understanding of the active learning and classifier training by (i) showing why a particular set of samples are chosen for manual annotation in each iteration, (ii) showing an indication of the usefulness of the embedding features used, through visualising how clusters formed by the embeddings correspond to the entity categories investigated, and (iii) showing how the classification uncertainty for the pool of unlabelled data changes when more data is annotated and used for training the model.

Figure 1: Average F-score for the ten experiment runs. The error bars show the interval between the minimum and maximum of the F-scores measured, and the x-axes show the number of training samples.
The advantage of applying the functionality in PAL that uses a token-level, logistic regression classifier for the data selection, and that selects samples based on their most uncertain token, is that the selection process is easily explainable. That is, the first of the visualisation goals can be met by con-
veying a list of these tokens, for which the model was most uncertain, together with the model’s classification uncertainty for these tokens.

The second visualisation goal can be met by plotting a t-distributed stochastic neighbour embedding plot, t-SNE (van der Maaten and Hinton, 2008), of the word embeddings that were used as features. Plotted word embeddings can then be colour-coded according to how the word which they represent most often is classified. Thereby, a comparison between classifications by the trained model and clusters of word embeddings, as shown by the t-SNE plot, can be carried out.

To show the classification uncertainty of the most uncertain tokens also helps meeting the third visualisation goal. That is, changes in uncertainty for these most uncertain tokens indicate changes in model performance when the training data size increases. In addition, the colour-coding of the t-SNE plot can also be used for indicating whether the classification uncertainty for the tokens in the pool of unlabelled data changes when more data is labelled and used as training data.

3.4 Visualisations for another corpus

To verify that the visualisation also functions on another corpus than the English corpus that we used during development and for simulation of the process, we performed a small annotation experiment on a corpus of Japanese microblogs.¹

As white space is not normally used in Japanese text, we first performed a pre-processing using the MeCab tool (Kudo, 2006). That is, the text segments generated by MeCab was used, and white space was inserted between these segments. Thereby, the white space-based tokenisation included in Scikit-learn could be used as-is. As unsupervised features, we used word embedding vectors from a word2vec model that had been trained on Japanese texts, which had been segmented by MeCab and merged with the help of a dictionary².

For this corpus, we did not perform a simulation, but instead applied PAL for the authentic use case of annotating raw text data. That is, we used the facilities of active learning and pre-annotation that are available in PAL for annotating text, and generated a visualisation after each iteration. We imported the pre-annotations generated by PAL into the BRAT annotation tool, as shown in Figure 3, to modify or delete incorrect annotations and to add omitted ones. We used annotation guidelines for entity detection and tracking (EDT)³.

4 Results

Evaluation results in the form of an F-score measurement when evaluating against an external evaluation set are shown in Figure 1, while Figures 2 and 3 show the output of the proposed visualisations for the active learning process.

4.1 Evaluation results

The main lines in Figure 1 show the average F-scores for the ten re-runs for each training data size included in the experiment. The error bars show the minimum and maximum F-scores for the ten re-runs, i.e., giving an indication of the variation in the results achieved.

For the entity categories LOCATION and PERSON, average F-scores for the four different strategies produce four well-separated lines. Results are often separated, or close to separated, also when taking the lowest/highest value measured for the ten folds into account. Active data selection gives better results than random selection, and incorporating unsupervised features gives better results than not using them. The incorporation of unsupervised features is a more useful strategy than active data selection, and, more importantly, combining the two strategies is the overall most useful method.

Figure 1 further shows that while active learning was useful also for the category ORGANISATION, the use of word embeddings instead had a small negative impact on this category for a data set containing more than 600 samples.

4.2 Visualisation output

The visualisation functionality, with which we extended the PAL tool in this study, provides one visualisation of the unlabelled data pool for each iteration in the active learning process. The left-hand column in Figure 2 shows three visualisations, one for each of the three entity categories investigated. Each of them was generated in an active learning iteration when the training data set contained 500 samples. The right-hand column in the

¹http://www.cs.cmu.edu/~lingwang/microtopia/twittergold

²https://github.com/shiroyagicorp/japanese-word2vec-model-builder

³www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/english-edt-v4.2.6.pdf
The spatial information in the t-SNE plot of word embeddings correspond well to differences with regards to the usefulness of embedding features between the three entity categories evaluated. That is, tokens classified as belonging to the categories PERSON and LOCATION, for which word embeddings were useful, are shown as clusters of red dots in the t-SNE plots. In contrast, tokens classified as belonging to ORGANISATION, for which word embeddings were shown not to be useful, mainly occur as scattered dots in the plot.

The output of experiments on the Japanese data, for a model trained on 138 manually labelled microblogs, is shown in Figure 3. Figure 3a visualises the state of the pool with regards to the LOCATION category, and Figure 3b shows pre-annotations resulting from this model.\(^5\)

![Figure 3](image)

Figure 3: (a) The state for the LOCATION entity in the pool of unlabelled data, when the NER model has been trained on 138 manually labelled Japanese microblogs. Two potential entity clusters are shown in the t-SNE plot (close to 8, Turkey, and 20, Hokkaido). Which iteration is shown can be changed through the slider provided. (b) Pre-annotations for two samples selected for manual annotation, as they contain the two most uncertain tokens in the data pool, i.e., the tokens shown as the first two elements in the list of uncertain tokens. The aim for both should be to reach 0%.

\(^4\)This measure is equivalent to inverse accuracy. Inverse accuracy is used to match the uncertainty measure used, i.e.,

\[^5\]The code for PAL, as well as for the experiments reported here, can be found at: https://github.com/mariask2/PAL-A-tool-for-Pre-annotation-and-Active-Learning. There, a link can also be found to a video showing how the state of the pool changes with an increasing training data size.
5 Discussion

Results for the \textit{LOCATION} and \textit{PERSON} entities yield that the combined functionality of active learning and incorporation of unsupervised features has the potential to lead to large increases in results on small data sets. This, in turn, shows that these techniques form useful components for the use case on which we focused here, i.e., to achieve models that can give acceptable performance on small data sets and that can be applied for providing pre-annotations when annotating larger data sets.

The categories \textit{LOCATION} and \textit{PERSON} seem to be relatively coherent in terms of the contexts in which they occur, as shown by the large model performance increases achieved when word embedding features were incorporated. In contrast, that slightly better results were achieved for \textit{ORGANISATION} without word embedding features, indicates that entities belonging to this category occur in semantically diverse contexts.

These differences in context coherence between different entity categories were also shown by the t-SNE plot functionality, which we provided to meet one of the visualisation goals of the PAL tool extension of this study, i.e., the goal of showing whether the word embeddings used as features formed clusters corresponding to manually annotated entity categories. Thereby, the annotator is provided with a possibility to estimate the effect of these word embedding features in the active learning process.

The t-SNE plot and the bar charts of the extended version of the PAL tool also meet the visualisation goals of showing why a particular set of samples were chosen for annotation, and of showing how the increased size of the training data set affects the performance of the trained model. An increased training data size led to that two of the classifiers achieved an F-score that might be high enough to be acceptable for pre-annotation, while the F-score remained low for the \textit{ORGANISATION} category, also when the data size was increased. These differences were reflected in the visualisations of the effects of the increased training data size.

We believe that visualisations that aim to increase the human understanding of the active learning process and of the features used, and that show how the state of the data pool changes as more data is manually annotated, have the potential to increase the intrinsic motivation for the annotation task. Future work will therefore include user studies to determine how annotators perceive these visualisations that were added to the PAL tool, and how the visualisations affect the motivation for the annotation work. Such user studies should also include investigations of how the performance level of the machine learning model correlates with the perceived usefulness of the pre-annotations provided by the model.

6 Conclusion

We evaluated the ability of the PAL tool to reduce the training data size required through the use of active selection of data and through the incorporation of unsupervised features in the form of word embeddings. Results achieved for the categories \textit{LOCATION} and \textit{PERSON} showed that the combined functionality of active learning and incorporation of word embeddings has the potential to lead to large increases in results on small data sets. In contrast, word embeddings did not lead to any improvements in the performance for detecting the \textit{ORGANISATION} entity, and low F-scores were achieved for this entity category, also when 1,000 samples were used for training the model.

The PAL tool was also extended with visualisation functionality, with the aim of increasing the human understanding of the active learning process and of the features used. The visualisations provided were able to indicate performance differences between the entities, as well as differences with regards to the usefulness of the embedding features. That is, the same differences that were shown in the formal evaluations against the gold standard annotations.

We hope that this study will inspire annotation projects to facilitate the annotation process by practically applying the methods that we have evaluated here. In particular, we hope that the application of PAL, and other tools that provide annotation support, will lead to that more annotation projects are being conducted on corpora for which crowdsourcing is not appropriate. For instance, corpora for specialised domains or smaller languages.

Acknowledgements

We would like to thank the reviewers for their valuable input. We would also like to thank the Swedish Research Council that funded this study (project numbers 2016-06681 and 2017-00626).
References

In *Conference of the European Chapter of the Association for Computational Linguistics (EACL)*, pages 102–107, Stroudsburg, PA, USA. Association for Computational Linguistics.

