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Abstract 
Reski, Nico (2022). Supporting Data Interaction and Hybrid Asymmetric 
Collaboration Using Virtual Reality Within the Context of Immersive Analytics, 
Linnaeus University Dissertations No 459/2022,  
ISBN: 978-91-89709-26-3 (print), 978-91-89709-27-0 (pdf). 

Immersive display and interaction technologies have rapidly evolved in 
recent years, offering advanced techniques compared to traditional Human-
Computer Interaction. Computer-generated Virtual Environments viewed 
with stereoscopic depth perception and explored using 3D spatial 
interaction can represent more accurately how humans naturally interact in 
the real world. Data analysis is a promising area of application for such 
technologies, holding potential to promote intuitive interaction, user 
engagement, collaboration, and data curiosity, as well as to foster 
appropriate contextual visualization. Even when techniques such as 
Machine Learning and Data Mining assist with the analysis of data, human 
interpretation, contextualization, and meaning making are still needed. The 
design of immersive data visualization and interaction is challenging due to 
the complexity of the involved technologies and human factors, which calls 
for an interdisciplinary research effort. 
The focus of this thesis is to investigate means of exploration, interaction, 
and collaboration using Virtual Reality and 3D gestural input in immersive 
environments within the context of spatio-temporal data analysis. Based on 
existing literature as well as following an applied and interdisciplinary 
research approach, a design space for this type of Immersive Analytics is 
defined. The emphasis on spatio-temporal data is relevant across various 
real-world contexts and scenarios, such as sociolinguistics and climate 
analysis, given that data collected nowadays commonly feature descriptors 
of where and when they were captured. An immersive data analysis system 
has been implemented and evaluated across three virtual environment 
iterations. Two core themes from a user-centered perspective are interaction 
and collaboration. The design of useful and engaging 3D gestural 
interaction techniques support the conduction of typical analytical tasks 
that aid the data exploration and thus the discovery of insights. 
Furthermore, data analysis is seldom a solitary activity, but can be 
conducted in collaboration with multiple analysts, who combine their 
knowledge to interpret and discuss the discoveries. For this purpose, the 
concept of Hybrid Asymmetric Collaboration is defined, aiming to facilitate 
an envisioned broader analytical workflow that assumes a mixture of 
immersive and non-immersive interfaces (hybrid) as well as distinct user 
roles (asymmetric). To bridge data analysis across heterogeneous interface 
types, the design of visual information cues is investigated to support 
foundational aspects of collaboration, such as awareness, common ground, 
reference, and deixis. 



The conducted research has been empirically evaluated using a 
combination of standardized and custom methods in a total of six main 
studies. The outcomes of these studies allow for reflections and the proposal 
of design guidelines for collaborative data interaction in immersive spaces. 

Keywords: 3D gestural input, 3D radar charts, 3D user interfaces, empirical 
evaluation, head-mounted display, hybrid asymmetric collaboration, 
immersive analytics, spatio-temporal data interaction, user interface design, 
virtual reality 
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Abstract

Immersive display and interaction technologies have rapidly evolved in recent
years, offering advanced techniques compared to traditional Human-Computer
Interaction. Computer-generated Virtual Environments viewed with stereoscopic
depth perception and explored using 3D spatial interaction can represent more
accurately how humans naturally interact in the real world. Data analysis is a
promising area of application for such technologies, holding potential to promote
intuitive interaction, user engagement, collaboration, and data curiosity, as well
as to foster appropriate contextual visualization. Even when techniques such
as Machine Learning and Data Mining assist with the analysis of data, human
interpretation, contextualization, and meaning making are still needed. The
design of immersive data visualization and interaction is challenging due to the
complexity of the involved technologies and human factors, which calls for an
interdisciplinary research effort.

The focus of this thesis is to investigate means of exploration, interaction,
and collaboration using Virtual Reality and 3D gestural input in immersive
environments within the context of spatio-temporal data analysis. Based on
existing literature as well as following an applied and interdisciplinary research
approach, a design space for this type of Immersive Analytics is defined. The
emphasis on spatio-temporal data is relevant across various real-world contexts
and scenarios, such as sociolinguistics and climate analysis, given that data
collected nowadays commonly feature descriptors of where and when they
were captured. An immersive data analysis system has been implemented and
evaluated across three virtual environment iterations. Two core themes from
a user-centered perspective are interaction and collaboration. The design of
useful and engaging 3D gestural interaction techniques support the conduction
of typical analytical tasks that aid the data exploration and thus the discovery
of insights. Furthermore, data analysis is seldom a solitary activity, but can be
conducted in collaboration with multiple analysts, who combine their knowledge
to interpret and discuss the discoveries. For this purpose, the concept of Hybrid
Asymmetric Collaboration is defined, aiming to facilitate an envisioned broader
analytical workflow that assumes a mixture of immersive and non-immersive
interfaces (hybrid) as well as distinct user roles (asymmetric). To bridge data
analysis across heterogeneous interface types, the design of visual information
cues is investigated to support foundational aspects of collaboration, such as
awareness, common ground, reference, and deixis.

The conducted research has been empirically evaluated using a combination
of standardized and custom methods in a total of six main studies. The outcomes
of these studies allow for reflections and the proposal of design guidelines for
collaborative data interaction in immersive spaces.

Keywords: 3D gestural input, 3D radar charts, 3D user interfaces, empirical
evaluation, head-mounted display, hybrid asymmetric collaboration, immersive
analytics, spatio-temporal data interaction, user interface design, virtual reality
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Svensk sammanfattning
De senaste åren har så kallade immersiva skärm- och interaktionsteknologier
utvecklas i snabb takt. Sådana teknologier erbjuder mer avancerade tekniska
lösningar jämfört med mer traditionell människa-datorinteraktion. Immersiva
inslag som datorgenererade virtuella miljöer med stereoskopisk djupuppfattning
och 3D-interaktion kan på ett mer exakt och naturligt sätt representera de
interaktioner vi utför i den verkliga världen.

Dataanalys är ett lovande användningsområde för immersiva teknologier, med
potential att underlätta intuitiv interaktion, skapa och uppmuntra engagemang,
samarbete och nyfikenhet för data, samt främja relevant kontextuell visualisering.
Även när teknologier som maskininlärning och datautvinning används är det
fortfarande nödvändigt att komplettera resultatet med en överordnad mänsklig
nivå av tolkning, kontextualisering och meningsskapande för att göra analyserna
kompletta och användbara. Designen av immersiv visualisering och interaktion
är en krävande utmaning på grund av de teknologiska och mänskliga aspekternas
komplexitet och fordrar därför en tvärvetenskaplig forskningsmetod.

Avhandlingens syfte är att utforska metoder som kan stödja undersökning,
interaktion och samarbete med hjälp av Virtual Reality och 3D-handinteraktioner
i immersiva miljöer inom ramen för analys av datamängder som innehåller
rumsliga och tidsmässiga data. Denna typ av Immersive Analytics baseras på
teoretiska utgångspunkter från tidigare forskning, samt en tillämpad, tvärveten-
skaplig forskningsmetod. Fokuset på datamängder som innehåller rumsliga och
tidsmässiga data är relevant för flera olika ämnesområden och sammanhang,
som till exempel sociolingvistik och klimatanalys, eftersom data som samlas
in i nu för tiden ofta innehåller beskrivningar av var och när de mättes eller
observerades. Ett immersivt datanalys-system har för detta arbete implementerats
och utvärderats i tre iterationer. Två grundläggande områden för ett användar-
centrerat perspektiv är interaktion och samarbete. Designen av användbara och
engagerande interaktionstekniker via 3D-handinteraktioner stödjer utförandet
av typiska analytiska uppgifter och underlättar undersökningen av data och
därmed upptäckten av nya insikter. Dataanalys är sällan en aktivitet som utförs
ensam, utan sker snarare i ett samarbete där flera analytiker med sin kombiner-
ade kunskap tolkar och diskuterar upptäckter tillsammans. För detta ändamål
har begreppet Hybrid Asymmetric Collaboration definierats, vilket syftar till att
beskriva ett betydligt bredare analytiskt arbetsflöde som förutsätter och omfat-
tar en blandning av nya immersiva och nuvarande icke-immersiva gränssnitt
(hybrid) såväl som distinkta användarroller (asymmetric). För att kombinera och
integrera dataanalys mellan heterogena typer av användargränssnitt utforskas
designen av visuella informationssignaler med syfte att stödja grundläggande
samarbetsaspekter såsom medvetenhet, gemensam grund, referens och kontext.

Den genomförda forskningen har utvärderats empiriskt med en kombination
av standardiserade och anpassade metoder i totalt sex större studier. Resultatet
av dessa studier möjliggör reflektioner kring samt förslag på olika designriktlinjer
för interaktion och samarbete i immersiva miljöer.
Nyckelord: 3D-handinteraktion, 3D-radardiagram, 3D-användargränssnitt, de-
sign av användargränssnitt, empirisk utvärdering, huvudburen display, hybrid-
asymmetrisk samarbete, immersiv analys, virtuell verklighet
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While immersive display and interaction technologies have fascinated re-
searchers for many years, there has been a renaissance of interest in recent
times (Lanman et al., 2014; Sutherland, 1968). In comparison to arguably more
traditional non-immersive interfaces, such as a two-dimensional (2D) monitor
as well as keyboard and mouse, immersive technologies allow for a closer cou-
pling between human user and computer system by utilizing a higher level of
sensory fidelity (Bowman and McMahan, 2007). Large wall-mounted displays
and projection technologies can be used to create physical spaces that allow one
or even multiple users to surround – or “immerse” – themselves with visual
contents for various purposes. Virtual Reality (VR) interfaces, such as stereoscopic
head-mounted displays (HMDs), enable a user to visually immerse themself
in a three-dimensional (3D) interactive Virtual Environment (VE), perceiving
the computer-generated contents intuitively as one would in the real world by
commonly applying skills learned throughout life. Modern sensor technologies
allow for device and body tracking in 3D, in turn enabling spatial interaction
in the virtual space, for instance through the direct manipulation of 3D objects.
Portable handheld devices can be used to display visual contents in-situ, even
by juxtaposing, aligning, and overlaying virtual with real-world objects in 3D
through the application of Mixed Reality approaches. Audio processing and
rendering have capabilities to create 3D spatial audio feedback, typically in
conjunction with respective head tracking sensors, providing either standalone or
multimodal experiences, for instance in synergy with respective visual interfaces.
These are just a few promising examples outlining the current state of mainstream
immersive technologies.

1
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While immersive display and interaction technologies increase not just in
availability and affordability but also become maintenance-friendlier, more and
more researchers and practitioners gain access to them for their subsequent
utilization. Naturally, it is up to the designer to lay out and create immersive
experiences that build on such technologies, across different contexts and scenar-
ios, and thus possibly taking on manifold variants. For instance, immersive VR
experiences for games and entertainment-related purposes are among the driving
forces for the success and establishment of these technologies in the consumer
market (Wohlgenannt et al., 2020). At the same time, VR has been utilized for a
variety of exciting non-entertainment purposes. Technology-mediated learning
and education scenarios appear to be of particular interest for the utilization of
VR, especially with respect to health and training tasks (Oyelere et al., 2020).
So-called exergames encourage bodily engagement through interactive immersive
experiences, facilitating mobility and the use of different physical components
that in turn can foster aspects of health and rehabilitation (Costa et al., 2019;
Kivelä et al., 2019). Simulated training environments, such as the one for lunar
exploration as presented by Olbrich et al. (2018), provide safe and risk-free alter-
natives for the practice of specific tasks as more realistic experiences compared to
non-immersive instruction methods. With 3D models already existing and being
used in various contexts and industry branches, such as architecture, immersive
VR approaches not only enable a more representative first-person viewing but
even interactive modification in real-time to prototype design in-situ directly in
the VE, either alone or collaboratively (Sugiura et al., 2018; Wolf et al., 2017).
There is also potential to apply VR technologies in non-commercial and public
settings, such as libraries, to provide engaging multisensory experiences that
build upon and complement the respective real-world counterpart in meaningful
ways, while educating the public audience about these types of interfaces at the
same time (Holappa et al., 2018; Pouke et al., 2018). Immersive VR experiences
have also been used to promote peer-to-peer learning by offering viable digital
alternatives to in-person meetups, for instance within the context of urban agri-
culture, allowing not just verbal experience report and information exchange but
also interactive demonstrations of relevant mechanisms (Parikh et al., 2022).

Another promising area of application for immersive display and interaction
technologies is data analysis, which has the potential to be enhanced through
intuitive, fluid, and integrated sensory interaction (Roberts et al., 2014). The
emerging field of Immersive Analytics (IA) has been of increased interest to data
visualization and interaction researchers in recent years (Fonnet and Prié, 2021).
IA aims to support data understanding, analytical reasoning, and collaborative
decision making through the utilization of immersive human-computer interfaces
as engaging embodied tools in virtual spaces (Skarbez et al., 2019; Dwyer et al.,
2018; Hackathorn and Margolis, 2016; Chandler et al., 2015). Skarbez et al.
(2019) as well as Hackathorn and Margolis (2016) highlight that while techniques
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such as machine learning and data mining can be useful for the processing
of large multivariate datasets in order to identify patterns, discover potential
points of interest, and extract first insights, a need for human interpretation,
contextualization, and overall meaning making remains, not least because of
human semantics capabilities. As such, immersive interfaces have the potential
to synergize, complement, and enhance data analysis conducted by human users
in various ways (Dwyer et al., 2018). Immersion can facilitate user engagement,
allowing to actively explore and reflect on data (Büschel et al., 2018; Millais et al.,
2018). 3D visual displays allow for an intuitive spatial understanding through
the perception of depth cues (Bowman and McMahan, 2007), which in turn can
be used to facilitate the visualization of data with spatial embeddings (Marriott
et al., 2018). The creation of large virtual interaction spaces has also the potential
to decrease information clutter, reducing the amount of overlapping graphical
artifacts that often require active rearrangement through the user (Bowman and
McMahan, 2007). Immersive data analysis environments can also be facilitated
through the support for collaboration, enabling multiple users to explore, analyze,
and interpret data together in order to establish joint conclusions (Ens et al.,
2019; Billinghurst et al., 2018). And naturally, new types of technologies also
invite researchers and practitioners to explore novel and intuitive applications for
data visualization and interaction in general (Kraus et al., 2022; Sommer et al.,
2017; Febretti et al., 2013; Reda et al., 2013). Following these examples, the vast
variety of potential approaches for the design of immersive data analysis tools
becomes apparent, demanding for an interdisciplinary expertise, among others
from research areas such as Information Visualization (InfoVis), Visual Analytics
(VA), Computer-Supported Cooperative Work (CSCW), Collaborative Virtual
Environments (CVEs), VR, 3D User Interfaces (3D UIs), and Human-Computer
Interaction (HCI) in general. Consequently, there are many exciting research
challenges to further investigate and empirically evaluate the use of immersive
display and interaction technologies for data analysis purposes (Ens et al., 2021),
including an overall critical reexamination of utilizing the interactive 3D space
for data analysis, which traditionally has been less commonly applied outside of
Scientific Visualization (Marriott et al., 2018).

1.1 Motivation for Immersive Data Interaction and
Collaboration

Two reoccurring themes in the IA research agenda are concerned with interaction
and collaboration (Ens et al., 2021; Skarbez et al., 2019; Dwyer et al., 2018; Marai
et al., 2016). Besides being able to perceive and infer visual structures, Streeb et al.
(2021) emphasize on the importance of interaction, providing means to access and
explore data as well as to learn how to interpret visual patterns. Research areas
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such as InfoVis and VA have comparatively established theories and practices
for data interaction, commonly in 2D, displayed through a normal monitor, and
operated with keyboard and pointer input (Fikkert et al., 2007). Within the context
of IA however, investigations are needed towards the support of embodied data
exploration and spatial immersion in 3D (Dwyer et al., 2018), either applied
and adapted from existing interaction techniques or built from the ground up.
The design of user-friendly 3D UIs is generally regarded as challenging in itself,
requiring a multitude of considerations, from technology properties to interaction
technique characteristics to human factors and ergonomics (LaViola, Jr. et al., 2017,
Chapter 10.1). The interaction with IA systems is also inherently challenging with
respect to providing support for a variety of typical data analysis tasks (Yi et al.,
2007; Shneiderman, 1996), thus requiring rich sets of features that in turn increase
overall system complexity (Ens et al., 2021; Büschel et al., 2018). The need for
more applied research to provide best practices and guidelines for the interaction
with IA systems is also highlighted by Fonnet and Prié (2021), encouraging the
incorporation of foundational knowledge from research communities such as VR
and 3D UIs into IA application scenarios.

Furthermore, data analysis is nowadays seldom an activity that is conducted
in isolation, but instead in collaboration with multiple analysts. In fact, enabling
multiple users to collaboratively explore and interpret data is often desired. For
instance, the analysis of large datasets commonly requires a broad expertise that is
unlikely to be covered by just a single analyst (Zimmer and Kerren, 2017; Isenberg
et al., 2011). Collaboration has been shown to be more effective compared to
working alone (Billinghurst et al., 2018), arguably also because it is inherently
anchored within the human nature (Neumayr et al., 2017). Visual analysis and
meaning making involve next to perceptual and cognitive also social processes,
such as the communication with other analysts to discuss the interpretation of the
data, each providing their individual and contextual knowledge (Billinghurst et al.,
2018; Heer and Agrawala, 2008). However, providing collaboration support within
the context of IA, or more specifically Collaborative Immersive Analytics (CIA),
can pose several design and interaction challenges, particularly as immersive
display and interaction technologies are often by default rather tailored to
be experienced by a single user (Skarbez et al., 2019; Cordeil et al., 2017b;
Hackathorn and Margolis, 2016). For instance, following a VR approach and
wearing a HMD, the user is visually isolated from the physical real-world
surroundings and presented with computer-generated graphical contents. This
introduces rather remote-like characteristics in regard to potential collaboration,
even in co-located scenarios, as important visual information cues, such as facial
expressions, body language, or spatial references, are no longer easily accessible
right out of the gate. Instead, collaborative features and information cues need
to be appropriately integrated through the CIA system designer, elevating the
importance for nonverbal communication features (Cruz et al., 2015). While
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research areas such as CSCW and CVEs are comparatively well studied over
many years and provide important foundational concepts and approaches, Fonnet
and Prié (2021) as well as Billinghurst et al. (2018) highlight the lack of applied
CIA research today.

In general, there is one aspect concerning IA that cannot be stressed enough:
IA research is not intended to substitute existing 2D and non-immersive data
analysis practices, but instead to add immersive 3D approaches that synergize
and complement the overall workflow. Particularly with respect to the analysis of
large multivariate datasets, there is no single tool to satisfy all of a user’s needs,
but rather multiple ones are desired, each for their own purpose, using different
visualization and interaction techniques, to support diverse problem-solving
strategies, and as such composing an overall greater analysis workflow (Cavallo
et al., 2019; Wang et al., 2019; Isenberg, 2014). Consequently, there is huge potential
for the integration of InfoVis, VA, and IA tools, not just with respect to extended
workflows but also active cross-platform collaboration, enabling multiple users to
assume different roles, perform different tasks, and have different perspectives
on the same data (Fröhler et al., 2022; Ens et al., 2021; Fonnet and Prié, 2021;
Billinghurst et al., 2018).

1.2 Research Problem, Scope, Goal, and Objectives
Following the first pages of this thesis, it becomes apparent that the main interest
of the presented research is concerned with the application of immersive display
and interaction technologies within the overall context of data analysis. The
research problem is that there is an overall lack of empirical research in the area
of IA, arguably also due of its highly interdisciplinary characteristics, investigating
the transfer and application of existing foundational knowledge and principles
into new data analysis tools and approaches. In turn, the insights gained from
the design, development, and evaluation of these new tools may be utilized to
generate best practices, guidelines, and general strategies for the implementation
of future data analysis systems and solutions.

Naturally, IA as well as CIA can concern a vast variety of different subjects,
among others depending on (1) the technological approach, both conceptually
as well as practically based on the applied output and input devices, (2) the
data type, context, scenario, and use case, (3) the purpose of the data analysis
tool and its supported tasks, (4) the role and knowledge of its user, and (5) the
setup and purpose of collaboration. All these aspects may imply their own
individual requirements, hence demanding careful considerations and a clear
depiction of the research scope. With that in mind, this thesis is concerned
with the application of a VR approach, implemented through the utilization
of HMD devices for visual immersion as well as 3D gestural input, commonly
referred to as hand or mid-air interaction, for 3D spatial interaction in the VE.
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Furthermore, this thesis is focused on the analysis of spatio-temporal data as
a specific type of multivariate data. Spatio-temporal data is a common type
of data that is highly relevant for the measurement and observation of various
real-world phenomena, typically featuring descriptors in regard to where (spatial)
and when (temporal) a measurement or observation was made. The presented
research adopts an overall user-centered perspective insofar as to focus on the
design, development, and evaluation of immersive data analysis tools that support
intuitive, usable, and engaging interaction and collaboration. While overall visual
perception related matters are considered naturally along the way as part of
human information processing in general, for instance influencing aspects of
a user’s ability to interpret the visualized data in the VE and as such to solve
tasks, the presented research is not focused on the deeper investigation and
evaluation of fundamental human visual perception matters. Independent of
whether the user is a novice or an expert in regard to a particular data context,
they should be able to utilize the developed tools without the need for extensive
training to learn the interface. Furthermore, rather than assuming that multiple
users utilize the same type of interface, the presented research focuses on the
investigation of cross-platform collaboration, specifically combining immersive
and non-immersive interfaces for collaborative data analysis.

Following the Goal/Question/Metric paradigm as described by Basili et al.
(1994), and aligned with the overall described research problem and scope, the
research goal of this thesis is defined as follows:

Purpose | Design, develop, and evaluate VR-based data analysis tools that
utilize HMD devices and 3D gestural input

Issue | to provide empirical insights and to derive design guidelines
Object | for the immersive interaction and collaboration around spatio-

temporal data
Viewpoint | from a user-centered perspective, following an applied and inter-

disciplinary research approach.

In order to practically approach and assist with the investigation of the defined
research goal, three research objectives are defined.

Research Objective 1

Design and implementation of a system that allows for multivariate
data analysis using immersive display and interaction technologies.

The first research objective is concerned with general aspects of developing
an immersive data analysis system. This is achieved through careful contem-
plation and identification of various requirements that are relevant within the
presented context, for instance as functional, non-functional, and user experience
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requirements with respect to data processing, visualization, interaction, and col-
laboration. These in turn aim to facilitate the conceptual as well as technological
design of a general system architecture, providing important building blocks that
serve as an overall foundation to aid the practical implementation of immersive
data analysis tools.

Research Objective 2

Investigation of 3D UI design approaches to support immersive
interaction with spatio-temporal data.

The second research objective is focused on the investigation of general 3D
UI design aspects that are relevant for the interaction with spatio-temporal data
in an immersive VE. Three primary aspects within this context are concerned
with (1) the data entity visualization design, i.e., the visual representation of
individual data items in the virtual space, (2) the VE composition, i.e., the overall
structure and arrangement of all virtual artifacts in the immersive data analysis
environment, and (3) the interaction design, i.e., the support for the conduction
of typical analysis tasks under consideration of general requirements inherent
from the applied display and interaction technologies. Aligned with these
aspects, respective immersive data analysis tools can be designed, developed,
and subsequently evaluated, for instance within the scope of user interaction
studies. The utilization of standardized as well as custom methods allows for the
collection of empirical data, which can be used to provide insights and reflections
for the design of future similar tools.

Research Objective 3

Extension of the immersive data analysis system to support collabo-
ration using heterogeneous interfaces and user roles.

Finally, the third research objective is concerned with the combination of
immersive and non-immersive interfaces to enable multiple users to collaboratively
analyze data, each using individual tools for dedicated purposes, to provide their
own views on different aspects of the same data. To bridge the gap between IA
and non-immersive InfoVis/VA tools that allow for synchronous collaboration,
the respective tools need to be extended through the integration of features
that support the users with their collaboration. Naturally, the immersive data
analysis tools developed as part of investigating the second research objective
serve as a fundamental building block for the exploration of this third and
final research objective. The collaborative features design should aim to align
with and support relevant foundational concepts, such as awareness, common
ground, reference, and deixis. Furthermore, non-immersive data analysis tools are
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required for the empirical evaluation within the presented context, either based on
existing ones that are extended through collaborative features, or developed from
scratch as representative prototypes that utilize commonly applied visualization
and interaction techniques. With all system components at hand, i.e., IA tool,
InfoVis/VA tool, and collaborative features, their application can be evaluated by
pairs of users in respective user interaction studies, allowing for the collection of
empirical data and the subsequent deduction of insights.

1.3 Thesis Outline
Under consideration of the overall motivation as presented in Section 1.1, the
presented thesis aims to address the in Section 1.2 described research problem,
scope, goal, and objectives, as illustrated in Figure 1.1.

Chapter 2 establishes important foundational concepts that are relevant within
the scope of the interdisciplinary work presented in this thesis. The general
approach of VR as well as important definitions and key concepts are introduced,
and relevant considerations with respect to human factors and ergonomics
inherent from the practical application of VR approaches are described. An
overview about 3D UIs is provided, focused on visual displays and 3D spatial
input devices, including detailed descriptions in regard to HMDs and 3D gestural
input as primary means of output and input hardware utilized within the scope of
this thesis. Relevant concepts and terminology with respect to CVEs, and CSCW
as closely related part thereof, are described. Furthermore, an overview about the
emerging fields of IA and CIA is given, including relevant definitions, research
opportunities, and core ideas in general. The chapter also reflects on the empirical
nature inherent from the evaluation of immersive technologies, and provides a
comprehensive summary about the various HCI evaluation methods that have
been applied within the scope of this thesis. Finally, the chapter concludes with
the construction and illustration of the thesis design space.

Chapter 3 describes and discusses relevant related work within the context
of this thesis, focusing on four general subjects. First, works in regard to
immersive data visualizations are explored that are built around a VR approach
and under utilization of HMD devices. Second, an overview is provided about
past research that is concerned with the investigation of applying 3D gestural
input for interaction with data in immersive spaces. Third, relevant existing work
is described that concerns hybrid collaboration experiences, i.e., cross-platform
collaboration where at least one interface applied a VR approach. Fourth and
finally, research in regard to the design of collaborative information cues in VEs
is presented, providing inspiration and reflections for the subsequent design of
similar information cues.

Chapter 4 is concerned with the presentation of the conceptual and techno-
logical system architecture that serves as a foundation for the implementation of
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Figure 1.1: Illustration of the thesis structure, presenting the various chapters
and their alignment to the three research objectives (see Section 1.2), outlining the
logical progression of the presented research, as well as providing an overview of
key aspects that characterize the developed and empirically evaluated immersive
data analysis systems as VE iterations.
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the developed immersive data analysis system presented within the scope of this
thesis. It is dedicated to the first research objective, providing an overview of
the defined system requirements and detailed descriptions about the four major
building blocks that compose the system, namely (1) the Data Structure Reference
Model, (2) the Immersive Virtual Environment, (3) the User Session Data Transfer, and
(4) the Collaboration Infrastructure. The chapter concludes by providing details
about the practical implementation of the developed system components.

Chapter 5 is dedicated to the second research objective and begins by re-
viewing key characteristics about spatio-temporal data and data analysis tasks
within the context of interactive visualizations. The chapter presents the design,
development, and evaluation of three major VE iterations, used to gradually
explore immersive interaction with spatio-temporal data using a VR approach. A
key difference between these iterations is how individual data items are visually
represented in the VE. The first iteration utilizes Spheres, the second Stacked
Cuboids, and the third a custom developed 3D Radar Chart approach. The interac-
tion design in each iteration is described, aimed to support the immersed user
with the conduction of typical data analysis tasks. Empirical evaluations, case
studies, and use cases across the three VE iterations are presented and discussed.

Chapter 6 is concerned with the investigation of the third research objective.
It begins with a critical examination of collaboration and cross-platform aspects
within the presented context, and leads to the definition of Hybrid Asymmetric
Collaboration. The introduced concept aims to clearly distinguish between the
utilization of immersive 3D and non-immersive 2D display and interaction
technologies (hybrid) as well as assuming distinct user roles (asymmetric) in
the collaborative data analysis activity. To aid with the empirical evaluation of
collaborative activities within the presented context, the development of the Spatio-
Temporal Collaboration Questionnaire (STCQ) is presented. The remainder of the
chapter is dedicated to the description of two collaborative setups, closely aligned
and integrated with the second and third VE iterations, describing the developed
non-immersive interface prototypes as well as the integrated collaborative features
design that enable the users to make spatial and temporal references. Subsequent
empirical evaluations are presented and discussed accordingly.

Chapter 7 can be regarded as a synthesis of the previous chapters. It takes
the obtained insights from the investigation of the three research objectives, and
addresses the overall research goal through the proposal of ten CIA design
guidelines, aiming to provide helpful directives for the design and development
of future immersive data analysis systems.

Finally, Chapter 8 summarizes the empirical work and the research findings
presented within this thesis, and provides an outlook as well as some directions
for future work.
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1.4 Ethical Considerations

The conducted research is not expected to have any direct ethical implications.
However, as the conduction of the various empirical evaluations in the format of
user interaction studies within the scope of the presented thesis involve human
participants (see Sections 5.3.3, 5.4.3, 5.5.3, 5.5.5, 6.3.3, 6.4.4, and 6.4.6), it is
important to address ethical considerations in general. The participants, all of
them adults at the age of 18 and above, were involved in the evaluation of the
developed immersive and non-immersive interfaces as users, and as such as test
subjects. The personal data collected from the participants concerned only their
identity and information relevant to assessing their ability to complete the tasks
in a user interaction study, for instance their previous experience in a subject area
or with various technologies. No information were collected on ethnicity, religion,
sexual orientation, or other personal and private topics. The participants as well
as the data collected from them were anonymized throughout this thesis, as well
as in any presentations and publications as a result of the conducted research.

As with any data visualization, particularly within the context of InfoVis,
VA, and IA, care was taken that lengths, areas, and volumes, as well as their
proportions, are appropriately visualized in the respective interfaces, enabling
the user to interpret the data without distortion or ambiguity.

In terms of the conducted user interaction studies, the participants wore
a HMD device, described in detail in Section 2.2.2. In short, a HMD is a
device that is worn on the head, similar to glasses or ski goggles, visually
isolating the user from the physical real-world surroundings. Instead, the user
is presented with computer-generated virtual content, which can be explored
by moving the head and thus looking around. Within the scope of this thesis,
two common consumer VR HMDs were utilized, i.e., the Oculus Rift CV1 and
the HTC Vive. Although these technologies and devices are widely available
and established on the mainstream market, it is possible that in rare cases
the users may encounter what is referred to as VR sickness. VR sickness,
discussed in detail as part of Section 2.1.2, can be described as any unintended
and uncomfortable side effects that may occur when using a VR system, for
instance nausea, dizziness, or fatigue. None of the conducted user interaction
studies involved the targeted evocation of such symptoms. Instead, any developed
immersive interface presented within the scope of this thesis was developed under
consideration of established VR design guidelines and best practices as provided
by the respective HMD manufacturers and informed by existing research, aiming
to actively provide conditions that prevent such symptoms from occurring in
the first place. This entailed considerations in regard to human factors and
ergonomics in general, as well as ensuring that the developed artifacts were
running stable and according to performance recommendations on its respective
computer system.
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Furthermore, there are some operational practicalities that are worth address-
ing inherent from the application of HMDs for VR experiences in general. The
HMDs utilized within the scope of this thesis were physically connected via cable
to an external computer system for respective data transfer. The cable is not
visually represented in the computer-generated VE for the user to see. As the
immersed user is physically moving around, the cable can in some cases become
a tripping hazard. Within the scope of the empirical works presented in this
thesis, all VR sessions were supervised, i.e., a researcher was physically present
in proximity to the immersed user wearing the HMD, and if necessary realigning
the cable to prevent interference. Another aspect is concerned with a VR system’s
safe interaction area, i.e., the physical real-world area in which they can move
freely without obstacles. Any VR session conducted within the scope of this thesis
provided such a prepared area, either directly in the research group lab, as for
instance described in Section 5.3.3.1, or at open spaces in public demonstrations.
Furthermore, based on the HMD firmware and general integration with the
computer system, the calibrated safe interaction area is also displayed in the
immersive VE. In particular, a visual bounding box is displayed in-situ when
the immersed user is moving close to the calibrated area’s boundaries, aiming to
prevent them from leaving accordingly.

Generally, a strict protocol was followed when conducting user interaction
studies that involve the usage of immersive VR technologies. First, participants
were introduced to the overall context and scenario of the study and the tasks that
were involved. As part of this introductory phase, the participants provided their
informed consent to partake in the study, acknowledging that (1) the participation
is voluntary, (2) they may terminate their participation at any point in time
without explanation, (3) no sensitive personal information are collected, and
(4) any data collection by the researchers is confidential. Furthermore, before
conducting the actual task as part of a study, each participant was given the time
– a “warm-up” phase – to get familiar with the hardware, i.e., the HMD, and the
software, i.e., the developed interface. Realistically, a participant was wearing
the HMD for a total of approximately 15 to 40 minutes, depending on the study.
Once the actual task in the immersive VE was completed, the participants were
asked to complete some questionnaires, and potentially answer some questions
as part of an interview, which concluded the user interaction study.

All of the above is (1) common practice within the HCI research community,
and (2) compatible with the ethical guidelines of the Swedish Research Council
(2017) and the Norwegian National Committee For Research Ethics in Science
and Technology (2016).

COVID-19 pandemic The global COVID-19 pandemic (SARS-CoV-2; March
11, 2020 – present) required additional considerations and the implementation
of supplementary practical precautions for the conduction of user interaction
studies with human participants in the controlled laboratory environment. More
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specifically, within the scope of the presented thesis, this concerns the studies
presented in Sections 5.5.5, 6.4.4, and 6.4.6. These studies were conducted during
the time from April to June 2021, for which approval through the respective head
of department (Computer Science and Media Technology) at Linnæus University
was received. During that period, pandemic related matters were closely observed
on a daily basis, following (1) the national safety rules and recommendations
according to The Public Health Agency of Sweden (Folkhälsomyndigheten),1
(2) the regional safety rules and recommendations for Kronobergs län according to
Emergency information from Swedish authorities (Krisinformation),2 and (3) the
local safety rules and recommendations according to Linnæus University (Lin-
néuniversitetet).3 A study session was only conducted if all involved individuals,
i.e., moderator and participant(s), reported themselves as symptom-free. The
moderator was wearing a face mask at all times. Face masks and hand disinfection
gel was freely and voluntarily available to each participant. Physical distance
between moderator and each participant was kept at all times during a study,
which required no physical contact at any time. The respective windows in the
controlled laboratory environment were open at all times, ensuring appropriate
ventilation. Furthermore, a study that involved two participants followed a
remote setup, i.e., it was organized in a way that the participants were located
in different office rooms, so that at no point in time they were located in the
same one, ensuring recommended physical distancing at all times. All involved
technical equipment was carefully sanitized between each study task.

1The Public Health Agency of Sweden. Covid-19. Retrieved June 1, 2022, from https://www.folk
halsomyndigheten.se/smittskydd-beredskap/utbrott/aktuella-utbrott/covid-19/

2Emergency information from Swedish authorities. Current rules and recommendations. Retrieved
June 1, 2022, from https://www.krisinformation.se/detta-kan-handa/handelser-och-stornin
gar/20192/myndigheterna-om-det-nya-coronaviruset/coronapandemin-detta-galler-just-
nu

3Linnæus University. The Coronavirus and Covid-19: Information to students. Retrieved June 1,
2022, from https://lnu.se/mot-linneuniversitetet/kontakta-och-besoka/kris-och-sakerhe
t/coronaviruset/

https://www.folkhalsomyndigheten.se/smittskydd-beredskap/utbrott/aktuella-utbrott/covid-19/
https://www.folkhalsomyndigheten.se/smittskydd-beredskap/utbrott/aktuella-utbrott/covid-19/
https://www.krisinformation.se/detta-kan-handa/handelser-och-storningar/20192/myndigheterna-om-det-nya-coronaviruset/coronapandemin-detta-galler-just-nu
https://www.krisinformation.se/detta-kan-handa/handelser-och-storningar/20192/myndigheterna-om-det-nya-coronaviruset/coronapandemin-detta-galler-just-nu
https://www.krisinformation.se/detta-kan-handa/handelser-och-storningar/20192/myndigheterna-om-det-nya-coronaviruset/coronapandemin-detta-galler-just-nu
https://lnu.se/mot-linneuniversitetet/kontakta-och-besoka/kris-och-sakerhet/coronaviruset/
https://lnu.se/mot-linneuniversitetet/kontakta-och-besoka/kris-och-sakerhet/coronaviruset/
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To approach the investigation of the presented research goal and its objectives,
as described in Section 1.2, a sound foundational understanding of relevant
core themes and subjects is required. This chapter serves as means to obtain
such fundamental knowledge by thoroughly examining the existing literature,
particularly in regard to Virtual Reality, 3D User Interfaces, Collaborative Virtual
Environments, Immersive Analytics, and various aspects that concern the evalua-
tion of immersive technologies. The chapter concludes with the construction of
the thesis design space, serving as a conceptual outline for the presented research.

2.1 Virtual Reality
The idea and concept of Virtual Reality (VR) have caused fascination for many
years. The notion of diving into a virtual world, generated by computer systems,
perceiving its artificial three-dimensional (3D) environment and interacting within
it as one would in the real world, has been a subject of countless novels, such

15
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as Neuromancer (Gibson, 1984), Snow Crash (Stephenson, 1992), or the more
recent Ready Player One (Cline, 2011). Except, it is not just an imagination.
Researchers and computer scientists have been exploring possibilities for human
users to interface with computer systems on a higher sensory level than just
using two-dimensional (2D) display technologies that are operated through
keyboard and pointer input for a long time. Widely regarded as one of the first
such interfaces is the head-mounted three dimensional display prototype presented
by Sutherland in 1968. Sutherland’s (1968) system allowed a user to visually
perceive a simple graphical wireframe object, generated by a computer system, in
stereoscopic 3D. Using an apparatus with an optical system worn on the head,
nowadays commonly referred to as head-mounted display (HMD), the system
would translate the physical movements of its user and adapt the perspective
to the graphically rendered wireframe object (Sutherland, 1968). Consequently,
this would create an illusion of the virtual wireframe object floating in the
real-world space, and allowing the HMD user to look at it from different viewing
angles by naturally moving around (Sutherland, 1968). It is noteworthy that
Sutherland’s (1968) HMD did not strictly implement the concept of VR, as it did
not provide a Virtual Environment (VE) in a sense that all visual stimuli perceived
by the user were computer-generated. Instead, it implemented the concept of
Augmented Reality, by (1) combining real and virtual objects in the real-world
environment, (2) registering and aligning real and virtual objects with each other,
and (3) running interactively in 3D and in real-time (van Krevelen and Poelman,
2010). Sutherland’s (1968) HMD is considered the original augmented reality
system (Lanman et al., 2014), as it featured all of its typical system components,
i.e., display device, image rendering, head tracking, interaction, and model
generation. This general concept should later be advanced to visually render
entire VEs using a VR approach (Lanman et al., 2014).

2.1.1 Definitions and Key Concepts

Moving forward in time to today, the year of 2022, many technological advances
have led to a variety of human-computer interface types that aim to further
explore and implement the concept of VR. The definition of VR by LaValle helps
to understand its concept formally on a foundational level:

“Inducing targeted behavior in an organism by using artificial sensory
stimulation, while the organism has little or no awareness of the interference.”

– LaValle (2020, Chapter 1.1)

LaValle (2020, Chapter 1.1) highlights and discusses the four key components
of his VR definition, i.e., target behavior, organism, artificial sensory stimulation,
and awareness. In other words, a human or another type of being (organism)
experiences something as specifically designed by a creator (target behavior).
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Figure 2.1: Reality-Virtuality Continuum, adapted from Milgram et al. (1995) as
well as Milgram and Kishino (1994).

Furthermore, this is achieved by using technology that is able to closely connect
to the organism’s sensory system and stimulate it in accordance to the intended
experience (artificial sensory stimulation). During such a designed experience,
the organism has little awareness, if any at all, that the sensory stimulation
is artificially engineered, ideally making the experience “feel real”. Among
others, LaValle’s (2020, Chapter 1.1) definition of VR is general insofar as it
does not specify, and thus limit, what sensory organ is going to be artificially
stimulated. Focusing on human users as the main target group for VR experiences,
interfaces exist to stimulate all five human sensory organs (Wallergård et al., 2022,
Chapter 3.4.3; Burdea et al., 1996):

1. Visual interfaces to stimulate sight (eye);

2. Auditory interfaces to stimulate hearing (ear);

3. Somatosensory interfaces to stimulate touch (skin);

4. Olfactory interfaces to stimulate smell (nose);

5. Gustatory interfaces to stimulate taste (mouth).

Using such types of interfaces, either standalone by themselves or as a
multimodal approach that combines multiple ones, it is possible to blend a
user’s experience with virtual information to various extents. The Reality-
Virtuality Continuum (Milgram et al., 1995; Milgram and Kishino, 1994), illustrated
in Figure 2.1, helps to formally understand the differences between various
conceptual interface approaches. While one end of the continuum corresponds
to a Real Environment, i.e., an environment without any additional computer-
generated artifacts, the opposite end corresponds to a VE, i.e., an environment
that consists entirely of virtual artifacts (Milgram et al., 1995). In between these
two contrasting ends of the continuum, various types of Mixed Reality approaches
can be established, essentially blending real and virtual environments to a certain
extent (Milgram et al., 1995). Milgram et al. (1995) highlight the concepts of
Augmented Reality and Augmented Virtuality as two prominent types of mixed
reality. Augmented reality builds conceptually on extending the real environment
with virtual information (Milgram et al., 1995; van Krevelen and Poelman, 2010).
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Augmented virtuality, which can be regarded as the respective counterpart to
augmented reality, aims to extend an environment that is mostly composed of
virtual artifacts by integrating objects and information that originate in the real
environment (Milgram et al., 1995). Milgram and Kishino (1994) center this
taxonomy around three key dimensions:

1. Extent of World Knowledge: The extent to which the world is modeled, i.e.,
unmodeled (real environment) versus partially modeled (mixed reality)
versus completely modeled (VE).

2. Reproduction Fidelity: The quality of the applied technology to render the
designated artifacts, real as well as virtual.

3. Extent of Presence Metaphor: The extent to which the user is intended to feel
fully integrated in the rendered scene, i.e., the extent of “feeling there”.

An analysis of applied technologies towards these key dimensions provides
guidance and consequently an important formal classification with respect to
mixed reality and VR experiences. Additionally, Skarbez et al. (2021) provide
some valuable reflections on Milgram and Kishino’s (1994) taxonomy, among
others arguing that based on today’s technological possibilities and limitations,
the original VE end of the continuum could be adapted to represent VEs as
External Virtual Environments insofar as that they are computer systems that are
still situated in the real world at the end of day.

At this stage, it is also important to clearly distinguish between the two terms
VR and VE, as they are often applied interchangeably (LaViola, Jr. et al., 2017,
Chapter 1.3). Generally, VR refers to the overall approach of using different types
of interfaces to stimulate the human sensory organs in order to allow the user to
immerse themself in a VE (LaViola, Jr. et al., 2017, Chapter 1.3). Therefore, a VE
refers to the artificially computer-generated environment as experienced through
the human user, i.e., from a first-person point of view, typically in 3D, and under
real-time control (LaViola, Jr. et al., 2017, Chapter 1.3). Steinicke (2016, Preface)
presents three substantial features according to the definition of VR by American
computer scientist Frederick Phillips Brooks, Jr., that further assist with the clear
distinction between VR and VE. These are arguably of particular relevance within
the context of VR approaches that rely on the application of visual interfaces to
stimulate sight. According to Brooks, Jr., VR features (Steinicke, 2016, Preface):

1. Real-time Rendering: The computer system dynamically updates the visually
rendered artifacts in the VE in accordance to the user’s respective body
and head movements.

2. Real Space: The VE provides a genuine 3D space, either concrete or abstract,
that is composed of 3D artifacts.

3. Real Interaction: The user can interact with the 3D artifacts in the VE through
direct manipulation.
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Within the context of describing and discussing VR, it is furthermore important
to clearly distinguish between two other prominent terms, namely immersion and
presence. Arguably, Slater has investigated and coined the discussion around
these terms in the research community like few others (Slater, 2003; Slater and
Wilbur, 1997; Slater and Usoh, 1993). Bowman and McMahan summarize the
definitions of immersion and presence based on Slater’s descriptions as follows:

“Immersion refers to the objective level of sensory fidelity a VR system
provides. Presence refers to a user’s subjective psychological response to a
VR system.”

– Bowman and McMahan (2007), adapted from Slater (2003)

A computer system’s level of immersion is directly measurable from an
objective point of view (Slater, 2003). That is to say, the more a computer system
provides interfaces that artificially stimulate the user’s sensory organs in line
with their respective real-world modalities, the more immersive it can be assessed
as (Slater, 2003). Consequently, some computer systems may be more immersive
than others. Bowman and McMahan (2007) further highlight that a computer
system’s level of immersion may be dependent on hardware as well as software
aspects. For instance, in the case of visual immersion, aspects such as the user’s
field of view, display size and resolution, stereoscopy (a display’s ability to
provide depth cues), realism of lighting, as well as frame rate and refresh rate,
may all affect the level of immersion (Bowman and McMahan, 2007).

Presence however refers to the human’s reaction to immersion based on the
their perceptual and motor system as an individual context-dependent response
(Bowman and McMahan, 2007; Slater, 2003). It is inherently subjective, as the
same immersive computer system may cause different levels of presence for
different users (Slater, 2003). Vice versa, it is also possible that the same level of
presence experienced by different users may be caused by computer systems that
feature a different level of immersion (Slater, 2003).

To facilitate the understanding of the difference between immersion and
presence, Slater (2003) applies a quite helpful analogy, i.e., the description and
perception of color. A color can be distinctively described according to its
wavelength on the visible spectrum, but may be visually perceived differently by
individual humans (Slater, 2003). Following that analogy, the description of color
corresponds to immersion, while the perception of color corresponds to presence.
Thus, immersion and presence are logically separable, although they are arguably
empirically related (Wallergård et al., 2022, Chapter 10.2; Slater, 2003).

2.1.2 Human Factors and Ergonomics

The application of immersive display and interaction technologies for the im-
plementation of VR approaches is aimed to closely interface with the human
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Figure 2.2: Human Information Processing Model, adapted from Wickens and
Carswell (2021) and LaViola, Jr. et al. (2017, Chapter 3.2.1).

user to create experiences through artificial sensory stimuli that are under ideal
circumstances indistinguishable from real ones. Therefore, a fundamental under-
standing of human factors and ergonomics is required (Rubio-Tamayo et al., 2017).
The Human Information Processing Model according to Wickens and Carswell
(2021), as illustrated in Figure 2.2, serves as a foundational high level framework
to better comprehend this matter. Furthermore, the model can also be mapped to
the different stages of human information processing according to psychological
and physiological principles, i.e., perception, cognition, and physical ergonomics
(LaViola, Jr. et al., 2017, Chapter 3.2.1).

Examining the model, some key processes become apparent (Wickens and
Carswell, 2021). Events or stimuli are sensed through the human sensory organs.
Perception allows for the meaningful interpretation of such sensed information
based on collected memories from past experiences. Based on the now interpreted
information, the human can make a decision and select a response that may be executed
directly. Alternatively to the direct response execution, the interpreted information
may also be stored in the memory, particularly in the working memory. The
working memory is responsible for the temporary storage of recently interpreted
information, has only a limited capacity, and is as such greatly influenced by the
human’s attention resources. In addition to influencing the decision and response
selection process, attention resources impact which information are perceived as
well as which responses can be performed concurrently. Information stored in
the working memory may also be retrieved to further inform the decision and
response selection accordingly. The working memory is closely related to another
part of the human memory system, i.e., the long-term memory. Rather than just
storing temporary information, the much higher capacity long-term memory
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is concerned with the storage of fundamental information about the world,
its concepts, facts, and procedures, and thus in turn impacting its perception.
Information stored in the long-term memory is retained without the special
requirement for attention resources. Furthermore, interpreted information from
the working memory may be transferred into long-term memory over time, and
be retrieved respectively. Finally, executed responses may produce feedback that is
sensed in turn, effectively closing the loop of the human information processing
model and starting anew.

To summarize, perception is concerned with the understanding of the different
information cues as sensed through the human sensory organs, i.e., the various
visual, auditory, haptic, olfactory, and gustatory cues. Cognition is concerned
with the understanding of how perceived information is processed, interpreted,
stored, and recalled in order to initiate a response by deciding and selecting
an appropriate action accordingly. Physical ergonomics is concerned with the
understanding of human anatomy and physiology, enabling the interaction within
a spatial environment, and ideally in a comfortable and effective manner.

With the obtained high level understanding of human information processing
and the distinction between perception, cognition, and physical ergonomics, it
is now possible to take a closer look at human factors and ergonomics within
the specific context of VEs. Stanney et al. state the following question as a
guiding principle for the design of VEs under consideration of an anticipated
close integration with its human user:

“How should VE technology be improved to better meet the user’s needs?”
– Stanney, Mourant, and Kennedy (1998)

To examine this question, Stanney et al. (1998) categorize human factor
research for VEs in terms of human performance efficiency, health and safety, and
social implications.

First of all, for a VE to be useful and effective, it has to be usable. In other
words, applying designated VR technologies in accordance to the designed
experience, the immersed user must be able to perform tasks in the VE. The
evaluation of the immersed user’s performance in a VE remains a complex
endeavor that can be dependent on a multitude of aspects (Stanney et al., 1998).
These include, but are not limited to, the user’s ability to navigate in the VE
(Stanney et al., 1998), the accuracy and speed of various interactions in the VE, for
instance travel operations or the selection and manipulation of artifacts (LaViola,
Jr. et al., 2017, Chapter 11), the experienced workload (Hart, 2006), or situation
awareness (Wickens and Carswell, 2021; Vidulich and Tsang, 2015).

Second, due to the close coupling of user and computer system, human health
and safety aspects are of particular importance within the presented context.
A common umbrella term for unintended side effects that cause discomfort
when using VR technologies is VR sickness, originating from simulator sickness
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and historically also referred to as cybersickness (Hirzle et al., 2021; LaValle,
2020, Chapter 12.3). Typical symptoms include among others dizziness, nausea,
cold sweating, fatigue, or eye strain (LaValle, 2020, Chapter 12.3; Stanney et al.,
1998). VR sickness symptoms are usually a result through a mismatch among
the senses. A prominent example, not least because it is frequently reported
on, is visually induced apparent motion, also referred to as vection. Vection is the
illusion of self-motion due to visual stimuli tricking the brain into believing
that one moves without an actual physical movement occurring (LaValle, 2020,
Chapters 8.4 and 12.3). Besides sensory mismatches, it is also possible for VR
sickness symptoms to occur as a result of flaws in the applied technologies, for
instance imprecise sensors and tracking or unexpected happenings in the VE,
ultimately causing inconsistencies with expected real-world experiences (LaValle,
2020, Chapter 12.3). It is noteworthy that VR sickness symptoms may endure the
actual exposure with the VR system, and continue to be experienced even after
having stopped using the system. This phenomenon is commonly referred to as
after effects (LaValle, 2020, Chapter 12.3; LaViola, Jr. et al., 2017, Chapter 11.3.3;
Stanney et al., 1998). Due to the often intricate architecture of VR systems as
well as the complex nature of human psychology and physiology, the exact
identification of causes for VR sickness symptoms remains challenging (Hirzle
et al., 2021; LaValle, 2020, Chapter 12.3; Stanney et al., 1998). The prevention of
any type of discomfort, harm, or injury should be the top priority from an ethical
standpoint (Swedish Research Council, 2017; Norwegian National Committee For
Research Ethics in Science and Technology, 2016).

Finally, while the application of VR approaches provides opportunities, it also
poses certain risks in regard to social implications and aspects, demanding careful
considerations. For instance, Stanney et al. (1998) highlight potential negative
social impacts inherent from the excessive use of VR technologies and their
anticipated immersive experiences in regard to escapism, social withdrawal, or
change in social behavior. At the same time however, immersive VEs also provide
an opportunity to create learning-rich environments that implement a more
active “learning by doing” approach (Radianti et al., 2020; Stanney et al., 1998).
The integration of VR technologies in real-world learning environments remains
intriguing and promising, even if mostly experimental from a practical standpoint
at this stage (Radianti et al., 2020). Such environments are comparatively safe
and risk-free, allowing for the training of skills as well as the exploration of
real-world phenomena that are otherwise not easily accessible to learners (Oyelere
et al., 2020; Olbrich et al., 2018; Rubio-Tamayo et al., 2017). Safe and risk-free
VEs have also been shown to assist with the treatment of anxiety and phobias
(Bowman and McMahan, 2007). The application of VR technologies has also
the potential to facilitate social interaction, commonly referred to as Social VR
(LaValle, 2020, Chapter 10.4). The features of immersive VR technologies allow
for more expressive interaction and communication in virtual 3D environments,
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following both visually abstract and realistic approaches (Wu et al., 2021; Sun
et al., 2019; Heidicker et al., 2017). Furthermore, access to the Internet and its high
data transfer capabilities allow for remote connection, meet-up, and interaction
with other users in shared VEs in real-time, overcoming physical boundaries
on a global scale (Sra et al., 2018; Perry, 2016). This is not just interesting from
an entertainment perspective (Rubio-Tamayo et al., 2017), but also relevant for
remote collaborative work (Snowdon et al., 2001).

2.2 3D User Interfaces

With a general conceptual understanding of VR and VEs, as obtained throughout
Section 2.1, it now makes sense to examine various technological aspects, i.e.,
3D user interfaces (3D UIs). In particular, the work presented in this thesis is
concerned with the implementation of VR through visual interfaces to immerse
the user in a computer-generated 3D VE. Rather than just passively looking
around, perceiving visual stimuli and events, the user in turn is also expected
to respond through active interaction in the VE – in line with the previously
described human information processing model (see Section 2.1.2). Consequently,
an interface that enables interaction in the 3D virtual space is required. The
Human-VE Interaction Loop as presented by Bowman and McMahan (2007),
illustrated in Figure 2.3, serves as a conceptual framework to facilitate this matter.

Examining the framework (Bowman and McMahan, 2007), a few key aspects
become apparent. A computer system is responsible for generating and maintaining
the 3D virtual space, i.e., the VE that functions in accordance to the designer’s
intent. LaValle (2020, Chapter 2.2) highlights that this computational process is
commonly referred to as Virtual World Generator (VWG). Typically, the computer
system has access to models and data that are used within the VE for one purpose
or another, such as to populate the virtual space with respective artifacts. The
computer system’s rendering software is tasked with the generation of the VE’s
visual representation, which is then presented on a dedicated output or display
device, from where it can be visually perceived by the user. Input devices, such
as tracking sensors, physical controllers, or microphones, to name just a few,
are responsible for detecting and capturing any type of user interaction. The
computer system’s software is responsible for interpreting the captured user input,
and to update the VE, for instance by translating the position of the user in
the VE in accordance to their physical real-world movements, or by executing
functionalities with respect to the VE’s logic in accordance to the user’s commands.
At that point, the computer system tasks the rendering software to update the
visual representation of the VE, and starting the loop again. Figure 2.4 provides
an exemplary setup of a VR system, allowing a user to be immersed in a VE
through the application of various immersive display and interaction technologies,
further illustrating the described human-VE interaction loop.
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Figure 2.3: Human-Virtual Environment Interaction Loop, adapted from Bowman
and McMahan (2007).

To provide further foundational information relevant within the scope of this
thesis, the following sections are organized as follows. Section 2.2.1 provides a
brief overview of visual displays as output hardware, allowing a user to visually
immerse themself in a VE based on a VR approach. Thereafter, Section 2.2.2
describes in more detail the main type of visual display utilized within the
presented research, i.e., the HMD device. Section 2.2.3 continues with a brief
introduction to 3D spatial input devices, i.e., input hardware that enables a user
to interact in 3D in the virtual space. Finally, Section 2.2.4 is concerned with 3D
gestural input, as the presented research focuses on interaction through means of
hand postures and gestures as main input modality.

2.2.1 Output Hardware: Visual Displays

In order to obtain a better understanding of visual display technologies within
the context of 3D UIs and the specific approach of VR, is is important to discern
relevant characteristics. LaViola, Jr. et al. (2017, Chapter 5.2.1) provide an
overview of such characteristics.

The field of regard, measured in degrees, refers to the physical space a visual
display surrounds its user with, while the field of view specifies the highest
possible visual angle a user can see at a given point in time (LaViola, Jr. et al.,
2017, Chapter 5.2.1). While the field of regard is a determined characteristic of
a given visual display, the user’s field of view can vary, for instance dependent
on their position and orientation with respect to the display (LaViola, Jr. et al.,
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Figure 2.4: An example of a user interfacing with a VR system. A computer system
generates a 3D interactive VE that is graphically rendered and displayed on a
HMD. The user visually perceives the VE through the HMD by naturally moving
around in the physical real-world space. The user’s movements are tracked
through various sensors, and processed as input by the computer system, tasked
with translating these movements and updating the VE accordingly. A tracking
sensor attached to the HMD additionally captures the user’s hand movements,
enabling 3D gestural input and thus allowing for 3D spatial interaction in the VE
in accordance to the implemented interactive features.

2017, Chapter 5.2.1). As a reference, the field of view of human vision, i.e.,
more appropriately referred to as the human visual field, reaches under normal
circumstances approximately 200 degrees horizontally and 150 degrees vertically
(Steinicke et al., 2011).

The visual display’s spatial resolution is determined through the consideration
of its amount of pixels, commonly measured in pixels per inch, as well as its
overall screen size (LaViola, Jr. et al., 2017, Chapter 5.2.1). With respect to the
user’s visual perception, their distance to the display also affects the perceived
resolution, i.e., the closer a user is to the display, the more likely they will be
able to recognize individual pixels, and vice versa (LaViola, Jr. et al., 2017,
Chapter 5.2.1).
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The screen geometry of a visual display is also an identifying characteristic
(LaViola, Jr. et al., 2017, Chapter 5.2.1). Arguably most common are normal
rectangular displays, but there are also L-shaped (basically two rectangular
displays in perpendicular arrangement) and curved (circular or hemispherical)
displays (LaViola, Jr. et al., 2017, Chapter 5.2.1).

The method of light transfer, for instance through a monitor, front or rear
projection, or retinal projection through laser light, is another important property
within the context of 3D UIs, as it can impact possible interaction modalities on a
practical level (LaViola, Jr. et al., 2017, Chapter 5.2.1). For instance, LaViola, Jr.
et al. (2017, Chapter 5.2.1) highlight that visual displays based on front projection
may be ill-suited for direct 3D interaction as the user’s hands are likely to get
into the way of the projection, thus casting shadows onto the visual display as
well as potentially projecting visual artifacts onto the user’s hands.

The speed of a visual display’s ability to update its displayed graphical
contents is attributed as its refresh rate (LaViola, Jr. et al., 2017, Chapter 5.2.1). It
is commonly measured in Hertz, describing how often per second a new image
can be displayed on a hardware level (LaViola, Jr. et al., 2017, Chapter 5.2.1). A
computer system’s ability to generate new graphical images on a software level
however is described as frame rate and measured in frames per second (LaValle,
2020, Chapter 6.2). It is noteworthy that while a computer system could be able to
generate high frame rates, a visual display can only display them at its refresh rate
limit (LaViola, Jr. et al., 2017, Chapter 5.2.1). Both refresh rate and frame rate are
important with respect to the human’s ability to visually perceive motion using
visual display technologies and computer systems. After all, on a computational
level, this is achieved by quickly stringing together still images, which is also
referred to as stroboscopic apparent motion (LaValle, 2020, Chapter 6.2). Low refresh
and frame rates can negatively influence the visual quality of a display, potentially
introducing flickering effects or increasing latency, i.e., the timed delay it takes
for a respective action to be displayed (LaViola, Jr. et al., 2017, Chapter 5.2.1). A
particularly important type of latency within the context of immersive display
technologies is motion-to-photon latency, describing the time it takes for a tracked
object and its movements to be updated and appear graphically rendered on
the visual display (Stauffert et al., 2020). Low refresh and frame rates as well as
high latency can result in poor interaction experiences and even evoke symptoms
of VR sickness (Stauffert et al., 2020; LaViola, Jr. et al., 2017, Chapter 5.2.1), as
described in Section 2.1.2

Naturally, from the user’s perspective, the ergonomics of a visual display also
need to be considered (LaViola, Jr. et al., 2017, Chapter 5.2.1). This is particularly
important in regard to comfort (weight, obstructiveness) in the case that the
user themself have to actively wear any kind of “attachment”, such as either the
display itself or some kind of complementary eyewear (LaViola, Jr. et al., 2017,
Chapter 5.2.1).
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Finally, visual displays have the potential to facilitate a user’s 3D spatial
perception and understanding through the provision of various depth cue effects
(Wallergård et al., 2022, Chapter 5.5; Bowman and McMahan, 2007):

• Monocular (static) depth cues can be extracted from images due to geometric
distortions as a result of perspective projections (LaValle, 2020, Chapter 6.1.1;
LaViola, Jr. et al., 2017, Chapter 3.3.1). Examples of monocular depth cues
include occlusion/interposition (an object closer to the viewer occluding
parts of another object that is farther away), height in the visual field
(objects closer to the horizon appear farther away), perspective cues such
as shadows (a distant shadow of an object makes the object appear higher),
and atmospheric cues (lower contrast scenery appears to be more distant).

• Motion Parallax refers to monocular depth cues as a result of exploiting
motion, in particular the phenomenon of visually perceiving closer moving
objects as passing through the human visual field more quickly compared
to more distant objects (LaValle, 2020, Chapter 6.1.1; LaViola, Jr. et al., 2017,
Chapter 3.3.1). Motion parallax can occur as stationary-viewer parallax (the
viewer is static, the object is moving), moving-viewer parallax (the viewer
is moving, the object is static), or as a combination of both.

• Stereopsis refers to the ability to create a single stereoscopic image through
the fusion of two slightly different images (binocular disparity) as perceived
through two eyes, providing a powerful depth cue for objects in closer
proximity (LaViola, Jr. et al., 2017, Chapter 3.3.1). Stereopsis is achieved
through focusing both eyes on the same object using accommodation and
vergence (LaValle, 2020, Chapters 4.4 and 5.3; LaViola, Jr. et al., 2017,
Chapter 3.3.1). Accommodation describes the process of using eye muscles
to physically stretch and relax the eye lens, changing the lens’ diopter, and
thus allowing to clearly focus on the desired object. Vergence describes the
motion of rotating the eyes in order to align their focus with the desired
object. Convergence refers to the process of moving the eye pupils closer
together in order to focus on an object in closer proximity, while divergence
refers to the process of moving them farther apart to focus on an object in
the distance.

With the understanding of different characteristics, it is now possible to
examine some relevant visual display device types. LaViola, Jr. et al. (2017,
Chapter 5.2.1) highlight that basically any type of visual display is able to utilize
monocular depth cues, while more specific types of displays, i.e., stereoscopic
displays, are required to implement stereopsis by providing dedicated images
for both the left and the right eye. For instance, through the utilization of
complementary stereo glasses, also referred to as shutter glasses, it is possible to
enable stereoscopic viewing even on single-screen displays (LaViola, Jr. et al., 2017,
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Chapter 5.2.2). This is typically implemented as an active (temporal multiplexing)
or a passive (polarization or spectral multiplexing) shutter, a mechanism that
essentially filters the displayed content for viewing through the left and right eye
respectively (Chen et al., 2012, Chapter 9.1.1). There are even devices that can
implement stereoscopic depth cues without the need for complementary eyewear,
categorized as autostereoscopic display devices (Chen et al., 2012, Chapter 9.1.1).
While potentially providing strong binocular depth cues, one can argue that all
these types of visual displays do not provide a high degree of immersion due to
the comparatively limited field of regard inherent from their single-screen nature.

Multi-screen displays and surround-screen systems intend to address this
shortcoming by expanding the field of regard, aiming to literally “surround” the
user with visual display space (LaViola, Jr. et al., 2017, Chapter 5.2.2). These can
vary from desktop setups with multiple screens arranged in an angular manner, to
installations that entirely encapsulate their user with displays (Sommer et al., 2017;
Marai et al., 2016; Febretti et al., 2013). One of the earliest concepts and practical
implementations for a surround-screen setup has been the Cave Automatic Virtual
Environment, in short CAVE, an audio visual experience presented by Cruz-Neira
et al. (1993, 1992). The CAVE utilized five projection-based screens (three walls,
one floor, and one ceiling) that physically surrounded the user and generated
a visual representation of a VE from the user’s point of view to simulate a
viewer-centered perspective through respective head tracking (Cruz-Neira et al.,
1992). Furthermore, the visual projections were based on stereoscopic computer
graphics, enabling the user to wear stereo glasses to experience stereoscopic
depth cues (Cruz-Neira et al., 1992). Since it’s original implementation, more
research around CAVE-type systems has been conducted. For instance, there
have been efforts to facilitate integration with modern game engines, enabling
more accessible software development for these types of display systems (Lugrin
et al., 2012). More advanced installations have also been developed, referred to
as CAVE2 systems, among others allowing the display of 2D and stereoscopic 3D
graphics as well as enabling multi-user support to provide immersive workspaces
for more than one user at a time (Sommer et al., 2017; Febretti et al., 2013).

Compared to these comparatively large and rather stationary visual display
setups, there exist also portable display solutions that are directly attached to the
user. One such approach is the HMD. As its name suggests, a HMD is directly
attached to the user’s head in close proximity to their eyes, similar to a pair of
goggles (LaViola, Jr. et al., 2017, Chapter 5.2.2; Chen et al., 2012, Chapter 10.4).
Section 2.2.2 will provide a comprehensive overview of this type of visual display
device. Chen et al. (2012, Chapters 9 and 10) provide an exhaustive overview of
immersive display technologies, in particular in regard to 3D displays (including
volumetric and holographic displays), mobile displays, microdisplays, projection
systems, and headworn displays.
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2.2.2 Head-Mounted Display

Within the presented thesis, the HMD device has been used as primary means
to allow for visual immersion in a VE through a VR approach. Therefore, this
section aims to provide a dedicated overview about this type of technology as
well as to elaborate on advantages and potential shortcomings that are relevant
to consider when developing VR experiences for HMDs.

As already illustrated in Figure 2.4, a HMD is a device that is “attached” to the
user’s head in front of their eyes, allowing the display to follow along as the user
moves around in the physical real world. It is therefore also referred to as head-
worn display or simply headset (LaViola, Jr. et al., 2017, Chapter 5.2.2; Chen et al.,
2012, Chapter 10.4).1 Various types of HMD devices exist, aiming to implement
and address different approaches along the reality-virtuality continuum (see
Section 2.1.1).

While there are even HMDs based on projection or virtual retina approaches,
two comparatively common types of HMDs are optical see-through displays and
video see-through displays (LaViola, Jr. et al., 2017, Chapter 5.2.2). Optical
see-through displays typically feature a screen that is based on transparent
material, similar to normal glasses or goggles, ultimately introducing a clean
layer between the viewer’s eyes and the real-world environment (LaViola, Jr.
et al., 2017, Chapter 5.2.2). This approach enables the viewer to still visually
perceive the real-world space without delay by looking through the transparent
layer, while at the same time featuring a screen that can be overlayed with
computer-generated graphics (LaViola, Jr. et al., 2017, Chapter 5.2.2). These types
of HMDs are particularly interesting for the implementation of augmented reality
approaches, allowing for an overlay of the real world with virtual information.
Video see-through displays on the other hand utilize one or two small computer
screens in front of the viewer’s eyes (LaViola, Jr. et al., 2017, Chapter 5.2.2), and
are commonly looked at through an additional set of special lenses to better
accommodate the comparatively high field of view (LaValle, 2020, Chapter 7.3).
To implement the see-through part and to provide stereoscopic depth cues, these
devices typically feature a set of two cameras (one dedicated for the left eye, and
one for the right) to record and provide real-world imagery (LaViola, Jr. et al.,
2017, Chapter 5.2.2). The computer system processes the raw camera feeds, and
can generate respective graphics that are displayed as an overlay on screen to
the viewer (LaViola, Jr. et al., 2017, Chapter 5.2.2). While optical see-through
displays feature no time delay in the view on the real world due to the nature of
their approach, they are prone to provide a comparatively limited field of view
for the overlay of computer-generated virtual artifacts (LaViola, Jr. et al., 2017,
Chapter 5.2.2). Systems based on video see-through display technologies can
overcome this limitation by enabling a wider field of view, but instead have to

1The term HMD is adopted to refer to this type of visual display device throughout the thesis.
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tackle the challenge of providing low latency video throughput that is responsive
enough to align the viewer’s head movements with the displayed real-world
imagery in near real-time in order to avoid sickness symptoms (LaViola, Jr. et al.,
2017, Chapter 5.2.2). While video see-through displays are capable of providing
augmented reality experiences, they are in fact ideal for the implementation of VR
experiences, utilizing their screens to solely display computer-generated graphics
to the user, and thus disregarding their camera system during the designed VR
experience. Devices for that purpose are also commonly referred to as VR HMDs
or simply VR headsets.

VR HMDs generally attempt to implement stereoscopic depth cues by ren-
dering two dedicated images, i.e., one that corresponds to the viewpoint of the
user’s left eye, and one that corresponds to the user’s right eye. With respect
to the display, this can be achieved by either using two displays (one for each
eye), or by using one larger display unit that simply renders the two images
side by side. As briefly described in Section 2.2.1, the perception of stereoscopic
depth cues relies on fixating the eyes on an object in the 3D space through
accommodation (eye lens adjustment) and vergence (eye rotation). In natural
settings, vergence and accommodative stimuli are aligned to fixate on the same
object at the same distance (Banks et al., 2013). However, this is not possible
with conventional displays that implement stereoscopic viewing (Banks et al.,
2013). While eye rotation (vergence) can still be appropriately adjusted to fixate
on various objects in the VE to visually perceive depth cues correctly, the focal
length (accommodation) remains generally the same due to the static physical
distance between the viewer’s eyes and the display (Banks et al., 2013). This
conflict is known as vergence-accommodation mismatch and illustrated in Figure 2.5
(LaValle, 2020, Chapter 5.4; Banks et al., 2013). As the user is likely trying to
subconsciously adapt to the mismatching signals, they may experience symptoms
of discomfort, fatigue, or eye strain as a result, especially over a longer period
of time that goes beyond “just a few minutes”-VR experiences (LaValle, 2020,
Chapter 5.4; Banks et al., 2013).

With respect to the human-VE interaction loop as described by Bowman and
McMahan (2007), the HMD has been mainly considered as an output device
so far, in particular for visual output. However, the HMD also features some
important user input, and thus should be more accurately classified as a hybrid
device. Considering the overall concept of a HMD, the user’s head movements
need to be measured in order to appropriately translate their viewpoint in the
VE. In practice, this is commonly achieved twofold. First, the HMD device itself
features an integrated sensory system that attempts to capture the user’s head
rotation. This system is referred to as inertial measurement unit, and commonly
consists of a gyroscope to measure the angular rotation rate and an accelerometer
to measure the change in velocity (LaValle, 2020, Chapter 2.1). The inertial
measurement unit can also contain a magnetometer to measure the sensor’s
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Figure 2.5: Vergence-Accommodation Mismatch, adapted from Banks et al. (2013).
Left: Normal real-world viewing with no mismatch. Right: Stereoscopic display
viewing with mismatch.

surrounding local magnetic field (LaValle, 2020, Chapter 2.1). The measurements
of both the accelerometer and the magnetometer aim to reduce the potential drift
error as a result of estimating the overall change in orientation measured through
the gyroscope over time, therefore aiming to provide a more precise orientation
measurement (LaValle, 2020, Chapter 2.1). In addition to the integrated inertial
measurement unit, HMD devices commonly feature some kind of complementary
camera system that is responsible for measuring the position and orientation of
the HMD with respect to the physical real-world space (LaValle, 2020, Chapter 2.1).
Generally, one can discern between two approaches for the implementation of
camera-based HMD tracking, i.e., outside-in and inside-out tracking (Gourlay and
Held, 2017). Following an outside-in tracking approach, one or multiple cameras
are stationed in a role as sensors outside a dedicated tracking area and are looking
in to determine the position and orientation of the HMD device (Gourlay and
Held, 2017). Reverse in concept, following an inside-out tracking approach, the
HMD itself features sensors inside that are looking out in order to determine
its position and orientation. Inside-out tracking can be implemented through
markers that are placed within the physical real-world environment, or through
scanning of the physical real-world space for distinctive features, for instance by
using special (infrared) depth cameras (Gourlay and Held, 2017). Noteworthy



32 CHAPTER �. FOUNDATIONS

to mention is also the lighthouse-based approach developed by Valve and for
instance used within the HTC Vive HMD system (Gourlay and Held, 2017). Their
approach can be considered a special type of inside-out tracking that, instead of
using markers, utilizes base stations that emit infrared light that in turn is sensed
by various infrared sensors attached on the HMD itself (Gourlay and Held, 2017).

A variety of different HMD devices has been released in recent years, from
different manufacturers and in different iterations (Kugler, 2021). Within the
scope of the research presented in this thesis, two off-the-shelf HMD devices have
been utilized, namely the Oculus Rift CV12 and the HTC Vive.3 Figure 2.6 shows
a photo of the two HMD devices side by side. Table 2.1 provides an overview of
some technical specifications of the Oculus Rift CV14 and the HTC Vive,5 also in
regard to important display characteristics.

2.2.3 Input Hardware: 3D Spatial Input Devices

To obtain a better understanding of 3D input devices that enable interaction in
VEs, it is helpful to review some typical device characteristics in general, for
instance as summarized by LaViola, Jr. et al. (2017, Chapter 6.1.1).

Within the context of using input devices for the interaction in 3D virtual
spaces, a particularly descriptive metric is a device’s degrees of freedom, i.e.,
a numerical value that represents a device’s capability of moving in space
(Wallergård et al., 2022, Chapter 8.2; LaViola, Jr. et al., 2017, Chapter 6.1.1;
Mackinlay et al., 1990). 3D spatial input devices typically feature three linear
degrees of freedom, i.e., the position in space along 3D (x, y, z), as well as
three rotary degrees of freedom, i.e., the rotation in space along 3D (yaw, pitch,
roll), thus featuring a total of six degrees of freedom (LaValle, 2020, Chapter 3.2;
Mackinlay et al., 1990). Generally, an input device’s degrees of freedom can be
seen as a reference to it’s complexity (LaViola, Jr. et al., 2017, Chapter 6.1.1).

The sensor type (active or passive) provides another property to describe input
devices (LaViola, Jr. et al., 2017, Chapter 6.1.1). Sensors are classified as active if
they require some kind of direct manipulation through the user, for instance by
pressing a button on a gamepad or moving a device in space (LaViola, Jr. et al.,
2017, Chapter 6.1.1). Passive sensors are decoupled from the user and typically
placed somewhere in the physical real-world environment, attempting to capture
data indirectly, i.e., without the need for the user to actively manipulate the
position or orientation of the sensor itself (LaViola, Jr. et al., 2017, Chapter 6.1.1).

2The first generation of the Oculus Rift HMD released on the consumer market (CV1) has been
used, as released in 2016, and developed by Oculus VR (formerly; now Meta Quest).

3The first generation of the HTC Vive HMD device has been used, as released in 2016, and
developed as a collaboration between HTC Corporation and Valve Corporation (Valve Software).

4Based on official manufacturer specifications, and: iFixit. Oculus Rift CV1 Repair. Retrieved
June 1, 2022, from https://www.ifixit.com/Device/Oculus_Rift_CV1

5Based on official manufacturer specifications, and: iFixit. HTC Vive Repair. Retrieved June 1,
2022, from https://www.ifixit.com/Device/HTC_Vive

https://www.ifixit.com/Device/Oculus_Rift_CV1
https://www.ifixit.com/Device/HTC_Vive
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Figure 2.6: Two off-the-shelf HMD devices. Left: Oculus Rift CV1. Right: HTC
Vive. Note: Both HMD devices feature an optional attachment in the front for
the Leap Motion Controller (described in Section 2.2.4).

Property Oculus Rift CV1 HTC Vive

light transfer 2x OLED 2x AMOLED

display resolution 1080x1200 pixels (eye)
2160x1200 pixels (total)

1080x1200 pixels (eye)
2160x1200 pixels (total)

sensors
inertial measurement unit
(gyroscope, accelerometer,
magnetometer)

inertial measurement unit
(gyroscope, accelerometer)

tracking outside-in: 360° headset tracking
via constellation infrared camera

inside-out: 360° headset tracking
via lighthouse emitters

field of regard 360° 360°
field of view >100° 110°
spatial resolution ~456 pixels per inch ~447 pixels per inch
screen geometry rectangular rectangular
refresh rate 90 Hertz 90 Hertz
ergonomics 470 grams 555 grams

Table 2.1: Overview of some technical specifications and characteristics of the
two HMD devices Oculus Rift CV1 and HTC Vive.



34 CHAPTER �. FOUNDATIONS

Another descriptive property is the data frequency a device utilizes to capture
input from the user (LaViola, Jr. et al., 2017, Chapter 6.1.1). Data frequency
can be categorized as discrete (a descriptive single value input at a time) or
continuous (constant capture of numerical values as input over time) as a result
of user interaction (LaViola, Jr. et al., 2017, Chapter 6.1.1). For instance, pressing
the physical button on a device corresponds to discrete input, while the on-going
tracking of a device in space corresponds to continuous input (LaViola, Jr. et al.,
2017, Chapter 6.1.1). Naturally, some input devices may feature both discrete and
continuous user input, for instance a physical, tracked controller that is held in
the user’s hand and that features spatial tracking capabilities as well as physical
buttons (LaViola, Jr. et al., 2017, Chapter 6.1.1).

Furthermore, there are arguably some additional properties that are partic-
ularly relevant with respect to interactive VR experiences. The physicality of an
input device may be relevant, i.e., whether or not the user is required to have a
physical device in their hands (by holding or wearing it). Additionally, an input
device’s capabilities for visual representation of itself or the respective user input
in the VE may also be relevant, for instance affecting the design of appropriate
interaction mechanisms or the perceived user experience.

In order to enable spatial interaction in the 3D virtual space, an input device
needs to be appropriately tracked, i.e., with the objective to translate its position
and orientation from the real-world space into the VE as precisely as possible
and ideally in real-time with no perceived latency. Different tracking approaches
as user input have already been briefly described in Section 2.2.2 as part of
the tracking capabilities of HMD devices. Furthermore, Wallergård et al. (2022,
Chapter 9) and LaViola, Jr. et al. (2017, Chapter 6.3.1) provide an exhaustive
overview of different tracking approaches, including magnetic, mechanical,
acoustic, inertial, optical, radar, bioelectric, and hybrid sensing.

A multitude of different input devices exist in order to capture user input in
the 3D space (LaViola, Jr. et al., 2017, Chapters 6.3.2–6.6.2). Under assumption of
utilizing hands and arms as main input and thus interaction modality, a general
distinction of input devices can be applied as follows:

1. A physical input device that the user is holding with their hands. Such
controllers commonly feature a variety of components, among others
buttons, switches, joysticks, touchpads, haptic feedback, and pressure
sensitive grips (Kangas et al., 2022; Duane and Þór Jónsson, 2021; Figueiredo
et al., 2018). Naturally, any kind of interactive feature provided in the VE
needs to be mapped onto such components of the device to enable user
interaction.

2. A physical input device that the user is wearing on their hands or arms, such as
a glove or a bracelet. These devices normally aim to provide a more intuitive
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Figure 2.7: Various off-the-shelf physical, tracked controllers as 3D spatial input
devices. Left: PlayStation Move. Center: Oculus Touch. Right: HTC Vive.

and arguably more natural6 interaction by using hands as one would do
for interaction in the real world. The physical component architecture of
these devices commonly attempt to utilize integrated tracking capabilities
as well as additional sensory feedback, such as haptic feedback (Liu et al.,
2019; Olbrich et al., 2018).

3. Vision-based input through hand posture and gesture tracking that does not
require the user to actively hold or wear any additional sensors with their
hands or arms (Pavlovic et al., 1997). Therefore, such approaches can be
described as contact-free or accessory-free input devices, essentially also
aiming to provide intuitive hand interaction mechanisms (Koutsabasis and
Vogiatzidakis, 2019; Bachmann et al., 2018).

Figure 2.7 shows a photo of some physical, tracked controllers as 3D spatial
input devices that can be utilized for interaction in VEs. Within the scope of
this thesis, the utilization of 3D gestural input, i.e., hand interaction, has been of
particular interest for the interaction in the 3D virtual space. As such, Section 2.2.4
will provide a comprehensive overview of 3D gestural input.

6Norman (2010) provides a critical view on the terminology and understanding of natural user
interfaces that is still relevant today, arguing that they are often not natural but useful.
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2.2.4 3D Gestural Input

The research presented in this thesis is centered around the utilization of 3D
gestural input as primary modality to allow user interaction in a VE through a
VR approach. Thus, this section aims to provide a dedicated overview about this
type of spatial user input, aligned with foundational interaction techniques and
relevant considerations for the design of 3D UIs that utilize 3D gestural input.

As briefly stated in Section 2.2.3, interfaces that enable 3D gestural input
aim to sense and track a user’s hand movements. This is most commonly
implemented through either physical controllers a user is wearing (Liu et al.,
2019) or vision-based approaches without physical attachments to a user’s hands
(Pavlovic et al., 1997). The overall concept of 3D gestural input, independent of its
technological implementation, is also referred to as mid-air interaction (Koutsabasis
and Vogiatzidakis, 2019). Mid-air interaction has been of interest to Human-
Computer Interaction (HCI) researchers for many years, as simply using ones
hands to interact in a 3D VE has arguably something appealing, tending to evoke
a certain feeling of naturalness (Bolt, 1980).

Human hands are comparatively complex instruments, as illustrated in Fig-
ure 2.8, and under normal circumstances utilized in a variety of contexts and for
different purposes. It is therefore useful to obtain an understanding of founda-
tional concepts relevant within HCI. Gestural commands are broadly classified
as postures and gestures (LaViola, Jr. et al., 2017, Chapter 9.7). Postures refer to the
hand being in a specific (static) configuration, while gestures refer to (dynamic)
hand movements, possibly while being in a certain posture (LaViola, Jr. et al.,
2017, Chapter 9.7). Modern tracking technologies are often capable of detecting
both hands at the same time, allowing for subsequent interaction with either
one hand (unimanual) or two hands hands (bimanual). Hence, bimanual gestural
commands can further be classified with respect to hand symmetry, i.e., symmetric
or asymmetric gestural commands, and hand synchronicity, i.e., synchronous or
asynchronous gestural commands (Ulinski et al., 2009).

Pavlovic et al. (1997) propose a taxonomy of hand gestures within the context
of HCI, illustrated in Figure 2.9, aiming to classify hand and arm movements
with respect to their purpose. On a high level, hand and arm movements may
be unintentional, i.e., without a purpose and intent, or gestures, i.e., deliberately
performed towards a desired intent. Intended gestures can serve a manipulative or
communicative purpose. Manipulative gestures refer to the direct manipulation of
artifacts, such as moving and rotating virtual objects, interacting with menus and
widgets, or the like. Inherent communicational purposes are mediated through
communicative gestures, typically as acts, i.e., in direct relation to a specific
movement, or as symbols, i.e., as accompanying gestures to an verbal expression.

Similar to the gesture taxonomy proposed by Pavlovic et al. (1997), Nehaniv
et al. (2005) present a classification for gestures with respect to a user’s intent,
specifically within the context of interacting with another entity. Although
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Figure 2.9: HCI Hand Gesture Taxonomy, adapted from Pavlovic et al. (1997).
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originating from the context of Human-Robot Interaction (Nehaniv et al., 2005),
their classification can be relevant for the interaction in collaborative settings,
such as later described in Section 2.3. The classification is centered around the
composition of five gestural classes, i.e., (1) irrelevant and manipulative gestures,
(2) gestures as a side effect of expressive behavior, (3) symbolic gestures, (4) interactional
gestures, and (5) referential and pointing gestures (Nehaniv et al., 2005). Within the
context of interacting with other users in a VE, this classification can provide
guiding principles for the design and analysis of multi-user interactions that rely
on 3D gestural input. Furthermore, a computer system’s ability to infer user
intent is also important with respect to the various in-situ contexts a user may
find themself in, aiming to implement more robust interaction mechanisms.

With respect to the actual interaction design, LaViola, Jr. et al. (2017, Chap-
ters 7–9) provide an extensive overview about general 3D interaction techniques,
describing approaches and metaphors for selection, manipulation, and travel op-
erations as well as system control techniques. Within the context of 3D gestural
interaction, grasping metaphors (LaViola, Jr. et al., 2017, Chapter 7.4) are particu-
larly relevant, allowing the user to simply grab, move, and release artifacts in the
VE, as one would in the real world, to enable subsequent selection and manip-
ulation operations. The provision of gestural commands (LaViola, Jr. et al., 2017,
Chapter 9.7) is likewise relevant, aiming to intuitively map static hand postures
and dynamic hand gestures onto desired system control functionalities in the VE.
The utilization of graphical menus in the 3D VE is also a common system control
technique, enabling user interaction through the selection of menu items that are
associated with respective features (LaViola, Jr. et al., 2017, Chapter 9.5; Dachselt
and Hübner, 2007). Dachselt and Hübner (2007) provide an in-depth look at
existing work, subsequently proposing a detailed taxonomy for the classification
of 3D graphical menus that is centered around seven key dimensions, namely
(1) intention of use, (2) appearance and structure, (3) placement, (4) invocation and
availability, (5) interaction and input/output setting, (6) usability, and (7) combinabil-
ity. Furthermore, one can differentiate between direct and indirect interactions
(LaViola, Jr. et al., 2017, Chapter 7.7). Direct interactions are those that allow the
immediate manipulation of an artifact itself, while indirect interactions commonly
involve some kind of proxy or middle-layer for the manipulation of an artifact.
Interactions with a representative copy that is linked to the original artifact, or
3D widgets that allow artifact manipulations through additionally visible control
handles, are typical examples for such indirect interaction techniques (LaViola,
Jr. et al., 2017, Chapter 7.7). While direct interaction techniques tend to be
perceived as somewhat more natural than indirect ones, as they resemble similar
interactions in the real world, indirect interaction techniques can be useful with
respect to their intended purpose when designed appropriately (Norman, 2010).
Finally, there exist also multimodal approaches that rely on the utilization of more
than one input modality (LaViola, Jr. et al., 2017, Chapter 9.9), for instance 3D
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gestural input in combination with voice input (Bolt, 1980). While the implemen-
tation of such multimodal approaches can facilitate effective interactions in a VE,
it’s design should also be carefully considered due to the sometimes increased
cognitive load that is required from the user for its operation (LaViola, Jr. et al.,
2017, Chapter 9.9). Finally, it is noteworthy that all these techniques are relevant
to 3D gestural input and interaction, but not exclusive to this modality. For
instance, a mechanism to grab, move, and release an artifact in the VE may also
be mapped onto other 3D spatial input devices that feature similar capabilities
compared to 3D gestural input, for instance a physical, tracked controller.

With respect to the interface design that utilizes 3D gestural input for spatial
interaction in the virtual 3D space, there are several matters worth considering.
While one can argue that interaction with visible artifacts in a VE can be intuitively
discovered, by allowing the user to simply touch, grab, move, and release them,
hand postures and gestures that are invisibly linked to specific functionalities
require introduction and possibly training (Delamare et al., 2016). Consequently,
appropriate user feedback is helpful to support the user in their understanding of
the current interaction state (Delamare et al., 2016). Of particular interest to HCI
researchers is also the investigation of gesture appropriateness, the determination
of whether the interaction feels intuitive and natural, user capability to memorize
and recall implemented postures and gestures, and aspects of comfort (Koutsabasis
and Vogiatzidakis, 2019). For instance, requiring the user to frequently apply
mid-air interactions in ergonomically rather uncomfortable hand configurations
can quickly evoke symptoms of physical fatigue from the extended arms – a
phenomenon that is also commonly referred to as “gorilla arms” (LaValle, 2020,
Chapter 10.3). Considerations for the design of comfortable hand postures for
the utilization in HCI contexts have been reported by Rempel et al. (2014). Their
insights originate from an analysis of hand postures and gestures used by sign
language interpreters, and are aimed to prevent physical fatigue symptoms in
hands and arms (Rempel et al., 2014). The authors identified various comfortable
and uncomfortable hand posture configurations that are comparatively common.
They recommend the use of comfortable postures for more frequent tasks, while
infrequent tasks may also be performed through slightly less comfortable ones
(Rempel et al., 2014). Furthermore, Rempel et al. (2014) also highlight the need
to investigate aspects of hand posture and gesture learnability more specifically,
as this is a topic that is comparatively underexplored. Their argument is in line
with the review findings reported by Koutsabasis and Vogiatzidakis (2019), who
highlight this matter as well.

Besides the previously mentioned approach of the user wearing an input
device to allow for 3D gestural input (Liu et al., 2019; Olbrich et al., 2018), a
comparatively popular interface is the Leap Motion Controller that implements a
vision-based input approach (Koutsabasis and Vogiatzidakis, 2019; Bachmann
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Figure 2.10: An example demonstrating the hand detection using the Leap Motion
Controller. Bottom: The Leap Motion Controller set up on the desk, connected
to a computer system. Middle: The user’s hand is held mid-air above the Leap
Motion Controller in it’s interaction zone. Top: The Leap Motion Diagnostic
Visualizer application is running on the computer system, displaying the detected
hand in real-time on the monitor.
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Property Leap Motion Controller

tracking vision-based (optical): three infrared LED emitters and two
near-infrared cameras

interaction zone ~10–80 cm, extended by 120x150° field of view
refresh rate 120 Hertz

degrees of freedom 26 (see Figure 2.8)
sensor type passive
data frequency continuous
physicality contact-free, accessory-free
visual representation yes (within a VE)
ergonomics 32 grams, tabletop and HMD-attached setups available

Table 2.2: Overview of some technical specifications and characteristics of the
Leap Motion Controller.

et al., 2018). The Leap Motion Controller7 has been used as the primary device to
enable 3D gestural input within the scope of the research presented in this thesis.
According to Bachmann et al. (2018), interactive systems that utilize 3D gestural
input via Leap Motion Controller feature three key processes, namely (1) data
acquisition, i.e., transfer of the detected hand coordinates into the application’s
overall 3D space, (2) feature extraction, i.e., determine distinct features and attributes
of the detected hand, as well as (3) gesture definition and recognition, i.e., construct
specific hand postures and gestures that the application is tasked to detect
at runtime, allowing for execution of the mapped functionalities accordingly.
Figure 2.10 presents an example demonstrating the hand detection using the
Leap Motion Controller, while Table 2.2 provides an overview of some technical
specifications,8 also in regard to important input device characteristics.

2.3 Collaborative Virtual Environments
As part of examining key concepts related to VR in Section 2.1.1, a VE was
defined as an artificially generated environment that is experienced by the user,
commonly from a first-person perspective, in 3D, and under real-time control.
Immersive display and interaction technologies tend to be by default rather single
user-centric in nature (Skarbez et al., 2019; Cordeil et al., 2017b; Hackathorn and
Margolis, 2016). For instance, wearing a HMD, the user is visually isolated from
their real-world surroundings. At the same time however, enabled by modern
communication technologies and the Internet as a networking infrastructure, it is
possible to create VEs that can be inhabited by more than one user. Allowing

7The first generation of the Leap Motion Controller has been used, as released in 2013, and
developed by Leap Motion (formerly; now Ultraleap).

8Based on official manufacturer specifications, and the review presented by Bachmann et al. (2018).
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users to immerse themselves in such shared virtual spaces holds great potential
to remove spatial boundaries, and thus bringing users closer together (LaValle,
2020, Chapter 10.4). Naturally, such multi-user environments can be utilized
for different purposes, from games and entertainment-related ones to those
that are aimed to provide shared virtual workspaces to enable collaboration (de
Belen et al., 2019; Perry, 2016; Churchill and Snowdon, 1998). Those latter ones
are also commonly referred to as Collaborative Virtual Environments (CVEs),
and particularly relevant within the scope of this thesis as data exploration and
analysis are seldom solitary activities but collaborative ones that build on multiple
users sharing their knowledge and expertise (Billinghurst et al., 2018; Isenberg
et al., 2011; Heer and Agrawala, 2008).

Research that is concerned with CVEs is inherently rooted in Computer-
Supported Cooperative Work (CSCW), utilizing computer technologies to allow
multiple users in a shared workspace to interact with each other to conduct col-
laborative tasks through means of communication, cooperation, and coordination
(Andriessen, 2003; Churchill and Snowdon, 1998). The definition of a CVE as
proposed by Snowdon et al. provides a general perspective without limitations
in regard to applied technologies or visual representations that is still relevant
today:

“A CVE is a computer-based, distributed, virtual space or set of places. In
such places, people can meet and interact with others, with agents or with
virtual objects. CVEs might vary in their representational richness from 3D
graphical spaces, 2.5D and 2D environments, to text-based environments.
Access to CVEs is by no means limited to desktop devices, but might well
include mobile or wearable devices, public kiosks, etc.”

– Snowdon, Churchill, and Munro (2001)

In order to allow for appropriate collaborative work through interaction
and information sharing, Churchill and Snowdon (1998) highlight some key
characteristics that CVEs should strive to provide. For instance, CVEs should allow
their users to transition seamlessly between their individual efforts and shared activities
that involve one, or potentially multiple, other users (Churchill and Snowdon,
1998). As such, in order to successfully collaborate, means of communication and
negotiation are required to allow the users to discuss their findings during phases of
shared effort and activity (Churchill and Snowdon, 1998). Furthermore, to enable
users to effectively transition between the various different contexts during their
stay in a CVE, it is essential to provide means that allow them to be aware of each
other, and thus understanding the current state of their collaborators (Churchill
and Snowdon, 1998). Therefore, a CVE should also provide features that facilitate
and support both focused and unfocused collaborative work, allowing for the
subsequent establishment of shared contexts and understandings (Churchill and
Snowdon, 1998). Work on a specific subject commonly also involves taking on
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different viewpoints, allowing the collaborators to inspect a matter from different
perspectives to obtain insights – another feature that CVEs should strive to
provide according to Churchill and Snowdon (1998).

The description and subsequent evaluation of collaboration and its many
involved processes, facets, and dimensions, is a very complex endeavor in CSCW
in general, and thus also within the context of CVEs (Snowdon et al., 2001). The
distinct dissection of collaborative work is particularly challenging as its many
states and actions are inherently interconnected and dependent on each other
(Rupprecht et al., 2017; Neale et al., 2004). Consequently, it is foundational to
have a sound understanding of relevant terminology in order to implement and
investigate collaboration related matters, not least because some terms tend to be
ambiguously applied throughout the literature (Schmidt, 2002).

Schmidt (2002) describes awareness as a user’s ability to align and integrate
their own actions with those of other collaborators in the shared workspace,
ideally in a rather seamless and organic manner without interruptions and major
efforts. Schmidt (2002) also highlights the many different aspects and use cases
in which awareness as terminology has been applied over the years, calling for
careful consideration and clear definition when applied in real-world collaborative
scenarios. For instance, Heer and Agrawala (2008) expand on Schmidt’s (2002)
description, stating that awareness is also concerned with the user’s ability to
assess work and task completion, enabling them to decide where to allocate their
next efforts. A closely related concept to awareness is common ground, referring
to the collaborators’ shared understanding of their states in the environment
as well as the state of their work, allowing for subsequent communication and
negotiation (Clark and Brennan, 1991). The process of achieving a state of
common ground is typically referred to as grounding (Heer and Agrawala, 2008).
Andriessen (2003) examined group processes within collaborative scenarios with
respect to the various potential interactions between the collaborators, providing a
heuristic differentiation between communication, co-operation, and co-ordination. As
such, communication can be seen as an interpersonal exchange process between
the collaborators, allowing them to utilize respective tools for the exchange
of verbal (such as talk) and nonverbal (such as referential pointing; see also
Figure 2.9, describing hand gesture classifications in general) signals (Andriessen,
2003). As part of such interpersonal exchange processes, referencing is arguably
a comparatively frequent communicative action, typically applied in order to
indicate a specific object, area, person, or time, through a mixture of verbal
and nonverbal signals (Heer and Agrawala, 2008). Heer and Agrawala (2008)
highlight and elaborate on the different approaches one can follow when making
a references in space. In particular, references may be (1) general, e.g., “six o-clock”,
“southeast by east”, (2) definite, e.g., using the specific name of the entity referred to,
(3) detailed, e.g., describing the attributes of the entity referred to, or (4) deictic, e.g.,
nonverbal pointing to the referred entity accompanied by a complementary verbal
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Figure 2.11: CSCW Framework, adapted from Dix (1994).

expression such as “that one”, “over there”, and so forth (Heer and Agrawala, 2008).
Following, co-operation refers to the task-oriented process of the collaborators
actually working together in a joint group effort, making decisions, and potentially
co-manipulating data and objects in the shared environment (Andriessen, 2003).
The task-oriented process that enables collaborators to adjust their individual and
group efforts in order to solve a given task, thus adjusting the overall work of
the involved collaborators, can be described as co-ordination (Andriessen, 2003).
Within collaborative scenarios, the concepts of attention (Shneiderman et al., 2017;
Kristoffersen and Ljungberg, 1999) and focus (Schmidt, 2002; Snowdon et al., 2001)
are commonly rather seen ambiguously, typically referring to a user’s cognitive
alignment to a specific area or point of interest in the shared workspace.9

Several frameworks exist that aim to facilitate the understanding of collab-
orative systems, allowing for more formal descriptions and classifications. For
instance, Dix (1994) introduces a general CSCW framework that focuses on aspects
such as cooperative work, communication, and the artifacts of work. As illustrated in
Figure 2.11, the framework depicts two participants in collaboration, i.e., a joint
group effort, as well as the involved work artifact. Both participants are able to
directly communicate with each other, potentially applying deictic terminology to

9In regard to attention resources, see also the general description of human information processing
as illustrated in Figure 2.2 in Section 2.1.2.
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refer to artifacts in the shared environment. Typically, both participants are able
to control the work artifact, for instance by directly interacting with it. Naturally,
such interactions generate feedback accordingly. Furthermore, while a participant
controls an artifact and receives feedback, the other participant is able to passively
observe their partner’s interactions and thus to receive similar feedback, referred
to as feedthrough. Finally, all the interactions between the participants themselves
and with the artifacts of their work aim to establish a mutual understanding
between the participants, enabling them to successfully collaborate.

Thematically aligned with Dix’s (1994) framework, collaboration coupling
styles, i.e., modes describing how participants interact with each other as well
as with work artifacts, have been empirically investigated by, among others,
Isenberg et al. (2012) and Tang et al. (2006). Although originating from multi-user
collaboration around tabletop displays, their descriptions and classifications of the
various collaboration states, that the participants may find themselves in during
their individual and group work, provide relevant reflections and important
considerations for the design of collaborative systems in general. For instance,
Isenberg et al. (2012) provide detailed descriptions for various collaboration
styles, classified as close and loose collaboration depending on the participants’
activity. Gutwin and Greenberg (2002) examine the complex subject matter of
workspace awareness more closely, providing a framework to describe a participant’s
understanding of their collaborator’s interactions in the shared workspace. Their
framework aims to facilitate the design of CSCW systems by establishing and
providing mechanisms for the support of workspace awareness through the
analysis of relevant components, such as environment, knowledge, exploration, and
action, as well as the interplay between these (Gutwin and Greenberg, 2002).

In practice, collaboration using computer systems may occur in various
different contexts and scenarios. A popular approach to determine these more
descriptively is the classification of the collaboration technologies according to
time and space. Such a Time/Space Matrix of CSCW systems has been pioneered
by the works of Johansen et al. (1988), Baecker et al. (1995), and Dix et al. (2004,
Chapter 19.2). As illustrated in Figure 2.12, the matrix generally differentiates
between spatial (co-located or remote) and temporal (synchronous or asynchronous)
dimensions in which collaboration can take place. However, as information and
communication technologies advance and provide new mechanisms, modalities,
and contexts, in which computer interfaces are available, a simple classification
with respect to time and space becomes increasingly insufficient in order to capture
the variety of potential scenarios and use cases (Ouverson et al., 2021; Neumayr
et al., 2018). Lee and Paine (2015) discuss this matter and propose a Model of
Coordinated Action that is built around seven dimensions (synchronicity, physical
distribution, scale, number of communities of practice, nascence, planned permanence,
and turnover) that each utilize a continuum rather than binary categorization.
Through this less rigid classification of collaborative scenarios and technologies,
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Figure 2.12: Time/Space Matrix of CSCW systems, adapted from Dix et al. (2004,
Chapter 19.2), Baecker et al. (1995), and Johansen et al. (1988).

their framework provides practitioners with a wider vocabulary to describe
their CSCW systems accordingly (Lee and Paine, 2015). Neumayr et al. (2018)
expand on the original concept of the Time/Space Matrix through the definition
of Hybrid Collaboration, stating that in modern collaboration setups (1) the
temporal and spatial collaboration dimensions are not exclusive to each other,
but rather constant transitions between the individual quadrants occur, (2) more
than two collaborators exist, including the dynamic allocation into subgroups,
thus featuring a variety of different collaboration coupling styles at any given
time, and (3) it is likely that more than just one tool or application is used, but
multiple different ones, each serving their own purpose.

Ens et al. (2019) reviewed the application of mixed reality technologies for
collaborative purposes throughout the past decades (1995 to 2018), and found that
the amount of publications related to CSCW and mixed reality have increased
significantly since 2012. Arguably, as immersive technologies become more
accessible and generally easier to maintain, researchers and practitioners can
focus on the application of their collaborative system in real-world contexts and
its subsequent empirical evaluation (Ens et al., 2019). Based on the examined
110 publications, Ens et al. (2019) created a set of dimensions to aid with the cate-
gorization of these publications. Despite facilitating the identification of popular
themes in the research community, potential gaps, and underrepresented topics
that require further investigation, these dimensions can also assist practitioners
to appropriately position and describe their collaborative systems. In particular,
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Ens et al. (2019) defined six dimensions to describe collaborative systems that
utilize immersive technologies:

• Time: When is the collaboration happening, i.e., is it synchronous, asyn-
chronous, or both?

• Space: Where is the collaboration happening, i.e., is it co-located, remote,
or both?

• Symmetry: Do the collaborators have the same roles (symmetric), or has
each one a specific role that differs from the other (asymmetric)?

• Artificiality: In alignment with the reality-virtuality continuum (see Fig-
ure 2.1 in Section 2.1.1), to what extent is the environment synthetic, i.e., is
it mostly physical, mostly digital, or hybrid?

• Focus: Who is the primary target of the collaborative activity, i.e., is it an
environment (surroundings of the collaborator), a workspace (region of in-
terest during collaboration), a person (representation of other collaborators),
or an object (real-world object or virtual replica in the VE)?

• Scenario: What is the overall concept and use case of the collaborative
system, i.e., is it a remote expert, shared workspace, shared experience,
telepresence, or co-annotation use case?

Following a similar approach of reviewing collaborative mixed reality research
presented between 2013 and 2018, de Belen et al. (2019) additionally report on the
area of application for collaborative systems. The results of their review indicate
the many possible contexts in which collaboration through immersive technolo-
gies has been investigated, including prominent ones, such as entertainment,
gaming, education, and training (de Belen et al., 2019). Besides these frequently
investigated areas of application, there is also research conducted within the
context of industrial applications, architecture and construction, medicine, as
well as tourism and heritage (de Belen et al., 2019). It becomes apparent that the
design, development, and evaluation of CVEs that utilize immersive technologies
entails a multitude of considerations, and is thus an inherently complex subject
matter due to the many different components involved – both conceptual as well
as technological. Naturally, CVEs should aim to support the various foundational
CSCW concepts as presented throughout this section in order to facilitate success-
ful collaboration between the participating users (Snowdon et al., 2001). However,
the often rather single-user centric nature of the involved display and interaction
technologies (Skarbez et al., 2019; Cordeil et al., 2017b; Hackathorn and Margolis,
2016) can strongly contrast with valuable collaborative aspects, especially within
the context of VR. For instance, important visual communication cues from a
collaborator in a the real-world environment, such as facial expressions, body
language, gestures, or spatial references, are no longer conventionally available.
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Instead these need to be specifically designed and implemented in order to be
supported in CVEs. Such nonverbal communication features are particularly
important and relevant instruments within CVEs, but their appropriate design is
by far not a trivial task, and highly dependent on the characteristics and capa-
bilities of the chosen display and interaction technologies as well as the context,
design, and composition of the VE itself (Cruz et al., 2015; Nguyen and Duval,
2014). One can further argue that due to the single-user centric characteristics of
immersive technologies, i.e., each user viewing the VE through their own display
and interacting in it with their own dedicated tools, CVEs are often rather remote
(distributed) in nature, even in co-located spaces – especially when adapting a
VR approach as described in Section 2.1. Essentially, there is not just a challenge
with respect to system design and implementation, but also evaluation, which is
particularly demanding in the case of systems that feature remote collaboration
through complex synchronous and asynchronous interactions (Neale et al., 2004).

2.4 Immersive Analytics
Utilizing immersive display and interaction technologies for the visualization,
exploration, and analysis of data in VEs has fascinated researchers at least since
the 1990’s (Fonnet and Prié, 2021; Dwyer et al., 2018), and is thus not a particularly
new research direction. However, comparatively recent technological advances
have elevated immersive interfaces into the mainstream, making them generally
more affordable, widely accessible, and easier to maintain – both with respect
to hardware and software technologies. New research interest has sparked for
the exploration of approaches to analyze and interact with data in immersive
spaces, utilizing the different characteristics and benefits immersive technologies
can hold, such as described throughout Sections 2.1 and 2.2. Researchers have
come together under the umbrella term of Immersive Analytics (IA) to establish
this research domain more formally. Several definitions of IA have been recently
proposed to outline the research domain’s general purpose and approach (Skarbez
et al., 2019; Dwyer et al., 2018; Hackathorn and Margolis, 2016; Chandler et al.,
2015). While all of these are certainly applicable, the definition of IA by Skarbez
et al. is adopted within the scope of this thesis:

“Immersive Analytics is the science of analytical reasoning facilitated
by immersive human-computer interfaces. By analytical reasoning, we
specifically refer to computer-aided analytical reasoning as a partner with
the human; that is, a process of foraging and sensemaking where part or all
of the foraging and / or sensemaking processes are performed in cooperation
with a computer. By immersive human-computer interfaces, we specifically
mean those interfaces which enable a user to interact with a system using
additional or more-immersive displays and user interface techniques.”

– Skarbez, Polys, Oggle, North, and Bowman (2019)
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Among others, and besides being coincidentally the most recently published
one of the referred IA definitions, Skarbez et al. (2019) provide a more compre-
hensive definition compared to the compact ones by Dwyer et al. (2018) and
Hackathorn and Margolis (2016), and at the same time appears less rigid com-
pared to the earlier definition by Chandler et al. (2015). It furthermore becomes
quickly apparent that IA is a highly interdisciplinary research field that integrates
knowledge and methods from various disciplines and research communities,
such as Information Visualization (InfoVis), Visual Analytics (VA), HCI, CSCW,
augmented reality, mixed reality, VR, and 3D UIs, to name just a few. Particularly
through the 3D characteristics of VEs as well as the availability of powerful depth
cues in modern visual displays that can assist the user with their 3D spatial
perception, as described in Section 2.2.1, it is time to reassess the value of data
visualizations and interaction in 3D, as these have been commonly disregarded
outside Scientific Visualization (Marriott et al., 2018). Naturally, this may concern
utilizing the third dimension for additional visual mapping and encoding of data
compared to 2D approaches (Marriott et al., 2018). Another possibility could
be utilizing the immersive 3D space for the placement of 2D visualizations and
other 2D artifacts, such as text and media, in contextually relevant locations,
creating information-rich VEs (Skarbez et al., 2019). However, it is important
to highlight that IA aims to provide novel, intuitive, engaging, and purposeful
3D data analysis tools that complement, synergize, and potentially even closely
integrate with InfoVis and VA workflows rather than replacing them (Cavallo
et al., 2019; Wang et al., 2019; Isenberg, 2014).

Dwyer et al. (2018) describe various opportunities for the design of appropriate
IA applications, both from a general HCI as well as a data visualization perspective.
For instance, it is possible to integrate immersive technologies closely with objects
anywhere and at any time in the physical real-world environment, linking physical
and virtual worlds, and allowing for the subsequent display of information and
the interaction therewith within in-situ contexts (Dwyer et al., 2018). Due to
the 3D spatial characteristics of many immersive interfaces, the analyst is no
longer required to, for instance, sit in front of a computer terminal “outside”,
but instead surround themself with information and taking on instead a more
“inside” perspective. Consequently, this allows for a more embodied and user-
centered approach, potentially utilizing on a wide variety of different input
technologies and interaction techniques, enabling the analyst to explore data in a
more engaged manner by actively moving around (Dwyer et al., 2018; Büschel
et al., 2018). Naturally, there is also the potential of utilizing the benefits of
various interface types for the stimulation of the different human sensory organs,
as described in Section 2.1.1. Besides the arguably most commonly applied
visual interfaces, data can be mapped and displayed to alternative interfaces that
enable multisensory experiences (Dwyer et al., 2018), including spatial 3D audio
(Marai et al., 2016). Furthermore, closely aligned with the subject matter of CVEs,
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as described in Section 2.3, IA has the opportunity to facilitate collaboration
between multiple analysts, independent of space and time constraints, potentially
supporting a wide variety of collaboration modalities (Dwyer et al., 2018). Finally,
there is also the chance to benefit from intuitive and engaging interaction and
viewing approaches enabled through the utilization of immersive technologies,
allowing non-expert and novice users to engage with IA experiences, facilitating
their understanding about presented phenomena in a more narrative-driven
approach, and thus informing their subsequent decision-making process (Dwyer
et al., 2018; Isenberg et al., 2018).

The high level of interdisciplinarity as well as the various opportunities across
many different applied scenarios and use cases pose a multitude of research
challenges that require further investigation, as briefly described in Section 1.1.
Just recently, in 2021, a collective of 24 researchers from different disciplines and
backgrounds came together to formalize in a joint effort a set of 17 challenges in
IA, providing an overall summary and agenda for important research directions
in the near future (Ens et al., 2021). In particular, Ens et al. (2021) classify these
challenges across four major topics as follows:

• Spatially Situated Data Visualization: This topic is concerned with the investi-
gation of applying immersive technologies in situated contexts in real-world
spaces, i.e., in-situ, in order to link and display relevant information interac-
tively in an appropriate manner. As such, it also concerns the investigation
of particular human factors issues as well as the ethical approaches for
data visualization in such in-situ contexts.

• Interacting with Immersive Analytics Systems: This topic focuses on the
examination of interaction modalities and techniques for the purpose of
actively operating and engaging with IA systems, and coping with their
overall complexity (Büschel et al., 2018). The utilization of novel immersive
output and input devices, as described throughout Section 2.2, poses
various challenges with respect to human factors and ergonomics in order
to design and develop appropriate and effective interaction with data in
(partially) virtual 3D spaces that incorporate multisensory user feedback. A
lack of guidelines and best practices for the interaction in IA environments
is also emphasized by Fonnet and Prié (2021).

• Collaborative Analytics: As data analysis and subsequent meaning and deci-
sion making is seldom a process that is done in isolation but in collaboration
between multiple analysts, the challenges in this topic are concerned with
the utilization of immersive technologies to enable collaborative experiences
in various ways. As described throughout Section 2.3, there are many
facets that have to be considered when designing collaborative systems that
also need to be supported within IA scenarios and use cases. Of particular
interest in this topic are aspects with regard to the support of human



�.�. IMMERSIVE ANALYTICS 51

behavior in collaborative environments, the support of collaboration across
technologically different platforms, the integration into existing analysis
workflows, as well as the evaluation of collaboration in immersive data
analysis environments.

• User Scenarios and Evaluation: This topic is generally concerned with the
identification of guidelines and recommendations as to which scenarios
and use cases are suitable and applicable for IA, and which ones are maybe
rather implemented using non-immersive technologies. There are many
different aspects to consider for the deduction of such recommendations,
for instance with respect to technology, the user, and application contexts.
Furthermore, there is a also a need for general strategies and approaches
that guide and facilitate the evaluation of any IA system, allowing the
research community to draw conclusions with respect to user experience
and performance based on empirical evidence.

In addition to the research topics presented by Ens et al. (2021), Skarbez et al.
(2019) provide some impulses in regard to an overall IA research agenda. Their
areas for IA research overlap for the most part with the ones discussed by Ens
et al. (2021). However, two are in particular noteworthy to highlight. First, in
line with the overall concept of allowing user interaction with computer systems
in a closer and more integrated manner compared to traditional approaches
(see Section 2.2), Skarbez et al. (2019) propose the investigation of approaches
to combine human and machine intelligence to solve analytical tasks in IA
environments. Parts of this investigation are therefore concerned with topics such
as Big Data, Machine Learning, and Artificial Intelligence, and their subsequent
integration in IA systems. And second, with respect to human behavior in
immersive environments, Skarbez et al. (2019) issue the investigation of how the
application and exposure to IA systems, in particular in regard to a provided level
of immersion, may affect and improve analytical procedures and presentations.

2.4.1 Collaborative Immersive Analytics

As previously highlighted as one of the main challenges in the IA research
agenda (see Section 2.4), the application of immersive display and interaction
technologies to allow analysts to work together in collaborative scenarios, for
joint data exploration and interpretation to collectively extract insights, is highly
anticipated. To examine this subject, it is helpful to find a suitable definition
as means for further guidance. Based on the general IA definition proposed by
Dwyer et al. (2018), and incorporating the definition of Collaborative Visualization
proposed by Isenberg et al. (2011), Billinghurst et al. derive and suggest the
following definition for the term of Collaborative Immersive Analytics (CIA):
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“The shared use of immersive interaction and display technologies by
more than one person for supporting collaborative analytical reasoning and
decision making.”

– Billinghurst, Cordeil, Bezerianos, and Margolis (2018)

While one can argue that this definition of CIA is straightforward and to the
point, it is at the same time arguably also rather generic, implicitly highlighting
the vast amount of opportunities as well as the potential complexity of CIA. After
all, the design of collaborative systems that utilize the benefits of immersive
technologies for analytical purposes require many different considerations that
have to be carefully attended. Besides the actual data context and scenario,
these include also the choice and availability of technology, the knowledge and
subsequent roles of the involved analysts, and general aspects of the collaborators
as a group, such as their locations, common workplace, and so on. As designed IA
systems can potentially utilize any kind of immersive technology and approach,
possibly situating themselves anywhere on the reality-virtuality continuum (see
Figure 2.1 in Section 2.1.1), so can in turn CIA systems. The before mentioned vast
amount of potential configurations, scenarios, and use cases, becomes apparent.

Cernea (2015, Chapter 1) discusses the concept of User-Centered Collaborative
Visualization, incorporating aspects of user-centered design in the proposed
definition of collaborative visualization by Isenberg et al. (2011), similar to the
definition approach by Billinghurst et al. (2018). Aligned with the strong focus on
allowing users to closely immersive themselves with a computer system through
the use of respective display and interaction technologies, as described throughout
Section 2.2, it is worth having a closer look at Cernea’s (2015, Chapter 1) concept.
As such, the definition of user-centered collaborative visualization has been
proposed as follows:

“User-Centered Collaborative Visualization is the shared use of computer-
supported, interactive, visual representations of data that considers knowl-
edge about the abilities and needs of both the involved users and the group
as such, their task(s), and the environment(s) within which they work, in
order to capture vital contextual information and support the process of
completing the user group’s common goal of contribution to joint informa-
tion processing activities.”

– Cernea (2015, Chapter 1)

Besides highlighting aspects of social processes and the interpersonal interac-
tion as a consequence thereof during the collaborative analysis activity, in line
with the discussions of general design considerations for collaborative systems
by Heer and Agrawala (2008), Cernea’s (2015, Chapter 1) definition hints at two
other aspects that are arguably of particular importance within the context of
CIA, namely the occurrence of potentially multiple different tasks as well as
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multiple different environments. Ens et al. (2019) highlighted symmetry as a
defining characteristic for collaboration using immersive technologies, i.e., users
having the same roles (symmetric) or different ones (asymmetric). Symmetry
aspects arguably address and affect implicitly the task distribution between the
collaborators, as different user roles are likely to infer different responsibilities
and tasks during the joint data analysis. As a logical follow-up question, one
may ask what tools, applications, or systems are the collaborators using, and
where with respect to each other. For instance, are they using the same tools
in the same environment, different tools in different environments, or any per-
mutation thereof. Naturally, collaboration may occur across different times and
spaces, as presented together with the many different aspects of collaboration
within the context of CVEs as well as CSCW in general throughout Section 2.3.
Examining the literature in regard to CIA, it becomes apparent that the term
environment requires some further reflections. In particular, it subjectively appears
that the terms environment and space are often applied interchangeably when
discussing collaboration contexts, commonly referring to the physical real-world
environment or space a collaborator finds themself in to partake and conduct
their work. Within the context of immersive technologies however, common
terms are VE, CVE, or sometimes simply immersive environment (see Sections 2.1.1
and 2.3). As such, within the context of CIA, one could argue that a different
environment actually refers to a different type of immersive application or system,
independent of the collaborators’ physical real-world location. In other words,
collaborators could be either co-located or remote, and find themselves in the
same or different VEs, using the same or different display and interaction tech-
nologies, depending on their tasks and role distribution (Rogers et al., 2021; Lee
et al., 2020; Grandi et al., 2019; Clergeaud et al., 2017). Thus, while certainly valid
within the context of Cernea’s (2015, Chapter 1) definition of user-centered collab-
orative visualization, the term environment should be carefully used within the
context of describing CIA concepts and systems, potentially under consideration
of additional clarifications.

The definition of hybrid collaboration by Neumayr et al. (2018), as described in
Section 2.3, incorporates next to time and physical space dimensions also aspects of
cross-device and cross-application collaboration. The description and specification
of the involved device types that compose a CIA system seem therefore useful
and worth considering. Fröhler et al. (2022) investigated the use of heterogeneous
interface types for data analysis purposes as Cross-Virtuality Analytics, aiming to
provide tools that support collaboration through the seamless integration in the
data analysis activity independent of their platform. Hybrid Virtual Environments
(Wang et al., 2019) and Collaborative Hybrid Analytics (Cavallo et al., 2019) are
similar concepts that incorporate both 2D and 3D visualization environments.
Particularly within the “bigger picture” of any analytical workflow, and also
in regard to complex datasets, individual analysis tools that utilize different
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display and interaction technologies are nowadays rarely used in isolation, but
instead as composition of multiple different ones, each serving their own purpose
(Wang et al., 2019). Such a multimodal composition of tools, each providing
their own dedicated advantages and perspectives, has the potential to greatly
facilitate data exploration and analysis (Isenberg, 2014). Neumayr et al. (2018)
already highlighted some considerations for hybrid collaboration across different
devices in general, such as with respect to working styles, user territoriality, and
awareness. Hybrid collaboration environments that utilize immersive and non-
immersive technologies require however some further ones, especially in regard
to complementarity, transition, interaction, and collaboration, when using different
data analysis modalities (Cavallo et al., 2019; Wang et al., 2019; Isenberg, 2014).
Considering such anticipated workflows that incorporate an interplay between
tools that are built around heterogeneous display and interaction technologies,
both immersive and non-immersive, the specification of device and application
type within the scope of an own dedicated framework dimension, to facilitate the
classification and description of CIA systems, seems logical henceforth. Among
others due to its highly interdisciplinary nature as well as the complexity of CIA
systems in general, Fröhler et al. (2022), Fonnet and Prié (2021), and Billinghurst
et al. (2018) all emphasize that more research and empirical evaluations are
needed in this domain.

2.5 Evaluation of Immersive Technologies

Examining the contents throughout all the sections in this chapter so far, the close
coupling between human user and technology becomes apparent. Hence, HCI
research is inherently empirical by default, aiming to systematically investigate
phenomena and matters of interest as a result of using technological artifacts,
and with a focus on the human user (Boyd and Bogen, 2021; Hansson, 2021),
i.e., human factors and ergonomics as described in Section 2.1.2. Evaluation
is a fundamental part of the iterative design process for technology (Franssen
et al., 2018), and enables the assessment of a developed technological artifact
with respect to the initially determined goals and requirements. Evaluation
purposes may include (1) the identification of design problems with respect to
the developed user interface (UI) or user experience in general, (2) the deduction
of design guidelines by obtaining a deeper understanding of the technological
artifact’s application in practice, or even (3) the development of performance
models with the aim to predict anticipated user performance when using the
technological artifact (LaViola, Jr. et al., 2017, Chapter 11.1.1). HCI research has a
long history of user evaluation (Barkhuus and Rode, 2007), and as such a rich
corpus of diverse evaluation methods and metrics, both standardized as well as
custom-made.
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Figure 2.13: Technology Design Process, adapted from Franssen et al. (2018), and
overview of HCI evaluation methods and metrics. The selection of evaluation
methods and metrics is not meant to be exhaustive, but rather provide a general
overview of widely recognized options that are deemed relevant within the
context of this thesis. Note: Highlighted methods have been used for the
empirical evaluation of developed artifacts within the scope of this thesis.

Figure 2.13 illustrates the evaluation stage as part of the Technology Design
Process (Franssen et al., 2018), and provides an overview of evaluation methods
and metrics that can be relevant for the research presented in this thesis, i.e., within
the context of evaluating developed artifacts that utilize immersive technologies.
Generally, evaluation methods and metrics can be divided according to performance
related methods and metrics, in particular task and system performance, as well as
subjective methods and psycho-physiological methods.

Assessments in regard to performance are generally objective, i.e., they are
independent of the user’s personal feelings and opinions. Aligned with the H
and the C in HCI, performance can be assessed both with respect to the human
user (task performance) and the computer system (system performance). Task
performance related measurements are commonly presented as metrics such
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as speed and accuracy. LaViola, Jr. et al. (2017, Chapter 11.3.2) emphasize
on the implicit relationship between these two, i.e., the faster one performs an
action, the less accurate that actions tends to be, and vice versa. Other common
task performance metrics include the amount of errors a user made in order to
successfully complete specific tasks, or the amount of specific interactions with a
UI. Although the human user is commonly in the focus of any HCI evaluation, it
is sometimes important to measure performance metrics of the tested computer
system. A developed artifact that performs poorly may impact how the user
experiences the interaction with it, and subsequently influence the results of the
human-centered metrics. For instance, human perception of motion is closely
coupled to a visual display’s frame rate, i.e., its ability to update the displayed
graphical contents (see Section 2.2.1). Based on the intended use, certain frame
rate thresholds should be met in order to ensure smooth visual perception of
the displayed media, for instance, 90 frames per second for modern VR HMDs
(Wallergård et al., 2022, Chapter 5.6.7; LaValle, 2020, Chapter 6.2). If a computer
system is not powerful enough to run the developed artifact, thus not meeting
such recommended thresholds, the result may be a less smooth and “jittery”
visual perception through the user that potentially negatively impacts their ability
to perform tasks as well as their subjective assessment of artifact. As such, system
performance metrics should be generally regarded as complementary to the data
collected from human users within the context of HCI evaluations, serving as a
validation to confirm the appropriate functioning of a technological artifact.

Data collected through subjective methods are influenced by the personal
feelings and opinions of the human that reports the data. That can be a user that
self-reports their experience with a prototype on the one hand, or on the other a
researcher themself through taking notes and making observations. In practice,
data collected through subjective methods can be both quantitative and qualitative.
Quantitative data can be described as numerical values, often within the context
of a continuum or otherwise interpretable scale, and are as such commonly
close-ended. One of the arguably most famous scales has been introduced by
Likert (1932), namely the Likert scale, a bipolar scale comprised of multiple rating
options, typically 5, 7, or 9.10 Accompanied by a statement, the reporting user can
select the rating option on the scale that reflects most their impression, allowing
for comparison among multiple different users. Collections of such Likert scale
items are often compiled into questionnaires, which can be custom-made by
the researcher to specifically investigate those aspects they want to evaluate, or
provided by the community in the format of standardized benchmarks for a more
generalized investigation of a subject (Sauro and Lewis, 2012). Qualitative data
are commonly open-ended, such as collected through interviews, observations, or

10An odd number of rating options allows for a neural rating through the median item. An even
number of rating options may be chosen when a decisive tendency towards one of the two endpoints
is desired.
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note taking, relying on descriptive expressions of the reporting user or researcher.
As such, qualitative data collection allows for a rather free-form capture of
experienced or observed phenomena. Based on the evaluation objective, a mixed
methods approach may be applied, incorporating both quantitative and qualitative
subjective data collections methods.

Pyscho-physiological methods are used to investigate the relationship between
the human user’s cognition and physical ergonomics, i.e., how a user’s body
physically reacts based on the prior perceived stimuli as processed through cog-
nition (Baig and Kavakli, 2019; Park, 2009). Among others, measurements such as
heart rate, body temperature, muscle activity, brain signals, skin conductance, eye
movements, and facial expressions, can provide data that allow for an analysis
with respect to emotion and affect recognition, or towards a general assessment
of a user’s cognitive state (Baig and Kavakli, 2019). Within the context of HCI
research, pyscho-physiological methods are particularly relevant in regard to the
assessment of stress, attention, and emotion (Park, 2009). Schmälzle and Grall (2020)
describe the application of pyscho-physiological methods within the context
of media theory and research, providing an overview of relevant data collec-
tion methods and discussing their validity. Common pyscho-physiological data
collection methods include electrocardiogram (ECG), electroencephalography
(EEG), electromyography (EMG), electrooculogram (EOG), functional magnetic
resonance imagining (fMRI), photoplethysmography (PPG), and galvanic skin re-
sponse (GSR) (Schmälzle and Grall, 2020; Baig and Kavakli, 2019; Park, 2009). Park
(2009) highlights the complexity of modern HCI systems, and emphasizes that
results from the application of pyscho-physiological methods should always be in-
terpreted specifically within their applied context. Furthermore, Baig and Kavakli
(2019) found as a result of their review that psycho-physiological measurements
commonly show strong correlations with a user’s self-reported data.

2.5.1 Applied Evaluation Methods

Section 2.5 and Figure 2.13 have provided a general purpose overview of evalu-
ation methods and metrics as well as their classifications within the context of
HCI. The remainder of this section is dedicated towards the description of those
evaluation methods that have been applied to empirically evaluate developed
artifacts within the scope of this thesis.

Logging The utilization of a logging system that is directly integrated as part of
a developed artifact allows for a comprehensive data collection of the interactions
between the human user and the computer system. Rather than observing and
manually counting how often a user makes use of a specific feature in a UI, that
kind of data can be automatically collected through the computer system itself.
Naturally, it is the researcher’s responsibility to integrate such mechanisms in a
systematic and structured manner, ideally following a predefined protocol, aiming
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to keep track of all interactions that are relevant for their analysis. Collecting
data in a human readable format, such as comma-separated values (CSV) or
JavaScript Object Notation (JSON), can facilitate processing and analysis using
desired tools of the researcher’s choice. Furthermore, each entry collected with
a logging system should feature a timestamp as a general reference, allowing
for the analysis of user interaction over time. Finally, an integrated logging
system as part of a developed artifact will consume computer system resources.
Consequently, any logging system should be implemented non-disruptively, i.e.,
not affecting the performance of the developed artifact in a for the human user
noticeable manner.

Observations Conducting observations, and subsequent note taking, is arguably
among the most basic, but nevertheless effective, subjective data collection
methods (Goodman et al., 2012, Chapter 9). Observations allow researchers to
naturally follow a user’s interactions with a technological artifact in a way that
is not disruptive to their experience. They can be free-form with respect to the
researcher’s ability to capture observed phenomena as they naturally occur – after
all, unexpected things may happen at any point in time. As part of designing
an evaluation, it can be beneficial to think critically about certain phenomena
that the researcher anticipates to observe, compiling a complementary list that
aids their observation and note taking process. This can allow the researcher to
more easily detect re-occurring patterns and phenomena across multiple user
study sessions, such as usability issues or the use of features for unintended
purposes. If the researcher is taking notes of observations in real-time as they
occur, it is important to highlight that this process may temporarily distract
the researcher. As they focus on their note taking, the next noteworthy event
may happen that could thus be missed. The comparatively free-form nature of
observations commonly require further preparations for the results presentation
and analysis, such as bundling and categorizing observations into themes or
topics, enabling an appropriate presentation of re-occurring matters.

Think Aloud The Think Aloud technique encourages the human user to actively
comment on their interactions with a developed artifact in-situ by speaking aloud
(Fonteyn et al., 1993). This allows the researcher to get a better idea of the thought
processes and the intentions of the user during their interactions. The technique
is comparatively easy to learn and to apply, but requires some considerations. For
instance, some users may be more talkative than others. Some users may also feel
uncomfortable expressing negative feedback, potentially omitting such comments,
and rather focusing on positive aspects of the evaluated artifact. Furthermore, the
technique can be somewhat disruptive to the overall flow of interaction, as users
are tasked to verbally express themselves and to describe what they are doing,
which can also feel unnatural. As such, applying the think aloud technique as
part of an overall evaluation design should be carefully planned beforehand.
For instance, combining performance measurements where users are tasked to
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complete interactions as fast and accurate as possible, in combination with the
think aloud technique where they are encouraged to actively comment on what
they are doing, is inherently conflicting. However, in other scenarios where
task performance measurements are disregarded, the think aloud technique may
be very valuable to easily capture user feedback, especially in iterative design
evaluations. Similar to the presentation of observation results, user feedback
captured using this technique should also be bundled and categorized into
re-occurring themes and topics.

Interview/Expert Interview Interviews are a common approach to inquire the
feelings and opinions of the human user, typically after they had the opportunity
to engage and interact with a developed artifact (Goodman et al., 2012, Chapter 6).
Interviews can be conducted in a structured manner, where all questions are
prepared by the researcher in advance, and all users are asked the same questions
according to a prepared protocol. There is also the possibility to conduct informal
interviews that are rather unstructured, allowing the researcher to improvise and
come up with questions in-situ, for instance based on observations made prior
to the interview or as a follow-up to previous answers by the interviewee. Semi-
structured interviews combine the best of structured and unstructured approaches,
allowing the researcher to prepare questions every user is asked beforehand, while
maintaining the freedom to compose follow-up questions during the interview
to inquire more details if necessary. Interviews are commonly conducted with
representative users, i.e., those expected to be within a target group of the
evaluated artifact. However, another approach to inquire insights is to interview
relevant experts in order to build upon their domain knowledge (Bogner et al.,
2010). Interviewed experts may also come from different domains. For instance,
an interactive climate visualization tool could be evaluated with a climate data
domain expert to inquire insights in the usefulness and appropriateness with
respect to the overall data context, while a HCI domain expert may provide
constructive feedback on the implemented interaction techniques. It can also be
beneficial to conduct interviews with multiple experts of the same background at
the same time, potentially enabling them to organically discuss among themselves
as they comment on each other’s thoughts.

System Usability Scale The System Usability Scale (SUS) presented by Brooke
(1996) is a standardized questionnaire aiming to evaluate the usability of a
developed artifact, i.e., with respect to how easy and how pleasant the interaction
with the artifact is.11 It consists of ten 5-point Likert scale items that are
generalized, i.e., they are formulated to allow application to any kind of evaluated
artifact without the need for additional changes. The answers can be easily
calculated into an interpretable usability score between 0 (bad) and 100 (good).

11Jakob Nielsen. Usability 101: Introduction to Usability. Retrieved June 1, 2022, from https:
//www.nngroup.com/articles/usability-101-introduction-to-usability/

https://www.nngroup.com/articles/usability-101-introduction-to-usability/
https://www.nngroup.com/articles/usability-101-introduction-to-usability/
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The SUS has been widely used and is well established within the HCI research
community (Brooke, 2013). Tasking users to complete the SUS after they interacted
with the developed artifact is comparatively straightforward. Its ten items are
easy to understand, making the questionnaire not too lengthy nor too demanding.
In addition to the original numerical score, Bangor et al. (2009) present adjective
ratings to further facilitate the SUS score interpretation. In particular, Bangor
et al. (2009) propose the following ratings and their corresponding SUS score
thresholds: worst imaginable (25), poor (39), ok (52), good (73), excellent (85),
best imaginable (100). Another complementary score interpretation approach is
presented by Sauro and Lewis (2012), proposing the transfer of the numerical
score into traditional school grades (A+ to F).

User Engagement Scale O’Brien et al. (2018) describe user engagement as
part of an overall user experience, stating that it represents the depth of a user’s
investment when interacting with a developed artifact. Thus, O’Brien et al. (2018)
present the User Engagement Scale (UES) as a standardized tool to measure
engagement for the purpose of utilizing the results within an artifact design and
evaluation process. The 2018-revision of the UES evaluates user engagement
across four dimensions, i.e., focused attention, perceived usability, aesthetic appeal,
and reward. There are an extensive Long Form (LF) as well as a more condensed
Short Form (SF) of the UES questionnaire available (O’Brien et al., 2018). The
UES-SF features twelve 5-point Likert scale items, while the UES-LF consists of a
total of 30 items. The answers can be analyzed on a scale from 1 (bad) to 5 (good)
for each of the four dimensions, and as a combined overall user engagement score.

Task Load Index Hart and Staveland (1988) present a method to allow for
a self-reported estimation of workload when operating an interactive system,
namely the Task Load Index (TLX).12 The TLX is a two-step approach that first
tasks users to weigh and then rate six different workload related factors, i.e.,
mental demand, physical demand, temporal demand, effort, frustration, and the user’s
own performance. A calculation of a final score (weighted rating) is possible,
representing the user’s perceived workload on a scale from 0 (extremely low
workload) to 100 (extremely high workload). Hart and Staveland (1988) argue
that the overall concept of workload is rather versatile, likely resulting in multiple
users having a different understanding and interpretation of what workload
means to them. The weighing process, a comparison of 15 possible factor pairs, is
intended to address this, essentially assigning weights to the individual workload
contributing factors according to a user’s understanding. The subsequent rating
process involves a simple rating of all the six factors on a scale from 0 to 100,
typically in steps of five. Based on the determined weights and ratings, scores for
the individual factors (adjusted ratings) as well as a total workload score (weighted

12Hart and Staveland (1988) developed the TLX as part of their work at the National Aeronautics
and Space Administration (NASA). Therefore, the TLX is alternatively referred to as NASA TLX.
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rating) can be calculated accordingly. Applying the TLX in practice post-study is
comparatively convenient, although users should be briefed with respect to the six
different factors. The TLX has been widely used and thus become an established
method to measure workload (Hart, 2006). Alternatively to the original two-step
approach, the TLX is sometimes applied without the weighing process as Raw
Task Load Index (RTLX), inquiring only user ratings for the six different factors
to streamline the data collection process (Hart, 2006).

Flow Short Scale Based on the overall flow theory as discussed by Csikszent-
mihalyi and Csikszentmihalyi (1992) as well as Rheinberg (2010), it is possible
to subjectively measure and investigate the perceived state of interaction flow a
user can experience when interacting with a developed artifact. For this purpose,
Rheinberg et al. (2003) developed the Flow Short Scale (FKS; German original:
Flow-Kurzskala), adopted and shortened based on the work by Csikszentmihalyi
and Csikszentmihalyi (1992). The FKS consists of 13 7-point Likert scale items,
ten of which are concerned with the flow experience in general and can thus be
analyzed with respect to the smooth automatized process and the ability to absorb.
The last three of these 13 items make inquires regarding potential concern a user
may experience. Furthermore, three 9-point Likert scale items may be included
at the end of the FKS that are concerned with some additional self-assessments
of the user in reference to their interaction with a developed artifact or activity.

Simulator Sickness Questionnaire The Simulator Sickness Questionnaire (SSQ)
was originally introduced by Kennedy et al. (1993) within the context of aviation
psychology with the aim to investigate symptoms a user may experience due
to the exposure to a simulator-like environment. The questionnaire consists
of 16 4-point Likert scale items, each inquiring user assessments with respect
to different symptoms across three dimensions, namely nausea, oculomotor, and
disorientation. The answers can be analyzed with respect to each individual
symptom, each dimension, and as a total simulator sickness score. The SSQ gained
popularity over the years and has been applied across different types of simulator-
like experiences, including VR and HMDs (Hirzle et al., 2021; Rebenitsch and
Owen, 2016). For the purpose of evaluating VR experiences, Bouchard et al.
(2007) propose an alternative score calculation of the original 16 SSQ items across
only two dimensions (nausea and oculomotor) as cybersickness. LaValle (2020,
Chapter 12.3) discusses some practical implications of utilizing the SSQ for VR
research that are in line with the reflections and suggestions by Bimberg et al.
(2020), including the subjective results based on the user’s self-reported symptom
assessment and its rather disruptive nature, as it should normally be applied
multiple times during a user’s exposure with a developed artifact. Hirzle et al.
(2021) also highlight the need for improvements with respect to facilitating the
capture of factors that are more closely related to VR experiences that utilize
HMD devices. VR sickness as described by LaValle (2020, Chapter 12.3) has been
discussed in Section 2.1.2.
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Figure 2.14: The design space of this thesis, aligned with the presented re-
search problem, scope, goal, and objectives (see Section 1.2), and the various
foundational subjects presented throughout Chapter 2, aiming to illustrate the
interdisciplinarity of the presented research in a modular manner.

2.6 Thesis Design Space

Under consideration of the presented research problem, scope, goal, and objectives,
as described in Section 1.2, as well as the obtained foundational understanding
of the various research areas and relevant subjects throughout this chapter, the
overall design space for this thesis can be proposed. Consequently, Figure 2.14
illustrates the thesis design space, constructed by carefully aligning all relevant
topics and their relationships in a modular manner.

IA is positioned at the center of the design space as a generally overarching
theme. More specifically, the represented research is concerned with the investiga-
tion of spatio-temporal data that is provided through some external data source or
stakeholder, depending on the overall context and scenario. Furthermore, the first
core theme of this thesis is concerned with the interaction in VEs for data analysis
purposes. VEs can be implemented using different conceptual approaches and
technological interfaces. The research presented in this thesis focuses on the
application of a VR approach that utilizes HMD and 3D gestural input devices as
types of 3D UIs. The second core theme of this thesis is concerned with enabling
multiple users to collaboratively analyze data in VEs, i.e., CIA. Naturally, this
theme is supported through insights from the area of CVEs. A central aspect of
the collaborative analysis setup is concerned with the application of immersive
and non-immersive display and interaction technologies as well as dedicated
roles for each user, aiming to bridge CIA with collaborative InfoVis and VA.
As such, the concept of Hybrid Asymmetric Collaboration is introduced and
positioned within the context of CIA. Finally, the research presented in this thesis
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is empirically evaluated, both in regard to the interaction in VEs and hybrid
asymmetric collaboration.

The modular representation of the thesis design space is chosen on purpose
to reflect on its interdisciplinary nature. It is conceivable that similar other
investigations may be conducted in the future. Instead of utilizing a VR approach
and the presented 3D UIs, one could investigate an overall similar subject, such
as the interaction with spatio-temporal data within the context of IA, with other
conceptual approaches and technologies. Consequently, the respective modules
on the left side of the illustrated design space could be replaced, for instance
through an augmented reality approach and portable tablet devices as 3D UIs, to
name just one example.
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After obtaining a foundational understanding of important concepts, termi-
nology, and research areas that are relevant within the scope of this thesis, as
described throughout Chapter 2, it is possible to examine related work of other
researchers to extract helpful insights and impulses. Researchers have presented
interesting work that is informative for the design and development of interactive
and collaborative systems, including aspects of immersive data visualization in
general, in anticipation of investigating the presented research goal and objectives
(see Section 1.2). It is noteworthy that the related work presented throughout
this chapter is selected in accordance to their relevance within the defined design
space of this thesis (see Section 2.6).

In particular, Sections 3.1 and 3.2 are centered around the exploration of
Immersive Analytics (IA) systems that incorporate aspects of Virtual Reality
(VR) through head-mounted display (HMD) devices and three-dimensional (3D)
gestural input. The insights and impulses obtained from the presented work in
these sections are relevant, among others, for the visualization and interaction
design as well as aspects of general Virtual Environment (VE) composition across
the three major VE iterations described throughout Chapter 5. Sections 3.3 and 3.4
are concerned with the investigation of related work that focuses on collaborative
aspects, particularly relevant within the contexts of Collaborative Immersive
Analytics (CIA) and Collaborative Virtual Environments (CVEs) that involve at
least one user being immersed in a VE through a VR approach. The presented
work in these two sections provides guidance for the design and development of
collaborative data analysis experiences as described throughout Chapter 6.

65
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3.1 Immersive Data Visualization Using Virtual
Reality

Researchers have conducted some interesting work in regard to the immersive
visualization of data using VR (see Section 2.1) over the years (Kraus et al., 2022;
Fonnet and Prié, 2021). Facilitated through the recent advancements in regard
to immersive display and interaction technologies (see Section 2.2), more and
more researchers reassess the utilization of 3D virtual spaces as interactive data
analysis tools (see Section 2.4). The insights of the existing empirical work in the
domain of IA can provide useful considerations and reflections for the design of
future immersive data analysis environments.

Among others, Donalek et al. (2014) describe their immersive iViz tool that is
designed to visualize large multivariate datasets in an immersive 3D environment.
Through utilization of a HMD and 3D gestural input, a user can interactively
explore the displayed data, following an overall abstract data visualization
approach (Donalek et al., 2014). An interesting feature of their presented tool
is that it enables the user to dynamically map the various data variables of
the dataset to different graphical attributes, such as the position in 3D, colors,
shapes, sizes, transparency, or textures (Donalek et al., 2014). This allows them
to reuse their tool across various datasets and analysis scenarios. The reported
insights from the development of their exploratory proof-of-concept tool (Donalek
et al., 2014) can be important for the design and implementation of similar tools,
especially with respect to its data-agnostic capabilities and the dynamic visual
mapping of data that encourage reusability of the tool.

Similar to the overall abstract data visualization approach as presented by
Donalek et al. (2014), Wagner Filho et al. (2018) investigated the utilization of
3D scatterplots within the context of IA. Using their system, the data variables
of a dataset can be visually encoded according to position, shape, and color
(Wagner Filho et al., 2018). Under utilization of various analytical tasks that
required the selection and identification of data entities, the authors conducted an
empirical investigation to compare three display and interaction configurations,
i.e., (1) 2D visualization using a normal monitor with keyboard and pointer
input, (2) 3D visualization using a normal monitor with keyboard and pointer
input, and (3) immersive 3D visualization using a HMD and physical, tracked
controllers (Wagner Filho et al., 2018). The results of their evaluation indicate,
among others, that the immersive display and interaction setup required less
effort and navigation to solve the analytical tasks compared to the two non-
immersive configurations, while also being subjectively more engaging (Wagner
Filho et al., 2018). The positive results of their investigation in favor of the IA tool
are promising, indicating an overall usefulness of such immersive data analysis
solutions, and as such encouraging further investigations in similar directions.
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Nguyen et al. (2019) demonstrate the utilization of star coordinates and star
plot techniques within the context of immersive data visualization. Interestingly,
rather than positioning the individual data entities in the empty 3D space, their
placement is facilitated through the display of respective data variable axes that
provide additional information cues to assist with the spatial data interpretation
(Nguyen et al., 2019). The authors also provided several features to address
analytical tasks, for instance to explore, select, filter, and zoom, as well as some
preliminary collaborative features (Nguyen et al., 2019). Overall, the work by
Nguyen et al. (2019) provides impulses for the design and development of IA
tools that are centered around abstract data visualizations similar to Donalek
et al. (2014) and Wagner Filho et al. (2018).

Moran et al. (2015) explored the visualization of a multivariate social network
dataset, including geolocation data variables, in a more realistic-looking VE,
arguably following a situated visualization design (Bressa et al., 2022; Thomas
et al., 2018). In particular, they displayed satellite imagery on the virtual floor and
placed 3D representations of the buildings on their university campus accordingly
on the top (Moran et al., 2015). The individual data entities, i.e., the visualized
data items of the dataset, could then be placed and displayed in-situ in the
VE in accordance to their geolocation coordinates (Moran et al., 2015). Various
interactive features enabled the immersed user to explore the dataset, for instance
by navigating through the 3D space, filtering the displayed data entities, and
displaying details-on-demand (Moran et al., 2015). Overall, their presented
immersive data analysis environment appears to apply a valuable data entity
positioning, directly in-situ and as such juxtaposed to virtual representations of
real-world facilities. This arguably allows for a contextually relevant analysis
of the dataset in regard to its spatial data variables. In the future, it could be
interesting to extend such an approach by incorporating features – both in regard
to the visualization and interaction – that better reflect on temporal data variables,
which are typically of importance within the context of social network analysis.
This could allow the immersed user to not just identify where data items exist,
but also in regard to when they were created.

Ivanov et al. (2019) present an immersive tool that enables its user to explore
individual data items in a dataset by literally walking among the data. Based on
dataset and scenario, individual data items are represented as abstract human-like
avatars in the VE that differ in appearance according to gender and age (Ivanov
et al., 2019). The authors provided several interactive features, for instance
to group the displayed data entities dynamically based on the available data
variables (Ivanov et al., 2019). To navigate in the immersive 3D space, Ivanov
et al. (2019) provide two main mechanisms, i.e., a zoomed out perspective
to enable the immersed user to explore the dataset in a more overview-like
manner, and a zoomed in one that allows the user to walk among the abstract
avatars and to display details-on-demand. Based on the experiences gained from
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their implemented prototype, the authors are able to highlight some interesting
challenges, for instance in regard to the immersed user’s orientation, situational
awareness, and personal space, as well as with respect to overall visual fidelity
and unit appearance (Ivanov et al., 2019). The insights from their work provide
design considerations that are particularly relevant within the context of the
exploration and analysis of large situated datasets in immersive VEs.

Pirch et al. (2021) present a comprehensive implementation of an IA platform
that is centered around the exploration of networks in a 3D VE. Besides the
visualization of individual data items as network nodes in the 3D space, the
authors also provide a multitude of interactive features, implemented using
a mixture of natural 3D interactions as well as adapted 2D graphical menus
operated through two physical, tracked controllers (Pirch et al., 2021). According
to the authors, they designed the overall user interface (UI) with established 2D
and 3D interaction concepts in mind, aiming for the IA tool to be rather self-
explanatory to the immersed user (Pirch et al., 2021). In addition to the provided
visualization and interaction design considerations, Pirch et al. (2021) describe
in detail the various implementation aspects, highlighting the various modules
that contribute to the overall platform composition. The modular characteristics
of their IA platform implementation arguably facilitated not just the aspects of
their practical collaborative work, but also in regard to general feature extension
and adaptation. Consequently, their work provides value considerations for the
respective implementation of future IA tools.

Furthermore, based on the recent advancements in the IA research community,
various frameworks and toolkits have been presented with the overall aim to
facilitate the development of immersive data analysis environments. For instance,
Cordeil et al. (2019, 2017a) present tools that are based on the Unity cross-platform
game engine that can be utilized to, comparatively easily, compose immersive
multivariate data visualizations. The presented ImAxes toolkit is centered around
the transfer of typical axes-based visualizations into the immersive 3D space,
such as histograms, scatter plots, scatter plot matrices, linked scatter plots, as well
as parallel coordinate plots (Cordeil et al., 2017a). A key feature of the toolkit is
centered around the interactivity of the data axes, enabling the immersed user to
manipulate, reconfigure, and filter the visualized data directly in the VE (Cordeil
et al., 2017a). In comparison, IATK focuses on providing accessible configuration
options for similar immersive visualizations based on a graphical user interface
that requires only minimal programming efforts (Cordeil et al., 2019). Similarly,
the DXR toolkit, also based on Unity, has been developed specifically keeping
developer novices without extensive experiences in 3D graphics, Augmented
Reality, and VR development in mind, allowing for approachable authoring
and rapid prototyping of IA tools and concepts (Sicat et al., 2019). Rather than
attempting to support a variety of basic visualization techniques, the MIRIA toolkit
presented by Büschel et al. (2021) focuses on the visualization and subsequent
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analysis of spatio-temporal user interaction data. As such, their Unity-based
toolkit enables the display of 3D trajectories, position heatmaps, and scatterplots,
for instance representing a user’s spatial movements over time, allowing the
immersed analyst to follow and reiterate on these trajectories with the goal to
obtain an understanding of the user’s activity (Büschel et al., 2021). Currently,
the authors focus on the specific use case of displaying spatio-temporal user
interaction data in-situ using augmented reality (Büschel et al., 2021). Naturally,
it would be intriguing to adopt their approach to allow an analyst to similarly
follow and reiterate on the interactions of a user in an immersive VE that is based
on a VR approach. The UMI3D toolkit, presented by Casarin et al. (2018) and also
based on Unity, differs from the other presented solutions insofar that it focuses
on providing dedicated mechanisms that aim to facilitate the implementation
of collaborative features, which are of particular relevance within the context
of CIA. Arguably similar in comparison to IATK, Butcher et al. (2019) present
VRIA, a toolkit for the generation of immersive visualizations that is solely based
on web technologies with open standards. Their toolkit supports visualization
techniques such as 3D bar charts and multivariate scatterplots, and integrate
well with other established web-based Information Visualization (InfoVis) and
Visual Analytics (VA) libraries, such as D3.js, potentially facilitating the overall
development workflow.

3.2 Immersive Data Interaction Using 3D Gestural
Input

Over the years, various researchers have investigated the application of 3D
gestural input (see Section 2.2.4) as interaction modality within the context of
immersive data analysis environments (see Section 2.4). These provide insights
and impulses for design considerations of new IA tools that utilize 3D gestural
input for the interaction with data in the virtual 3D space.

For instance, LaViola, Jr. (2000) describes an interface that utilizes a multimodal
approach of 3D gestural input and voice commands to interact with a scientific
data visualization in stereoscopic 3D. Different analysis tools can be attached to
the user’s hands and moved around in the VE (LaViola, Jr., 2000). Interestingly,
rather than selecting these tools from a graphical menu, they implemented voice
commands that allow the user to say aloud the tool they want to interact with,
following a show and ask metaphor (LaViola, Jr., 2000). They also implemented
several hand-based grasping configurations to provide navigation features, i.e.,
user movement as well as translation, scaling, and rotation of the visualization
(LaViola, Jr., 2000). An evaluation indicated that their participants valued the
tool’s ease-of-use after an initial learning phase (LaViola, Jr., 2000). Their results
also indicated that the voice command interface worked well in single-user
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scenarios, while having detection problems in collaborative ones that featured
auditory input from more than one user (LaViola, Jr., 2000). As such, the design
of multimodal interaction techniques should be carefully considered, especially
in regard to potential collaborative scenarios that involve multiple analysts, as
described in Sections 2.3 and 2.4.1, in order to avoid potential conflicts with other
aspects of the immersive data analysis activity.

Fittkau et al. (2015) explored gestural command design for the interaction
with an immersive data visualization following the software cities metaphor,
implementing several unimanual and bimanual gestural commands to support
translation, rotation, zoom, selection, and reset tasks. The results of their
evaluation indicate that the users favored one-handed gestures (translation,
rotation, selection) over the two-handed (zoom) one that was performed through
a rowing motion (Fittkau et al., 2015). Interestingly, the authors attempted to
utilize more elements of embodied interaction for the zooming command, such
as rotating the user’s torso or walking back and forth in the VE (Fittkau et al.,
2015). However, such movements would inherently result in a change of the
user’s field of view, which was not appreciated during early design iterations
(Fittkau et al., 2015). Even though more empirical evaluations with a focus on the
use of embodied interaction within the context of IA are required, one should
arguably carefully consider the purpose and design of whole body interaction
techniques for immersive data analysis and interpretation. Mapping features that
modify the immersive visualization itself to input that require the user to change
their own field of view in the immersive VE, may arguably prevent the user to
make useful observations and data interpretations.

Similarly to the work presented by Fittkau et al. (2015), Streppel et al. (2018)
explored 3D interaction techniques within the software cities context as well,
comparing 3D gestural input, physical controllers, and virtual controls. Their
results indicate similar preferences for direct manipulation through 3D gestural
input and physical controllers as opposed to virtual controls that were based on
adapted 2D graphical menus (Streppel et al., 2018). Even though the physical
controller condition received better usability scores, participants stated that they
would rather like to use the 3D gestural input in a real-world scenario, as it
was subjectively perceived as more natural and appropriate for interactions in
a VE (Streppel et al., 2018). The expressed desire for better 3D gestural input
controls is quite interesting, indicating that more work in that direction should
be undertaken to further improve usability aspects of 3D gestural input within
the context of IA.

A VR system developed by Betella et al. (2014) featured 3D gestural input for
manipulation and filter operations within a large network visualization. Their
interface utilized a hand-based grasping technique for the overall interaction in
the immersive VE (Betella et al., 2014). Interestingly, the authors chose to map
distinct features to each of the user’s hands following a somewhat asymmetric
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hand interaction approach, i.e., the user’s right hand featured a cursor function
to highlight and select nodes in the network, while the left hand was used to
operate task parameters, such as filter strength and complexity (Betella et al.,
2014). Their asymmetric feature mapping strategy is interesting insofar that the
authors differentiate between left and right hand interactions instead of following
a symmetric approach where the same features are provided independent of
which hand performs the posture or gesture. In turn, this allows the potential
reuse of simple and comfortable hand configurations for subsequent interactions
in the VE, which could be useful considering how many features are available in
the VE and how often they are anticipated to be used. Naturally, when following
such an asymmetric feature mapping approach, general accessibility aspects for
the user should be taken into account as well, for instance allowing the user
to chose which features are mapped to the left hand and which to the right,
accommodating to the user’s dominant hand.

Osawa et al. (2000) investigated hand-based grasping and gestural command
techniques for interaction with an immersive graph visualization. Their system
allowed the user to select and manipulate individual nodes of the 3D network
(translate, lock position in space, adjust characteristics), to translate the user’s
position in space (move), and to adjust characteristics of multiple nodes through
a “spotlight” approach (Osawa et al., 2000). The latter was operated through
pointing one’s hand in the general direction of the desired nodes, and creating an
arc-like spread through moving index finger and thumb apart, enabling dynamic
control of the included network nodes (Osawa et al., 2000). The 3D gestural
input was considered intuitive and more appropriate compared to the application
of 2D techniques for the interaction with the implemented graph visualization
in the 3D space, not least as 3D interaction resembles interaction in the real
world (Osawa et al., 2000). Nonetheless, the authors also acknowledged some
aspects of frustration during the 3D interaction, particularly with respect to the
selection of small artifacts that was sometimes prevented due to the input device’s
lack of precision (Osawa et al., 2000). 3D spatial input technologies and 3D
gestural input thereof (see Sections 2.2.3 and 2.2.4) have evolved significantly
since 2000, enabling technically more precise interactions in immersive 3D spaces.
Nevertheless, technological aspects, such as the precision of the input technology,
should be carefully taken into account for the design of useful interactions
within the context of IA. After all, the ability to make targeted selections and
manipulations are arguably essential during the immersive data analysis activity.

Huang et al. (2017) reported on the design of a 3D gestural interface for
interaction with graph visualizations using VR – in concept quite similar to the
work presented by Osawa et al. (2000). Their developed immersive VE provided
gestures to move and highlight nodes and edges (unimanual interaction), to
rotate and translate the entire graph, and to group nodes (bimanual interaction).
An evaluation, comparing the implemented gestures with more traditional
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pointer input (mouse), revealed positive trends towards the participants’ ability
to manipulate the 3D graph with the gestures, stating that the interface “was
intuitive, easy to learn, and interesting” (Huang et al., 2017). While their implemented
node/edge movement and graph rotation gestures were appreciated for their
learnability, some usability issues were identified for the highlight and group
gestures that involved aspects of holding a specific hand posture or performing a
gesture very quickly (Huang et al., 2017). The results of their work are another
example for the circumstance that the input technology’s capabilities and overall
hand posture comfort should be considered for the interaction design – particularly
when assuming that such developed IA tools aim to be applied more frequently
and over longer periods of time beyond “just a few minutes”-experiences.

As part of interacting with an immersive 3D trajectory visualization, Wagner
Filho et al. (2020) implemented a mixture of hand-based grasping (scale, translate)
and gestural commands (single and double tap via index finger to inspect and
select). Interestingly, the authors implemented the 3D gestural input through the
utilization of physical, tracked controllers that the user had to hold in their hands,
while instead displaying an abstract visual hand representation in the VE (Wagner
Filho et al., 2020). The authors evaluated their system in comparison to a desktop
one, revealing generally better usability scores for the immersive VE (Wagner
Filho et al., 2020). Participants overall agreed that the 3D gestural input enabled
them to easily and comfortably manipulate the data, resulting in an engaging
and intuitive experience (Wagner Filho et al., 2020). Room for improvement
was identified towards the index finger tapping mechanism that required to
be comparatively precise (Wagner Filho et al., 2020). The authors’ interaction
design is interesting insofar that they utilized the same overall technique for
multiple contextually different features, for instance reusing hand-based grasping
as a unimanual technique for translation as well as a bimanual configuration
for temporal and spatial scaling (Wagner Filho et al., 2020). However, based
on the participant feedback, aspects of its implementation arguably need to be
revisited as the similar operation was sometimes perceived as too constraining
(Wagner Filho et al., 2020). The authors’ work indicates that the reusability
of the same interaction techniques for different features in the immersive data
analysis environment should be carefully considered in order to enable the user
to perform the desired operations without mistake and constraints. Arguably,
the VE’s ability to interpret user input and infer their in-situ context and intent,
as highlighted by Nehaniv et al. (2005) and discussed in Section 2.2.4, could help
overcome such challenges.

Austin et al. (2020) investigated common gestural commands for the interaction
with large immersive maps that are placed on a virtual floor. In particular, using
a participatory design approach, their study participants were asked to come up
with hand gestures for typical operations to manipulate the virtual map, such
as pan, rotate, zoom, and marker interaction (Austin et al., 2020). Their results
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indicate that the participants most commonly proposed unimanual gestures for
interactions such as pan as well as creating and selecting markers on the map,
while proposing bimanual gestures for rotate and zoom operations (Austin et al.,
2020). Austin et al. (2020) reflect on their findings, stating that the identified
user preferences for these gestural commands need further investigation in
regard to performance related matters, such as efficiency, accuracy, and physical
fatigue. Austin et al. (2020) also reflect on potential feasibility concerns, stating
that an accurate and reliable implementation based on current 3D gestural
tracking sensors might be difficult for some of the proposed gestural commands.
Naturally, the anticipated frequency of performed features, i.e., how often a
specific functionality is used in the VE, depends on the data scenario and task.
Examining the proposed gestural commands in regard to their unimanual and
bimanual configuration, one could argue that unimanual gestures were utilized
for more frequent tasks, such as moving the user’s position on the map as well
as interacting with markers, while bimanual gestures were proposed for rotation
and zoom – tasks that in comparison to user movement and selection may be
performed less frequently. Interestingly, bimanual gestural commands for similar
features were also utilized in the IA tools presented by Wagner Filho et al. (2020)
and Huang et al. (2017), indicating their overall feasibility and appropriateness
under consideration of some practical design and implementation aspects, as
previously described.

3.3 Hybrid Collaboration Experiences Using Virtual
Reality

Concepts of hybrid collaboration, i.e., the application of heterogeneous display and
interaction technologies in collaborative scenarios (Fröhler et al., 2022; Neumayr
et al., 2018), has been described as part of Sections 2.3 and 2.4.1. Researchers have
conducted some interesting work in the past, exploring such cross-device and
cross-platform setups that involve at least one type of immersive VR interface.

Wideström et al. (2000) conducted a study to compare two different settings,
i.e., (1) a hybrid VR setup consisting of a CAVE-type (Cruz-Neira et al., 1992)
and a desktop-based system, and (2) a co-located real-world setup, in regard
to collaboration, leadership, and performance aspects within the context of a
two-person puzzle solving task. Their results show that the participants reported
their contribution to the task completion more unequally in the hybrid VR setup
compared to the real-world one. Furthermore, the participants felt a higher
degree of collaboration in the real-world setup due to the lack of face-to-face
communication in the hybrid VR one (Wideström et al., 2000). Arguably, the
integration of additional information cues to better support mutual awareness,
as discussed by Benford et al. (1994), could help to overcome such an experi-
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enced lower degree of collaboration in the immersive setup, potentially in turn
facilitating a more balanced task contribution independent of a user’s interface.

Within the context of collaborative educational settings, Thomsen et al. (2019)
propose a taxonomy that is the centered around a hybrid VR setup. The authors
follow the general concept of one user being immersed in a VE using a VR
approach, while one or multiple others are not, defining a distinctly asymmetric
user role relationship between actor (immersed) and assistant (non-immersed)
that their taxonomy is designed around (Thomsen et al., 2019). The taxonomy
consists of different components (asymmetric mechanics, hardware components,
game components, collaboration mechanics) in order to address varying degrees
of collaboration asymmetry (low, medium, high) between actor and assistant
(Thomsen et al., 2019). Under consideration of the educational setting, the
taxonomy can provide some valuable parameters for the integration of immersive
VR technologies in the classroom, actively involving not just the immersed
user wearing the HMD device, but also the other “bystanders”. Such a setup
could arguably also be relevant within other contexts, such as CIA, allowing a
subsequent insights transfer of the proposed taxonomy accordingly.

Peter et al. (2018) propose a set of features for a non-immersed user in a
guiding role to support communication with an immersed user, similarly to the
actor-assistant relationship described by Thomsen et al. (2019). Based on their
system setup, they envision the immersed user to have a low degree of control but
a high level of immersion, while it is the other way around for the non-immersed
VR-Guide, who has a high degree of control but a low level of immersion (Peter
et al., 2018). The authors describe the design and implementation of a highlighting
feature, comparing different variants, with the aim to guide the VR user’s attention
to specific reference points in the VE based on the non-immersed user’s input
(Peter et al., 2018). Within the context of CVEs and CIA, such an actor-assistant
relationship, similar to the presentations by Thomsen et al. (2019) and Peter
et al. (2018), could be useful in data guidance scenarios, for instance when a
non-immersed expert guides an immersed novice through the immersive VE,
highlighting noteworthy points of interest, that can than be discussed accordingly.

Welsford-Ackroyd et al. (2020) evaluated their proposed system design that
allows a non-immersed user, typically in the role of a spectator outside the VE,
to actively collaborate with the HMD user through the additional utilization of a
large scale display. Camera control and pointing features were provided to the
spectator, the later of which – implemented using a virtual laser pointer technique
– clearly facilitated the communication between the two collaborators in a task
scenario where the immersed user had to place artifacts at certain locations as
indicated by the spectator (Welsford-Ackroyd et al., 2020). Their system shows
similarities to the VR-Guide by Peter et al. (2018) insofar that the non-immersed
user directs the immersed one to a point of interest through visual highlights
in the VE. In both cases (Welsford-Ackroyd et al., 2020; Peter et al., 2018), the



�.�. HYBRID COLLABORATION EXPERIENCES USING VR 75

HMD user had arguably little to no awareness of the non-immersed user other
than through the directed visual references, while the non-immersed user could
somewhat “monitor” their immersed partner through the shared point of view,
i.e., the HMD user’s point of view was displayed on a normal monitor for the
non-immersed user to follow. Arguably, this contributes to a rather unequal
interplay between the users right from the start.

However, there are also some interesting examples that aim to leverage on more
balanced and equal user contributions in hybrid technology setups. For instance,
Sugiura et al. (2018) investigated hybrid collaboration between a HMD user and
multiple non-immersed users around an interactive tabletop system within the
context of interior design. While the immersed HMD user got to perceive the
living space from an in-situ real-world perspective, the tabletop system featured
a top-down view that allowed its users to see the position and orientation of the
immersed user as well as providing an overview of the living space (Sugiura et al.,
2018). The HMD user and the non-immersed tabletop users were provided with
features that enabled them to point and refer to artifacts of interest in the virtual
living space, that were visually highlighted in the respective collaborator interface
(Sugiura et al., 2018). The results of their case study indicated that the provided
functionality assisted the verbal communication between the collaborators across
the two different device modalities (Sugiura et al., 2018). Their presented setup is
interesting insofar that next to the hybrid technology setup each interface user
assumed also a role that is distinctly different from the other, providing further
impulses for the careful design of purposeful collaborative activities that utilize
heterogeneous display and interaction technologies.

Clergeaud et al. (2017) explored possibilities for seamless interaction between
a HMD user, who is immersed in the VE, and multiple non-immersed users
gathered around a meeting table within the scope of an industrial scenario.
Based on insights from industry experts, the authors propose and explore several
features with the objective to facilitate aspects of awareness, communication, and
interaction with the immersed HMD user (Clergeaud et al., 2017). The presented
Interaction through Windows and Navigation through Doors approaches received
positive feedback, essentially creating conceptual portals between the virtual
and real-world environments, successfully bridging the collaboration between
immersed and non-immersed users (Clergeaud et al., 2017). Their collaborative
environment aligns well with the overall concept presented by Sugiura et al. (2018)
insofar that both systems assume distinct purposes for the involved interfaces,
while enabling cross-platform collaboration in a meaningful way.

Gugenheimer et al. (2017) describe design guidelines for co-located hybrid
VR experiences that feature an asymmetric user role configuration based on
insights from evaluating their developed ShareVR prototype. The prototype
allowed different types of interaction between a HMD and a non-HMD user
based on a combination of VR and floor projection technologies (Gugenheimer
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et al., 2017). Among others, the authors emphasize on the importance to leverage
on asymmetrical aspects, carefully considering each user’s role, in order to design
meaningful interactions for collaboration accordingly (Gugenheimer et al., 2017).
The results of their study are yet another example that highlight the importance of
purposefully designing collaborative experiences that are based on the utilization
of heterogeneous display and interaction technologies, keeping anticipated user
roles in mind.

Insights and experiences of co-located hybrid interaction between a HMD and
a non-HMD user are also presented by Lee et al. (2020). The authors designed an
application where each user assumed distinct roles, designed under consideration
of their respective level of immersion, i.e., assuming a spatial relevant role for
the HMD user and a more temporal one for the non-HMD user (Lee et al., 2020).
The presented prototype featured a game-like experience that tasked the two
collaborators to actively work together in order to navigate successfully through a
maze, and was used to evaluate presence, game experience, and different aspects
of the users’ roles within the scope of multiple experiments (Lee et al., 2020).
The results indicate a perceived higher than usual level of immersion of the
non-HMD user due to their more active role and involvement in the overall
task setup, as well as similar levels of enjoyment and social interaction among
both user roles (Lee et al., 2020). Aligned with insights such as presented by
Gugenheimer et al. (2017), Lee et al. (2020) clearly defined and distinguished
between the different roles and responsibilities for each interface user, resulting in
an enjoyable and balanced experience for both collaborators. Consequently, their
presented collaborative design can provide useful impulses and considerations
for the design of similar future experiences.

Grandi et al. (2019) compared collaborative co-manipulation of 3D virtual
artifacts in three different setups, i.e., based solely on augmented reality interfaces,
solely on VR interfaces, and a hybrid approach utilizing both augmented reality
and VR interfaces. All interfaces provided manipulation features based on
unimanual and bimanual techniques to translate, rotate, and scale a 3D artifact
in the virtual space (Grandi et al., 2019). The authors evaluated aspects of
performance and collaboration in a task scenario where pairs of users had to
utilize their respective interfaces to match a 3D artifact’s position, rotation, and
scale according to a target artifact (Grandi et al., 2019). Interestingly, the sole VR
and the hybrid approaches performed better than the setup that was solely based
on augmented reality interfaces (Grandi et al., 2019). The positive results around
the conditions that involved VR technologies (Grandi et al., 2019) are arguably
attributed to more intuitive manipulation features that allowed for spatial 3D
interaction, compared to the handheld augmented reality interface that relied on
3D manipulation through a 2D touchscreen. Nevertheless, independent of the
technology setup, all pairs showed similar task participation (Grandi et al., 2019),
indicating a rather balanced user involvement and collaboration overall.
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3.4 Collaborative Information Cues in Virtual
Environments

The importance of providing mechanics that aid users with their communication in
CVEs has been highlighted in Section 2.3. The support for appropriate referencing,
i.e., indicating a specific artifact through a mixture of verbal and nonverbal signals,
is arguably even more important in hybrid technology scenarios where not every
collaborator is immersed in the same VE. Researchers have investigated various
aspects of collaborative information cues in immersive VEs in the past.

Cordeil et al. (2017b) evaluated the collaborative aspects of two IA systems,
CAVE-style and HMD-based, in terms of collaboration strategies, shared focus,
completion time, self-perception of collaboration, proportion of oral communi-
cation, and balance of physical movements. While the users were able to see
each other within the physical boundaries in the co-located CAVE-style setup, the
HMD-based system required the authors to implement dedicated collaborative
information cues in order to visually represent the respective partner in the VE
(Cordeil et al., 2017b). As such, Cordeil et al. (2017b) utilized a real-time network-
ing interface to transfer data about the partner’s head position, rotation, field of
view, as well as their 3D gestural input for display in a user’s VE accordingly,
aiming to facilitate a sense of presence. Interestingly, even though the users of
the HMD-based collaborative system were not able to monitor each others facial
expressions or body language, which are important during their communicative
efforts to establish a common ground (see Section 2.3), no major issues regarding
this limitation were detected within the scope of a low-level graph visualization
task (Cordeil et al., 2017b). Even though more empirical studies are required to
investigate this matter more thoroughly, their results indicate that the support
for facial expressions and body language are not always necessary to successfully
complete collaborative data analysis tasks, assuming there are sufficient other
collaborative information cues available in the VE.

Considering a hybrid technology as well as an asymmetric user role setup,
the VR-Guide interface presented by Peter et al. (2018), briefly described as part
of Section 3.3, provided several features to support the guidance of a HMD user
immersed in a VE. In particular, their implemented proof-of-concept prototype
included three visual approaches as nonverbal information cues, aiming to catch
the immersed user’s attention and thus guide them towards an artifact as selected
through the non-immersed guide (Peter et al., 2018). First, they implemented an
outline effect, visually highlighting the border of the selected artifact independent
of its occlusion, i.e., the outline is visible even with other objects in the VE
between user and targeted artifact, leaving it otherwise hidden from the user’s
view (Peter et al., 2018). Second, they implemented a realistic looking light beam
technique, similar to a spotlight, allowing the highlighted artifact to be visually
distinguished from others (Peter et al., 2018). And third, a virtual drone was
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implemented using a laser beam to point to the selected artifact (Peter et al., 2018).
An interesting aspect of their tool is that is allows the VR-guide to customize these
signals, for instance by adjusting the color or thickness of the outline effect, or the
size and intensity of the light beam (Peter et al., 2018). Their evaluation revealed
trends towards a higher acceptance of the outline technique compared to the light
beam one, with participants interestingly expressing desire for a combination
of outline and virtual drone techniques (Peter et al., 2018). The insights based
on their presented reference approaches and subsequent evaluation can provide
meaningful impulses for the design of similar collaborative information cues in
other contexts, such as CIA.

Compared to the approaches described by Peter et al. (2018), Sugiura et al.
(2018) followed a visually different design, implementing a virtual hand in a
pointing hand posture that literally points to the selected artifact. Their approach
was partially inspired by previous work of Stafford et al. (2006), but adapted to
support a setup that involved the non-immersed user operating an interactive
tabletop application that allowed for touch interaction to select individual objects
from a top-down view that are in turn referred to accordingly in the immersive VE
(Sugiura et al., 2018). The results of their preliminary user study suggest overall
usability of their prototype, but lack a formal evaluation on the effectiveness of
the implemented guiding technique (Sugiura et al., 2018).

Similar to the work by Grandi et al. (2019) as presented in Section 3.3, Pinho
et al. (2002) investigated various aspects of collaborative co-manipulation of 3D
artifacts in immersive VEs. Their presented framework contains an awareness
generator, i.e., a dedicated module responsible for handling various collaborative
information cues (Pinho et al., 2002). More specifically, the authors differentiate
between (1) user information that indicate the state of a user in the immersive VE,
such as their position and orientation, (2) interaction information that represent a
user’s current interaction mode, and (3) object state information that provide an
indication of what 3D artifact is currently manipulated and by which user (Pinho
et al., 2002). Based on the reported preliminary results of a first pilot study, pairs
of participants were able to successfully conduct several tasks that involved the
co-manipulation of virtual 3D artifacts (Pinho et al., 2002), arguably supported
through the implemented awareness information cues. The logical differentiation
of awareness cues into the three presented conceptual categories (Pinho et al.,
2002) can provide useful design considerations for the structured implementation
of collaborative information cues in similar VEs.

Lacoche et al. (2017) investigated different visual approaches with the objective
to raise awareness towards other HMD users in a co-located CVE, aiming to
prevent physical collisions. First, an extended grid representation visualizes the
other user’s position through a grid-shaped cylinder, allowing a user to avoid to
navigate to the same position, while still being able to “look beyond” to prevent
occlusion issues (Lacoche et al., 2017). Second, another user was indicated
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through means of a ghost avatar, displaying some features of that user’s position
and orientation in the VE, i.e., a semi-transparent model of their HMD and hand
controllers (Lacoche et al., 2017). Third, a safe navigation floor utilizes a heat map
inspired visualization approach to display on the virtual floor where it is safe to
go and where not, avoiding collision with the other user as well as movement
beyond the physical boundaries of the VR system’s calibrated safe interaction area
(Lacoche et al., 2017). Under introduction of a fourth approach, titled separated
tracked spaces that limited each user’s available safe interaction area as a typical
bounding box grid, an evaluation was conducted to investigate effectiveness and
user preference for the different approaches (Lacoche et al., 2017). Their results
point towards better performance of the extended grid and ghost avatar compared
to the safe navigation floor and separated tracked spaces approaches (Lacoche
et al., 2017), providing several impulses for the design of collaborative information
cues. In contrast to most of the other approaches presented through this section,
the scenario presented by Lacoche et al. (2017) is conceptually different insofar
that their presented visual approaches do not aim to actively encourage a user to
move towards an artifact in the VE, but rather to avoid it.

Ward et al. (2016) compared two visual information cue designs with the
objective to guide a HMD user to a specific artifact in the VE. The first design
was based on a visual arrow that is centrally positioned in the user’s field of
view, and dynamically updating itself to indicate the direction to the specified
artifact in the VE (Ward et al., 2016). The second design was based on the
concept of visual pursuit motion cues, i.e., an object begins a smooth motion in the
user’s field of view that urges the user to pursuit the object accordingly until it’s
target destination in reached (Ward et al., 2016). The results of their comparative
evaluation with three conditions, i.e., arrow, pursuit motion, and no cue, indicate
a clear favor for visual arrow cues as the majority of participants was not able to
react more quickly or reach targets faster using the pursuit motion cues (Ward
et al., 2016). Their presented arrow design (Ward et al., 2016) is also interesting
insofar that it is always displayed in the immersed user’s field of view, even if the
targeted artifact is beyond it, for instance behind the user, potentially enabling
quick identification through the user accordingly.

Chen et al. (2018) investigated three different modalities as directional infor-
mation cues during a multitask scenario where a HMD user is immersed in a VE.
More specifically, the authors implemented information cues through means of
visual, auditory, and somatosensory (vibrotactile) stimuli, which were evaluated
across an easy and a hard task (Chen et al., 2018). Based on task completion time
and accuracy measurements, the results of their study indicate a favor towards
information cues based on visual and somatosensory stimuli over auditory ones
(Chen et al., 2018). The reported results in favor of visual and somatosensory
stimuli align well with overall design considerations for CIA experiences that
anticipate synchronous collaboration between multiple users, including verbal
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communication for the joint data interpretation and discussion. In such scenarios,
auditory information cues may arguably be in conflict and disrupt the users’
verbal communication, for instance as discussed by LaViola, Jr. (2000) within the
scope of their developed multimodal 3D UI.

Casarin et al. (2018) described a developed toolkit that allows synchronous
interaction in VEs through multiple users. To avoid simultaneous manipulation of
the same artifact, the authors implemented an abstract interaction filter to visually
indicate whether or not an artifact is available for interaction (Casarin et al.,
2018). Conceptually, their approach is similar to the object state information as
part of the awareness generator module presented by Pinho et al. (2002). Three
different states, indicated through distinct color coding, provided visual feedback
in real-time, i.e., (1) an artifact is available for interaction (original color), (2) hovered
(green color), (3) or currently being manipulated (orange color) (Casarin et al.,
2018). Their toolkit was validated based on the results of an evaluation that
featured a collaborative authoring task, but further investigations are necessary
in order to address individual aspects of their toolkit, such as the design of the
collaborative information cues (Casarin et al., 2018). Nevertheless, assuming that
the user has learned the meaning of the different color codes and the overall
composition of the VE allows for easy identification of the manipulated artifacts
among all others in the immersive 3D space, the presented color coding design
could arguably be a “quick and dirty” approach to indicate targeted artifacts to a
collaborator.
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With an overall foundational understanding and various impulses obtained
from the discussed related work (see Chapters 2 and 3), the practical design and
development of an immersive data analysis system that is centered around a
Virtual Reality (VR) approach can begin. After all, in order to investigate more
closely the interaction with spatio-temporal data in immersive Virtual Environ-
ments (VEs) as well as overall collaborative aspects, respective technological
artifacts need to be implemented. Consequently, this chapter is concerned with
the presentation of a conceptual system architecture that aims to serve as a
foundation for the implementation of these artifacts.

First, Section 4.1 provides an overview of a total of 18 requirements across all
three research objectives (see Section 1.2). These requirements have been defined
to guide the overall system, interaction, and collaboration design on the one hand,
while on the other facilitating a more formal description of the subsequently
developed technological artifacts. Thereafter, Section 4.2 begins by presenting
an overview of the proposed system architecture, and continues by describing
in detail the four major building blocks that the system is composed of. Finally,
following the structure of the presented system architecture, details are provided
about the implementation of all developed technological artifacts as described
throughout Chapters 5 and 6.

81
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4.1 Requirement Analysis

Under consideration of the thesis goal, objectives, and design space, as described
in Sections 1.2 and 2.6, the motivation was to build a data analysis system that
utilizes immersive display and interaction technologies. In particular, the vision
was to situate the immersed user in a computer-generated three-dimensional
(3D) VE, populated with multivariate data that could be interactively analyzed
accordingly. As a starting point to facilitate and guide the description, design, and
implementation of such an Immersive Analytics (IA) system on a general level,
independent of data context and scenario, a set of requirements are defined to
address aspects of the three defined research objectives as presented in Section 1.2,
i.e., (1) the development of an immersive data analysis system, (2) the design of
a 3D user interface (3D UI) to allow interaction with spatio-temporal data, and
(3) the support for collaboration using heterogeneous interface types and user
roles. For the definition and categorization of these requirements, the structure
proposed by Shneiderman et al. (2017, Chapter 4.3.1) was followed, differentiating
between functional, non-functional, and user experience requirements. Functional
requirements assume a rather user-centered perspective, stating concretely what
the user shall be able to do using the developed system by specifically describing
aspects of its behavior. Non-functional requirements describe specifications
in regard to the system’s overall operation without being directly linked to a
particular feature. Thus, non-functional requirements commonly describe general
system aspects, for instance with respect to hardware and software components
as well as performance and reliability, to name just a few. Finally, user experience
requirements can be considered a subtype of non-functional requirements, specif-
ically those that are related to user interface (UI) and interaction design matters.
The overview of the defined requirements (REQs), including their type and which
of the three research objectives they address, is presented in Table 4.1.

4.2 System Architecture

Facilitated through the defined requirements that describe key aspects of the
immersive data analysis system proposed within the scope of this thesis (see
Section 4.1), an overall system architecture was designed to aid its implementation
accordingly. This architecture, illustrated in Figure 4.1, provides a conceptual
overview of all involved technological components that compose the entire IA
system throughout its three major VE iterations, as outlined in Section 1.3. The
architecture is composed of four major building blocks and can be summarized
as follows.

The first building block is concerned with the Data Structure Reference Model. In
particular, multivariate data that are to be visualized require certain preprocessing
and transformation in order for any visualization tool to handle it appropriately,
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i.e., to actually generate the corresponding graphical data visualization. As such,
a predefined data structure reference model provides an important template
for the corresponding mapping of any multivariate data, from various contexts
and scenarios as well as potentially multiple sources, preparing the data to be
processed and used in the VE or any other type of visualization tool. Within
this context, it is useful to keep the actual data separated from the visualization
application, i.e., loading the data from an external source, such as a Remote
Server or Repository, rather than having the data directly compiled as part of the
application itself.

The second building block corresponds to the Immersive VE, dedicated to data
exploration and analysis. More specifically, at the architecture’s center, a computer
system is running the Virtual World Generator (VWG), maintaining the VE that
the user is immersed in through the utilization of a head-mounted display (HMD)
device and 3D gestural input. Essentially, this VE represents the immersive data
analysis interface, and is composed of different modules that handle various key
functionalities. While the Data Loading Module is essential for the actual import and
loading of the data according to the pre-defined data structure reference model,
the most important module is the Visualization/Interaction Module, responsible
for the actual data visualization as well as the provision of the application’s
interactive features.

The third building block is related to the Transfer of User Session Data as a
result of the data analysis in the immersive VE. For instance, the user may chose
to take notes in order to capture their discoveries for later use outside the VE as
input for the next analysis tasks. User session data can be metadata describing
the user’s data analysis context at a specific point in time in the VE as well
as potentially various media files, such as screenshots or voice-over recordings
captured directly during the analysis activity. Similar to the loading of data, data
that originate from a user’s data analysis activity in the VE can be transferred to
an external source, such as a remote server or repository. From there, the user
session data can be served to other applications, for instance in the format of a
User Session Report Interface that processes a user’s session data to be (re-)viewed
in a normal web browser after the immersive activity has finished.

Finally, the fourth building block is concerned with the system’s Collaboration
Infrastructure. In particular, to enable collaboration with a non-immersed user
who is using different types of display and interaction technologies for the
exploration and analysis of the same data, or aspects thereof, a Collaboration
Server is needed. That server is responsible for providing a Real-Time Networking
Interface that allows client applications, such as the immersive VE and a non-
immersive desktop interface, to connect with each other. Such a connection
is essential for the transmission and reception of signals from a collaborator,
allowing for the implementation of collaborative information cues directly in the
respective interfaces. The availability of a Verbal Communication channel between
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Figure 4.2: The Data Structure Reference Model, integrated in the proposed
system architecture, and presented as part of the implemented stages of the
visualization process, also referred to as Visualization Pipeline, adapted from
Ward et al. (2015, Chapter 4.1).

the collaborators during their synchronous collaboration is anticipated, either
due to the collaborators being physically co-located or via a remote audio-link,
enabling them to speak to each other.

The modularity of these four building blocks, in regard to their respective
modular characteristics internally as well as within the scope of the IA system
composition, allows for easy adaptation and feature extension (REQ 4). The
remainder of this section provides a more detailed view on the different individual
aspects of the designed system architecture, both conceptually as well as practically
implemented within the scope of this thesis.

4.2.1 Data Structure Reference Model
A central aspect of any data visualization is concerned with the preparation of the
data for the actual visualization through the respective interface (Ward et al., 2015,
Chapter 4.1). Naturally, this holds true within the scope of this thesis and the
visualization of data in an immersive VE. To support the process of loading data
in the VE and consequently creating the visual structures that are representing the
data, the concept of a data structure reference model is introduced. It provides a
template that enables the VWG to practically import, process, and generate the
respective data visualizations in the virtual 3D space. Thus, the data structure
reference model also contributes to the VE’s data-agnostic capabilities, i.e., as
long as (raw) data is transformed in accordance to the template as outlined by
the reference model, the VE can support different datasets (REQ 5). This may
be useful for the application and reutilization of the immersive data exploration
and analysis system across various data contexts and scenarios as well as for
supporting data from multiple sources. Figure 4.2 illustrates the overall concept
and purpose of the data structure reference model.

Essentially, a predefined data structure reference model needs to capture those
aspects of a dataset that are relevant for the anticipated visualization. Within the
context of multivariate data in general, and spatio-temporal data in particular,
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this requires the model to hold potentially various data types (textual, numerical,
boolean) in a structured manner in order to accurately represent the original
data as well as to allow for convenient computational processing through the
visualization application. In practice, various file formats exist that support such
structured data representation and convenient processing. Three common file
format standards (REQ 3) include JavaScript Object Notation (JSON),1 Extensible
Markup Language (XML),2 and comma-separated values (CSV).3 Another aspect
and advantage of utilizing an established file format standard such as JSON, XML,
or CSV is the wide support by modern software libraries, frameworks, software
development kits, and engines, for the serialization and respective deserialization
when transferring data from one application to another, even over the Internet
using a respective networking protocol (REQ 6).

4.2.2 Immersive Virtual Environment

At the center of the presented system architecture is naturally the immersive VE,
representing the computer-generated 3D space that is utilized for data exploration
and analysis. Upon closer inspection, the mapping in accordance to the human-
VE interaction loop as described by Bowman and McMahan (2007) and presented
in Section 2.2 becomes apparent. More specifically, a computer system is running
the VWG, i.e., the software responsible for the creation and maintenance of VE’s
state. Its graphical representation is rendered and displayed on the HMD, worn
by the user who visually perceives the VE (REQ 1). User interaction is possible
through 3D gestural input (REQ 2). The input signals are interpreted by the VWG
and the state of the VE is updated accordingly. Additionally, the position and
orientation of the HMD worn by the user are also transferred as input signals to
the VWG, allowing for the update of the rendered user perspective accordingly.
Furthermore, the visualized data in the VE is based on a multivariate dataset that
has been preprocessed in accordance to the respective data structure reference
model (see Section 4.2.1). Within the scope of this thesis, its design space, and
the particular IA context of the VE, the VWG is designed to be composed of five
conceptual and broadly interconnected modules, responsible for the dedicated
tasks of data loading, visualization and interaction, logging, data transfer, and
collaboration.

The data loading module is responsible for loading the multivariate dataset
(REQ 6) in order to create the respective visual representations and thus initiate
the overall state of the VE at start-up. After the data in the format as specified

1Tim Bray. The JavaScript Object Notation (JSON) Data Interchange Format. Retrieved June 1,
2022, from https://datatracker.ietf.org/doc/html/rfc7159

2World Wide Web Consortium. XML Core Working Group Public Page. Retrieved June 1, 2022,
from https://www.w3.org/XML/Core/

3Yakov Shafranovich. Common Format and MIME Type for Comma-Separated Values (CSV) Files.
Retrieved June 1, 2022, from https://datatracker.ietf.org/doc/html/rfc4180

https://datatracker.ietf.org/doc/html/rfc7159
https://www.w3.org/XML/Core/
https://datatracker.ietf.org/doc/html/rfc4180
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by the data structure reference model is received, the application’s internal data
structures for the respective handling through the VWG are constructed with the
objective to be processed by the visualization/interaction module.

The visualization/interaction module is conceptually the main module of the
VWG. It handles the actual composition of the VE, i.e., the visualization of the data
in the virtual 3D space as well as the display of additional visual artifacts in the
environment and 3D UI, such as the representation of the virtual floor and user
feedback. The module utilizes the loaded data to instantiate the individual data
entities of the dataset and to populate the VE with them accordingly. The data is
visualized in accordance to the defined visual mapping strategy and subsequent
implementation, i.e., what visualization technique is applied to visually represent
the data and consequently what data attributes affect that visual representation.
In addition to the initial data visualization, the module also handles respective
state changes, for instance as a result of corresponding user interactions with the
visual data representations. As such, visualization and interaction design are
conceptually closely coupled. The received and interpreted user input signals are
translated as part of this module into the context of the immersive VE, mapping
the user interactions to the dedicated functionalities available in the VE. Means
of user interaction should be provided with respect to typical analytical tasks, for
instance data selection, reconfiguration, or filtering.

The Data Transfer Module can been seen as a counterpart to the data loading
module. During run time, i.e., when the user is conducting their data analysis
in the immersive VE, the data transfer module is responsible for capturing
information about aspects that the user desires to take with them from the
immersive analysis activity (REQ 6; REQ 10). In other words, its main purpose
is to allow the user to retain discoveries about their data exploration in the
immersive VE through means of note taking. As such, upon the user’s command,
the data transfer module is responsible to capture information about the user’s
state in-situ, for instance by recording contextual information about the currently
selected data entity or taking a screenshot of the user’s field of view.

Similar with respect to the ability to record in-situ contextual information
about the user, the Logging Module integrated as part of the VWG takes care of
recording important state changing events in the immersive VE. Such events are
mainly caused directly as a result of user interaction. However, there may also be
system relevant events that are worth considering to capture, such as an incoming
signal from a collaborator. Generally, the main purpose of the logging module is
twofold. First, it is invisible to the user, collecting logging data without the user’s
notice in such a way as to neither disrupt nor influence their interactions in the
VE. And second, the captured logging data provides an objective measurement
for the analysis and evaluation of the user’s task performance in the VE (see
Section 2.5), potentially even allowing to reconstruct the logged events over time.
Within the bigger picture of the VWG, the logging module can be seen rather
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optional with regard to the actual experience in the immersive VE. However, it is
an essential data collection method that is relevant for the empirical evaluation
and analysis of user interactions.

Finally, the Collaboration Module is responsible for the integration of any
collaborative features in the VE. It establishes and maintains a connection to
a respective collaboration server that is tasked with the bidirectional transfer
of signals to and from the immersive VE, i.e., incoming and outgoing signals
(REQ 15). Incoming signals may be received as a result of a collaborator’s
interaction in their respective interface, sending a signal that requires processing
in the immersive VE. For instance, this could be a data entity in the visualization
that should be highlighted as a result of the collaborator pointing to it. The same
applies vice versa, i.e., the collaboration module is preparing and transmitting
outgoing signals as the result of the immersed user’s interactions in the VE,
allowing respective input in the collaborator’s non-immersive interface.

4.2.3 User Session Data Transfer

The main motivation behind the transfer of user session data originates from
the desire of taking notes of discoveries during the immersive data analysis
activity. For instance, compared to interactive Information Visualization (InfoVis)
or Visual Analytics (VA) tools that are based on non-immersive technologies, it is
easily conceivable that the analyst is taking notes in order to keep track of data
discoveries. Such note taking can take place either directly in the tool itself, via a
separate note taking application that is running on the same device and can be
easily switched to, or even via pen and paper. However, in a setup that is based
on immersive display and interaction technologies, where the user is wearing a
HMD and situated in a VE, such note taking mechanisms are no longer easily
accessible in a conventional manner. As such, functionalities to take notes need to
be integrated directly in the VE in order to allow the analyst to keep track of their
discoveries. For this purpose, the system architecture includes a conceptually
dedicated procedure to implement this matter (REQ 10).

Any type of note that is taken directly in the immersive VE is transferred via its
data transfer module (see Section 4.2.2) to an external server or repository outside
the VWG for persistent storage, i.e., to be available even after the immersive data
analysis activity has ended. The user session data is stored in a structured and
bundled manner as to organize any type of data related to the individually taken
notes. For instance, the user may make an interesting observation in the data
and choose to take a note about that discovery. As such, a note may include
information about the current data exploration context of the user, i.e., where
they are located and what data entity is selected, a screenshot of the user’s field
of view in the VE, as well as even a voice-over recording that allows the user to
articulate their current thoughts. Consequently, all these metadata and media
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files need not only to be transferred to the external storage, but also information
about them belonging together.

Finally, with the immersive data analysis activity concluded, the user may
choose to revisit and view the notes they have taken. Therefore, a subsequent
interface to display and revisit these notes is required. The user session report
interface is tasked to provide such functionalities. In the format of an own
dedicated interface, it can load the respective user session data from the external
repository, and prepare the data for display and potential interaction. For the
purpose of the illustration within the scope of the proposed system architecture,
the user session report interface is presented utilizing a normal monitor with
keyboard and pointer input. However, such an interface could equally well run
on a portable tablet device with touch input.

4.2.4 Collaboration Infrastructure
The main purpose of the collaboration infrastructure is to provide the technolog-
ical foundation and overall workflow to connect the immersive VE with other
interactive data analysis tools. Such a connection allows for the creation of
collaborative data experiences, essentially providing an interface between differ-
ent interactive data analysis tools, independent of their display and interaction
technologies. Within the presented system architecture, a client-server model
is utilized to establish a connection between the immersive VE as one client,
and the non-immersive Collaborator Interface as another. Both client applications
connect to a collaboration server that is responsible to receive (incoming) signals
from a client and to transfer (outgoing) signals to the other client. Signals within
this context are event messages from a client interface, representing structured
information that are forwarded to and processed by the respective other client
interface. For instance, the immersed user may select a data entity in the VE, and
information about that selection are transferred accordingly to the collaborator’s
interface that in turn provides visual feedback, and vice versa. This allows for the
bidirectional transfer of signals in order to update a client interface in accordance
to the state of their respective collaborator (REQ 15).

Compared to the immersive VE, the non-immersive collaborator interface,
such as an interactive InfoVis or VA application, has to be composed of at least
three conceptual modules. First, it requires its own visualization/interaction
module that specifies and implements the visualization and interaction techniques
in accordance to the tool’s data exploration and analysis purpose. Secondly, it
also requires a data loading module that imports the data that are to be visualized
in the interface. Finally, aligned with the described functionalities as part of the
VWG, a collaboration module is also required as part of the collaborator interface,
handling all incoming and outgoing signals accordingly. It is noteworthy that
modern InfoVis and VA applications are likely more complex, incorporating
additional conceptual modules that assist with the implementation of their



�.�. SYSTEM ARCHITECTURE 91

purpose. However, the three described modules arguably represent the essentials
for the illustration of such applications within the context of the presented system
architecture. Furthermore, the non-immersive collaborator interface is presented
utilizing a normal monitor as a display device with keyboard and pointer input
– an arguably traditional setup. Naturally, the interface may also be based on
alternative technologies, such as a tablet device with touch input.

4.2.5 Implementation Overview

The purpose of this section is to provide a general overview about the practical
software implementation of the presented system architecture within the scope of
this thesis, and as such the various technological artifacts as part of the three major
VE iterations (see Section 1.3). All utilized hardware and software technologies
are affordable and widely accessible (REQ 3). Additionally, selected parts of the
developed system have been published as open source, freely available on the
Internet, for other researchers, practitioners, and students to use. Appendix B
provides a brief summary of these parts, including references for online access.

Data Structure Reference Model JSON and CSV file format standards have
been utilized for the practical implementation of the data structure reference
model. In particular, JSON was used for its implementation throughout the first
(Sphere) and second (Stacked Cuboid) VE iterations, providing the required means
for a structured data representation as key-value pairs. It is noteworthy that a
format such as XML would have been technically suitable for this purpose as
well, but JSON was chosen due to convenience with respect to (1) the author’s
experience with JSON, and (2) the close integration with the software technologies
used for the development of the various technological artifacts of the system,
such as the immersive VE, the remote server, and the non-immersive collaborator
interfaces. For the third VE iteration (3D Radar Chart), the CSV file format
standard was utilized for a, compared to JSON, more lightweight representation
of the time-series data, which was sufficient during that stage. Furthermore, the
implementation of the remote server that was tasked with the storage of the
multivariate data, the processing of the data into the data structure reference
model, and the transmission of the requested data to client applications, was
based on Node.js4 and its provided native features.

Immersive Virtual Environment The Unity5 cross-platform game engine has
been utilized for the software implementation of the VWG throughout all three
VE iterations. The source code is written in C#.6 The utilized Oculus Rift CV1
and HTC Vive HMD devices connected to the VWG have been described in

4OpenJS Foundation. Node.js. Retrieved June 1, 2022, from https://nodejs.org
5Unity Technologies. Unity. Retrieved June 1, 2022, from https://unity.com
6Microsoft Corporation . C# documentation. Retrieved June 1, 2022, from https://docs.microso

ft.com/en-us/dotnet/csharp/

https://nodejs.org
https://unity.com
https://docs.microsoft.com/en-us/dotnet/csharp/
https://docs.microsoft.com/en-us/dotnet/csharp/
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Section 2.2.2. The Leap Motion Controller for the utilization of 3D gestural input
with the VWG has been described in Section 2.2.4. Unity provides application
programming interfaces, either natively or through third party support, for the
technological integration with such devices, such as the SteamVR Unity Plugin7

and the Leap Motion Unity Plugin/Modules.8 The data loading via respective
network communication protocol, such as Hypertext Transfer Protocol Secure,9
has been implemented using the application programming interface as natively
provided by Unity. The logging module also utilizes an application programming
interface natively provided by Unity for writing and storage of textual data in a
CSV file to the computer system’s file storage system.

User Session Data The remote server responsible for the storage of the user
session data has been implemented using Node.js and its provided native features
to write data to the server’s file system. The data transfer module as part of
the VWG, tasked with recording user session data and transferring the data
to the remote server via respective network communication protocol, such as
Hypertext Transfer Protocol Secure, has been implemented using the application
programming interface as natively provided by Unity. The user session report
interface has been implemented as a web application using HTML510 and CSS311

as well as the D3.js12 visualization library.

Collaboration Infrastructure The collaboration infrastructure is based on a
client-server model that generally utilizes the WebSocket13 communication pro-
tocol. The collaboration server was implemented using Node.js throughout the
second (Stacked Cuboid) and third (3D Radar Chart) VE iterations. The imple-
mentation of the client and server endpoints for the collaboration infrastructure
during the second VE iteration was based on Socket.IO,14 a library that is built
on top of the WebSocket standard. The at the time utilized unity-socket.io li-
brary that allowed for Socket.IO integration with a Unity client application, i.e.,
the VWG, has unfortunately been deprecated during the development process.
Therefore, the developed collaboration artifacts as part of the third VE iteration

7Valve Corporation. SteamVR Unity Plugin. Retrieved June 1, 2022, from https://valvesoftwar
e.github.io/steamvr_unity_plugin/

8Ultraleap. Leap Motion Unity Plugin/Modules. Retrieved June 1, 2022, from https://github.c
om/ultraleap/UnityPlugin/releases/

9Eric Rescorla. HTTP Over TLS. Retrieved June 1, 2022, from https://datatracker.ietf.org/d
oc/html/rfc2818

10WHATWG (Apple, Google, Mozilla, Microsoft). HTML: Living Standard. Retrieved June 1, 2022,
from https://html.spec.whatwg.org/multipage/

11World Wide Web Consortium. Cascading Style Sheets. Retrieved June 1, 2022, from https:
//www.w3.org/Style/CSS/

12Mike Bostock. D3.js - Data-Driven Documents. Retrieved June 1, 2022, from https://d3js.org
13Alexey Melnikov and Ian Fette. The WebSocket Protocol. Retrieved June 1, 2022, from https:

//datatracker.ietf.org/doc/html/rfc6455
14Socket.IO. Socket.IO: Bidirectional and low-latency communication for every platform. Retrieved

June 1, 2022, from https://socket.io

https://valvesoftware.github.io/steamvr_unity_plugin/
https://valvesoftware.github.io/steamvr_unity_plugin/
https://github.com/ultraleap/UnityPlugin/releases/
https://github.com/ultraleap/UnityPlugin/releases/
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc2818
https://html.spec.whatwg.org/multipage/
https://www.w3.org/Style/CSS/
https://www.w3.org/Style/CSS/
https://d3js.org
https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/rfc6455
https://socket.io
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utilized the native WebSocket Secure API.15 The Node.js server implementation
was facilitated through the use of the ws16 library. Client applications based
on JavaScript integrate with a WebSocket server endpoint natively without the
need for additional libraries. The collaboration module as part of the VWG,
developed in Unity, utilized the websocket-sharp17 library in order to connect
to the WebSocket server endpoint. The non-immersive collaborator interfaces
have been implemented as web applications throughout the second and third VE
iterations, running in a normal browser, using a mixture of HTML5, CSS3, the
D3.js visualization library, and TopoJSON.18

15Mozilla Corporation. The WebSocket API (WebSockets). Retrieved June 1, 2022, from https:
//developer.mozilla.org/en-US/docs/Web/API/WebSockets_API

16Einar Otto Stangvik. ws: a Node.js WebSocket library. Retrieved June 1, 2022, from https:
//github.com/websockets/ws

17Sta. websocket-sharp. Retrieved June 1, 2022, from https://github.com/sta/websocket-sharp
18Mike Bostock. TopoJSON. Retrieved June 1, 2022, from https://github.com/topojson/topojson
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Figure 5.1: Preview of the three VE iterations presented in this chapter, including
the applied spatial and temporal visual encoding. Left: VE Iteration 1 (Sphere).
Center: VE Iteration 2 (Stacked Cuboid). Right: VE Iteration 3 (3D Radar Chart).

as described throughout this chapter. To investigate immersive interaction with
spatio-temporal data based on three-dimensional user interfaces (3D UIs), three
major Virtual Environment (VE) iterations have been developed, incrementally
building upon each other and increasing in complexity. The first VE iteration
visualizes individual data items as Spheres, featuring a geolocation encoding,
as these spheres are placed in the VE in accordance to the actual geolocation
coordinates of the underlying multivariate data. However, these spherical data
entity visualizations do not provide any indications of temporal data values. This
is instead addressed within the second VE iteration, utilizing a Stacked Cuboid
design to visually encode the location’s temporal context for a single time event
at a time. Finally, the third VE iteration expands on that concept, encoding not
just a single time event, but an entire time series for each data variable of a
location. To achieve this, the immersive 3D Radar Chart design is introduced.
Figure 5.1 provides a preview of these three VE iterations and their data entity
visualization designs. Naturally, the works presented throughout Chapters 2
and 3 have informed various design aspects of these VE iterations.

This chapter begins with Section 5.1 by presenting some foundational aspects
in regard to multivariate data in general, and spatio-temporal data in particular.
Section 5.2 provides an overview of data analysis tasks that are relevant within
the context of data interaction. Both sections establish the related terminology
that is adopted throughout this thesis.

The first VE iteration is presented in Section 5.3, enabling open data exploration
using a Virtual Reality (VR) approach. The design and development allowed,
among others, the become practically familiar with the involved technologies
and overall concepts. Using the VE, a user could explore data from the 2016 US
presidential election. A first set of basic interactive features was implemented, for
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instance to travel, select, display details-on-demand, and filter. The VE iteration
was used to confirm the appropriateness of 3D gestural input as an interaction
modality within such contexts, comparing it against gamepad and physical,
tracked controllers. The evaluation results informed the choice and focus of using
hand interaction throughout the next VE iterations.

The second VE iteration is presented in Section 5.4. Its main context and
scenario are centered around the spatio-temporal analysis of language variability
on social media from a sociolinguistic perspective. The developed interactive VE
was evaluated within the scope of an overall case study with relevant experts
and students from the linguistics community. The immersed users were able to
extract relevant insights with respect to the spatial and temporal contexts of the
data, while at the same time enjoying their engaging experience.

Finally, the third VE iteration is presented in Section 5.5. The introduced
3D Radar Chart design expanded on the concept of not just encoding a single
time event but a time series, facilitating the exploration of the temporal context
in the immersive environment. Two empirical evaluations were conducted
within the scope of this VE iteration. A first initial prototype with a basic set
of interactive features was evaluated to assess and confirm the validity of the
overall visualization design. Based on that validation and the received feedback,
the VE was extended through additional interactive features, among others,
closely aligned with data analysis tasks, interaction techniques, and comfort
considerations, and was evaluated once more.

5.1 Spatio-Temporal Data
To obtain a better understanding of spatio-temporal data, it is helpful to first have
a high level view on the concept and terminology of data in general. Andrienko
and Andrienko (2006, Chapter 2) describe data as the result of measurements
and observations of phenomena, and consequently data analysis as the process
of studying these phenomena through the means of analyzing the collected
data. Generally, data is described through two fundamental components, i.e., a
referential component and a characteristic component (Andrienko and Andrienko,
2006, Chapter 2.1). The referential component provides the overall context or
description of the measurement. The characteristic component on the other
hand represents the actual result of the measurement, for instance as numerical,
categorical, or ordinal values (Dix, 2020, Chapter 4.1.1). The referential component
is also described as referrer or data variable, while the characteristic component
can also be described as attribute or data variable value (Andrienko and Andrienko,
2006, Chapter 2.1). From a computer science perspective, the analogy to the
concept of a key–value pair comes to mind to facilitate the understanding of these
two basic data components, for instance as a referrer–attribute pair or a data
variable–data variable value pair. Consequently, a dataset is the collection of at
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least two, but commonly many more, such data variable–data variable value pairs.
Within that context, an individual data variable–data variable value pair in a
dataset is also referred to as data item or data entry (Ward et al., 2015, Chapter 5.1).
Furthermore, measured and observed phenomena nowadays are often rather
complex, relying on a multitude of data variables that are associated with a data
item. A dataset where each data item features two or more data variables is
referred to as a multivariate dataset, as opposed to a univariate dataset where each
data item features just one data variable (Ward et al., 2015, Chapter 7.1).

Two common aspects concerned with the measurement and observation of
real-world phenomena are space and time, i.e., where and when a measurement or
observation was recorded (Andrienko and Andrienko, 2006, Chapter 2.1). Spatial
data variables contain geographic information (Andrienko and Andrienko, 2006,
Chapter 2.1.2), commonly representing a location (point) or region (polygon) as
latitude and longitude values (Wikle et al., 2019, Chapter 2.1). Alternatively,
depending on the overall data context, spatial data variables can also take on the
format of lines, trajectories, or objects (Wikle et al., 2019, Chapter 2.1). Aigner et al.
(2011, Chapter 4.1.1) provide a comprehensive overview of the characteristics
of time that may be used to represent temporal data variables. As such, a time
domain’s scale may be ordinal (relative order), discrete (distinct time unit), or
continuous (numerical order). A time domain’s scope is differentiated as point-based
(a distinct point in time with no duration) and interval-based (a range in time with
a duration). Furthermore, a time domain’s arrangement may be linear (an ordered
model clearly distinguishing between past and future) or cyclic (a composition of
recurring time elements). The viewpoint on a time domain may be ordered (time
events occur one after the other), branching (branching points allow for comparison
of alternate scenarios), or based on multiple perspectives. A multivariate dataset
that consists of data items where each item features data variables with respect
to at least one spatial and one temporal context can hence also be specifically
referred to as a spatio-temporal dataset (Wikle et al., 2019, Chapter 2.1).

The Nordic Tweet Stream (NTS) corpus (Laitinen et al., 2017), in more detail
described as part of the data context and scenario in Section 5.4, represents
an example for a typical spatio-temporal dataset. The corpus consists of data
collected from the social networking platform Twitter. In particular, each data
item represents a post on the platform that originated from somewhere within
the Nordic region, i.e., Denmark, Finland, Iceland, Norway, or Sweden. As such,
each data item in the NTS corpus features a spatial context, i.e., the location
from where the post on the platform was published, as well as a temporal
context, i.e., the time when the post on the platform was published. Naturally,
besides spatial and temporal data variables, each data item contains various
other data variables, such as the text of the post, allowing for the analysis of
phenomena related to language variability with respect to space and time from a
sociolinguistic perspective. Other typical examples for spatio-temporal datasets
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include weather and climate data (Neset et al., 2019; Lundblad et al., 2010),
forestry data (Andrienko and Andrienko, 2006, Chapter 2.3.2), and movement
trajectory data (Büschel et al., 2021; Wagner Filho et al., 2020), to name just a few.

Adopted Terminology Examining the terminology described throughout this
section, it becomes apparent that some terms are applied interchangeably in the
literature. Within the scope of this thesis, the following terminology is adopted
for general coherence. A data item is a collection of various data variable–data
variable value pairs, among others featuring data variables that are related to
spatial and temporal contexts. The collection of various such data items represents
a multivariate dataset, and more specifically a spatio-temporal dataset. Additionally,
the term data entity is adopted to specifically refer to the visual representation
of a data item within the context of a visualization environment, such as an
immersive VE or a non-immersive desktop terminal.

5.2 Data Analysis Tasks
Naturally, each visualization should be designed to serve a specific purpose and to
accommodate the analyst with extracting insights and information by completing
desired tasks. Aigner et al. (2011, Chapter 1.1) summarize considerations for the
design of information visualizations on a high level with respect to (1) what kind
of data are visualized, (2) why are the data visualized, and (3) how are the data
going to be visualized. From a user-centered perspective, the specification of the
analyst’s tasks when interacting with a visualization is particularly interesting,
i.e., with respect to why the data are visualized and what purpose does the
visualization serve the analyst. Ward et al. (2015, Chapter 1.8) and Aigner et al.
(2011, Chapter 1.1) differentiate between three main purposes for the interaction
with visualizations:

• Exploration or Explorative Analysis: The analyst utilizes the visualization and
its interactive features to explore an unknown dataset, extract first insights
and relevant information with no hypotheses given (undirected search).

• Confirmation or Confirmative Analysis: The analyst utilizes the visualization
and its interactive features to confirm or reject given hypotheses about a
dataset (directed search).

• Presentation of Analysis Results: The analyst utilizes the visualization and
its interactive features to convey and present their findings in the dataset,
such as concepts or facts, to an audience.

With respect to the actual design of a visualization’s interactive capabilities,
Shneiderman’s (1996) Visual Information-Seeking Mantra of overview first, zoom
and filter, then details-on-demand is arguably one of the most famous design
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guidelines. Based on it, Shneiderman (1996) proposes seven abstract task types
that should be supported by the visualization, namely overview, zoom, filter,
details-on-demand, relate, history, and extract. Another approach by Munzner (2014,
Chapters 1–3), Brehmer and Munzner (2013) respectively, describes abstract
visualization tasks as a multi-level typology, organizing tasks as to why and how
they are performed as well as what a task’s input and output parameters are.
With respect to why, Munzner (2014, Chapter 3) classifies user actions across four
overall groups, i.e., (1) analyze (discover, present, enjoy), (2) produce (annotate, record,
derive), (3) search (lookup, locate, browse, explore), and (4) query (identify, compare,
summarize). Depending on scenario and context of the interactive visualization,
all these classifications have the potential to be informative for the development,
either in isolation or as a mixed and multimodal approach. This allows for
guidance and facilitation of the design process towards purposeful interactions
with a visualization, and thus with data. Yi et al. (2007) reviewed a multitude of
Information Visualization (InfoVis) taxonomies with respect to their described
interaction techniques. Based on their analysis of the literature, they synthesized
a set formal categories (select, explore, reconfigure, encode, abstract/elaborate, filter,
connect, undo/redo, change configuration) to describe a user’s intent for the interaction
with a visualization in general (Yi et al., 2007). Aigner et al. (2011, Chapter 5.1)
further build upon these categories and adapt them to support the more specific
context of interacting with time-oriented data, i.e., multivariate data where each
data item features at least one data variable related to a temporal context. The
utilization of such task categories allows to conceptually categorize the interactive
features of a developed data analysis tool, similar as presented by Büschel et al.
(2018), and thus aiding the tool’s description accordingly.

Adopted Terminology Based on the combined work presented by Yi et al.
(2007) and Aigner et al. (2011, Chapter 5.1), their data analysis task categories
are adopted within the scope of this thesis towards the contexts of IA and the
interaction with spatio-temporal data in VEs as follows:

1. Select – Mark something as interesting: Select a data entity at a specific spatial
location in the VE or modify the displayed temporal context through
the selection of a new time event or time range, for instance with the
objective to perform various follow-up interactions, such as to display
details-on-demand.

2. Explore – Show me something else: Look around in the VE with the objective
to identify a location/region (spatial) or time event/range (temporal) of
interest worth of further inspection or move around in the VE in order to
reach data entities, either in close proximity or faraway (outside the physical
real-world boundaries of the VR system’s calibrated safe interaction area),
potentially utilizing virtual travel features.
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3. Reconfigure – Show me a different arrangement: Perform an interaction that
modifies the visual arrangement of the displayed data entities in the VE,
for instance with respect to their relative location in the VE or in regard to
aspects of their individual visual representation (for instance, sorting the
order of the displayed data variables).

4. Encode – Show me a different representation: Modify the visualization technique
used to represent a data entity in the VE, i.e., mapping a data item’s data
variables onto a new visual representation and in turn creating a different
data entity.

5. Abstract/Elaborate – Show me more or less detail: Aligned with Shneiderman’s
(1996) Visual Information-Seeking Mantra, display details-on-demand (elab-
orate) to show additional information about a selected data entity, or
hide the details (abstract) to enable a more overview-like perspective and
interaction mode.

6. Filter – Show me something conditionally: Perform an interaction that modifies
the visual representation of one or more data entities in the VE to condi-
tionally hide or add information, for instance by deactivating entire data
entities or aspects of their individual visual representation (for instance,
filtering out undesired displayed data variables).

7. Connect – Show me related items: Perform an interaction in the VE that
facilitates the inference of relation between and the comparison of data
entities, both with respect to spatial and temporal contexts.

8. Undo/Redo – Let me go to where I have already been: With respect to the
interaction in the VE in general, enable the user to retrace their previous in-
teractions, for instance through undo, redo, history, or reset functionalities.

9. Change Configuration – Let me adjust the interface: Perform an interaction
that modifies aspects of the user interface on a system level in general or
with respect to the particular in-situ interaction mode with one or multiple
selected data entities (for instance, temporally accessing and switching
between menus and widgets that assist with the interaction in the VE).

5.3 VE Iteration 1: Data Analysis Using Spheres
In order to begin with the empirical investigation in regard to the interaction
with data in an immersive VE, and based on the defined requirements and
system architecture presented throughout Chapter 4, a first prototype system was
developed. This first iteration focuses on the initial design and implementation
of an immersive VE that can be utilized for data exploration through VR with a
head-mounted display (HMD) device and three-dimensional (3D) gestural input.
As such, the system serves as a general proof-of-concept validation with three
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Figure 5.2: Conceptual system overview of the first VE iteration. Detailed
descriptions about the various system components are provided in Section 4.2.

objectives, namely (1) validating the overall technological feasibility, (2) validating
the users’ ability to make use of the immersive VE to explore data and solve
related tasks, and (3) investigating the suitability of 3D gestural input and mid-air
interaction compared to other input modalities, such as physical controllers.
Additionally, the development of this initial immersive data exploration system
served as an opportunity to obtain first insights and experiences with respect
to its conceptual design and practical implementation. Figure 5.2 provides a
conceptual system overview of the developed first VE iteration.

Dataset: 2016 US presidential election The data exploration scenario in this
first VE iteration is centered around analyzing the results of the 2016 United
States (US) presidential election on a per federal state/district basis. For that
purpose, a custom multivariate dataset was created based on relevant data
aggregated from various online sources. In particular, (1) the actual voting
results were collected from the reporting by The New York Times, (2) overall
descriptions and images about the individual states in the US were aggregated
from Wikimedia and DBpedia, and (3) Wolfram Alpha was queried in order to
extract the geolocation coordinates (latitude and longitude) for each of the state
capitals in the US. The dataset served multiple purposes within the scope of
this VE iteration. First, it allowed for the conceptual illustration of utilizing the
VE as an interface for data from multiple sources. Second, while it is specific
enough to create data analysis tasks, it is also generalizable with respect to
the overall scenario, i.e., it is conceivable that similar data about other contexts
may be aggregated and subsequently explored in the VE. And third, the overall
scenario was deemed generally approachable, allowing for inclusive participant
recruitment with respect to the empirical evaluation as no specific expertise or
domain knowledge is required to explore and make sense of the dataset.
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5.3.1 Visualization Design and VE Composition

The overall design of the virtual 3D space and the design of a data entity in the VE,
i.e., the visual representation of a multivariate data item, are held intentionally
minimalistic in order to direct the user’s focus to the data rather than distracting
them with unnecessary visual elements in the VE. Similar to immersive data
visualization approaches as presented by, among others, Donalek et al. (2014),
Wagner Filho et al. (2018), and Pirch et al. (2021), an individual data entity is
visualized in the format of a Sphere with a complementary textual name label
anchored directly above it. Figure 5.3 conceptually illustrates the presented data
entity visualization design as spheres in the VE. The placement of each data
entity in the 3D space of the VE is based on the prior visual mapping process, and
as such dependent on the dataset. In case of the presented US election dataset,
each data entity is placed with respect to their geolocation coordinates (x- and
z-axis) at a fixed height (y-axis) in the VE. Naturally, different placement and
arrangement mappings may be applied based on the purpose of the immersive
data visualization environment.

To display more information about a data entity (REQ 9 in Table 4.1), the
VE features capabilities to toggle, i.e., display and hide, a composite of three
information panels, similar to a three-monitor desktop setup in the real world. The
composition of these panels is conceptually similar to the approach described
by Wirth et al. (2018), who utilized various two-dimensional (2D) planes in the
content zone of their VE to display additional information related to a 3D model.
Based on the dataset and thus the available data variables for each data item,
each of the panels can be populated with the respective data variable values. For
instance, in the case of the presented US election dataset, the three panels are
arranged as follows. The center panel displays the name of a state as well as a
textual description about it. The right panel displays various images about the
state, while the left panel is utilized to display additional information in a listing
format, among others the voting results in percent.

Furthermore, the VE is composed as an open space with no visual walls
or ceiling. However, rather than letting the user visually “float” in mid-air in
the VE, which would arguably feel rather unnatural in comparison to the real
world, a virtual floor is placed in the VE. This floor is calibrated and aligned with
the position of the real-world floor with respect to the VR system’s calibrated
safe interaction area. With the intention to facilitate the immersed user’s spatial
understanding, the virtual floor displays a grid that is composed of both solid
and dashed lines. In particular, a three-by-three grid of solid lines represents
the user’s safe interaction area in the VE, i.e., the area in which they can move
freely without obstacles in correspondence to the physical real-world boundaries.
Additionally, the virtual floor is extended far beyond the user’s physical reach
using a grid of dashed lines, providing the impression of a horizon in the VE as
important visual orientation cue for the immersed user.
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Figure 5.3: Sphere visualization design of the first VE iteration.

5.3.2 Interaction Design

In alignment with the data entity visualization design (sphere) and the overall
composition of the VE as described in Section 5.3.1, various interactive features
are available to the user to support typical data analysis tasks in the VE. Table 5.1
provides an overview of all implemented features, their analysis task classification,
as well as how these features are mapped onto the three different input modalities
(Gamepad, 3D Gestural Input, and Physical, Tracked Controller) with respect to the
subsequent empirical evaluation (see Section 5.3.3). Figures 5.4 and 5.5 present
some impressions of the interactive features in the VE for the 3D gestural input
condition. The remainder of this section provides additional descriptions about
the implemented features.

Travel and Selection Rather than allowing the user to arbitrarily transition
to any position in the VE, for instance utilizing mechanisms as presented by
Pirch et al. (2021) or Streppel et al. (2018), the designed travel feature is centered
around the approach of target-based travel as described, among others, by Lai
et al. (2021), Medeiros et al. (2016), and Ragan et al. (2012). The user can indicate
a data entity in the VE they would like to travel to, and initiate an automatic
transition in linear motion that virtually moves the user to the respective data
entity. More specifically, the user’s virtual safe interaction area, naturally with
the user themself in it, is transitioned in such a way that the targeted data entity
is positioned in its center at the end of the virtual transition (REQ 7 and REQ 8 in
Table 4.1). This mechanism serves two purposes. First, it ensures that the user can
freely move around the targeted data entity in the VE. And second, restricting the
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user to travel via such target-based travel also explicitly links the user’s location
to a respective data entity at all times, allowing to easily identify the current
in-situ spatial data context (REQ 12 in Table 4.1). Any targeted and visited data
entity is also automatically selected. The selected data entity, i.e., sphere, features
a dark blue color, while all other unselected spheres are displayed in white.

Information Panels Once the user desires to inquire further information
about a selected data entity, similar to the details-on-demand concept described
by Shneiderman (1996), they can toggle the display of a composite of three
semitransparent information panels (REQ 9 in Table 4.1). The position and
rotation of these panels when toggled for display are derived from the user’s
head position and rotation in the VE, appearing and aligning conveniently with
the user’s in-situ field of view. Once toggled and until dismissed, the information
panels are statically anchored in the VE, enabling the user to inspect and possibly
interact with the panels accordingly. For instance, the user may interact with the
right panel in order to browse through all associated information panel images on
a step-by-step basis. Furthermore, while the information panels are displayed,
travel and select operations for other data entities are temporarily disabled with
the intention to allow the user to remain in their current data analysis context.

Filter In order to provide an element of exploration guidance during the
data analysis activity in the VE, a filter mechanism is provided that allows for
comparison based on the available data variables of the data items in the dataset
(REQ 14 in Table 4.1). In particular, the user can compare the currently selected
data entity to all others on a is greater than and is less than basis. The filter
results are intentionally limited to indicate only those data entities that are
(1) minimal, (2) medial, and (3) maximal different. This concept accommodates
to not overwhelm the user with feedback to all, possibly many other, data entities
in the VE. The data entities included in a filter result set are highlighted, visually
connected to the user’s currently selected data entity, and color-coded: green
indicating a minimal, yellow a medial, and red a maximal difference. Additionally,
travel and selection operations are restricted exclusively to those data entities that
are included in the filter result set. In case of the presented US election dataset,
such filter operations are available for comparison of the voting results along the
Democratic and Republican party as well as the combined other parties.

Bookmark With the intention to enable a user in the VE to keep track of an
interesting data entity, while not concerning about potentially forgetting about it
or not finding back to it during the data analysis activity, a bookmark feature is
provided. In particular, the user can mark one data entity at a time as bookmarked.
A data entity with the bookmark status appears visually in the format of a large
cylinder, conceptually similar to a spotlight, for instance as illustrated by Peter
et al. (2018). This visual design should allow the user to easily identify and thus
find back to the bookmarked data entity independent of their location in the VE.
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Figure 5.4: Impressions of the various features (see Table 5.1) available in the
first VE iteration, from the immersed user’s field of view, and utilizing the 3D
gestural input condition.
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Figure 5.5: Additional impressions of the first VE iteration and the available
features (see Table 5.1 and Figure 5.4), from the immersed user’s field of view.
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5.3.3 Evaluation: Input Technology Comparison
The empirical evaluation of the presented data entity visualization and interaction
design of this first VE iteration, in the format of an exploratory user interaction
study, was designed with two overall objectives in mind. First, the evaluation
should validate the user’s ability to explore data and solve related tasks in the VE.
And second, the evaluation should investigate the suitability of 3D gestural input
in VEs within the scope of the presented IA context, especially compared to other
input technologies. To accommodate these objectives and in order to gain first
insights and experiences, the evaluation was centered around the comparison of
three different input technologies that enable the immersed user to interact in the
VE, posing the following research question and hypotheses:

RQ: How do different input technologies (gamepad; 3D gestural input; physical,
tracked controller) affect user experience and behavior in VEs using current
state-of-the-art VR technologies?

H1: A visual representation tied to the input technology in the VE will have a
positive impact on user experience and behavior.

H2: A physical controller tied to the input technology in the VE will have a
negative impact on user experience and behavior.

The three chosen input technologies were selected as common and represen-
tative modalities for the interaction in VEs that utilize a VR approach. Table 5.2
provides an overview about the key characteristics of these three conditions and
how they differ from each other. A detailed overview of how the interactive
features in the VE have been mapped to these technologies has been presented in
Table 5.1. The study design of the empirical evaluation features three indepen-
dent variables, i.e., gamepad, 3D gestural input, and physical, tracked controller.
Measurable differences with respect to experienced workload, perceived flow
of interaction, and VR sickness (dependent variables) were expected as a result
of the participants interacting in the VE using the different input technologies.
Within the scope of the presented IA scenario and the developed VE, using these
measurements allows for the identification of potential differences in user experi-
ence and behavior between these technologies as well as potential advantages
and disadvantages of an input technology over another. A between-group design
was applied, with each participant using one of the three input technologies. In
order to have the same number of participants per input technology, the different
conditions were cycled with respect to the scheduled study sessions. Individual
study sessions were conducted in an one-on-one scenario between one participant
and one researcher at a time. The conduction of one session was aimed to a
duration of approximately 45 to 60 minutes, whereof the participant would spend
approximately 20 to 30 minutes immersed in the VE, wearing the designated
HMD. All study sessions were conducted at the VRxAR Labs research group lab
at Linnæus University.
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Input Technology
Characteristic

Gamepad 3D Gestural Input Physical, Tracked
Controller

Visual representation (in VE) No Yes Yes
Physical controller Yes No Yes
Sensor type Active Passive Active and passive
Input device data frequency Discrete Continuous Discrete and continuous

Table 5.2: Overview of the input technology characteristics for the three conditions
in the empirical evaluation of the first VE iteration.

5.3.3.1 Physical Study Space

The physical study space that was utilized for the conduction of the empirical
evaluation features a designated square two-by-two meter area with a visual
three-by-three grid on the floor for the immersed user to move freely without
obstacles (see Figure 5.6). It is noteworthy, that the visual three-by-three grid on
the floor of the physical study space is aligned with the representative three-by-
three grid on the floor in the VE as described in Section 5.3.1. Besides a desk and
several chairs provided for the participants, for instance to complete user consent
and questionnaires via pen and paper, the physical study space also features a
dedicated workstation for the researcher. From their workstation, the researcher
can moderate the study, collect data, and monitor the involved hardware and
software setup to ensure that all components work as intended. Generally, the
researcher remained at their workstation throughout the study session. Aligned
with the overall study procedure (see Section 5.3.3.5), the participant was seated
twice at their desk, i.e., before and after their interaction in the developed VE.

With respect to the three applied input technology conditions, some additional
descriptions are required. First, the gamepad interaction was supported through
the utilization of a Xbox One controller1 and an Oculus Rift CV HMD. Second, the
3D gestural input interaction was supported through a Leap Motion Controller
that was attached in front of an Oculus Rift CV HMD. And third, the physical,
tracked controller interaction was supported through the utilization of the HTC
Vive system that consists of the respective HMD and a physical, tracked controller.
Figure 5.7 shows all three input technology devices. Furthermore, the physical,
tracked controller condition featured a room-scale VR setup that utilized the
entire two-by-two meter physical area, enabling the user to move freely in that
area. Even though the users were situated in the designated 2-by-2 meter in the
gamepad and 3D gestural input conditions, their setup was generally based on a

1iFixit. Xbox One Wireless Controller (Model 1697). Retrieved June 1, 2022, from https:
//www.ifixit.com/Device/Xbox_One_Wireless_Controller_1697

https://www.ifixit.com/Device/Xbox_One_Wireless_Controller_1697
https://www.ifixit.com/Device/Xbox_One_Wireless_Controller_1697
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Figure 5.6: A photo of the VRxAR Labs research group lab at Linnæus University.
The floor features a three-by-three grid in a physical two-by-two meter area,
representing the VR system’s calibrated safe interaction area, and thus enabling
the immersed user to move freely without obstacles. This physical study space
was utilized throughout all empirical evaluations presented within this thesis.

rather stationary VR experience that utilized two external tracking sensors and
the Oculus Rift CV HMD.2

5.3.3.2 VE Setup
Generally, the VE was setup as described throughout Sections 5.3.1 and 5.3.2. In
particular, under utilization of the presented 2016 US presidential election dataset,
the VE featured a total of 51 data entities as spheres, representing the 50 federal
states as well as the one federal district in the US. All interactive features were
available to the immersed user with respect to their assigned input technology
for the study session.

5.3.3.3 Task
Utilizing one of the assigned input technologies, each participant was asked to
complete a single task, the same for all participants, i.e., to explore the 2016 US
presidential election dataset using the provided technologies and identify two
data items where both the Democratic and Republican party voting results were
close to 50 percent, indicating a tight election race. The data entity representing

2A room-scale VR setup that appropriately supports 360° tracking with the Oculus Rift CV HMD
requires three external tracking sensors.
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Figure 5.7: A photo of the input technology devices for the three conditions
in the empirical evaluation of the first VE iteration. Left: Xbox One controller
(gamepad). Center: Leap Motion Controller (3D gestural input). Right: HTC
Vive Controller (physical, tracked controller).

the state of Alabama was chosen as the starting point in every study session.
Each participant was encouraged to utilize all the interactive features at their
disposal to freely explore the data entities in the VE with their own strategy and
pace. To complete the task, each participant had to name (spoken aloud to the
researcher) at one point in time the two data items they assessed fit the task
criteria. A total of ten answers were identified that satisfy the task criteria within
a reasonable margin (see Table 5.3). This overall task design with no precise
answer available was chosen to support the overall inductive and exploratory
state of the developed VE at this stage, enabling the participants to interact with
the data in the VE in a meaningful way, and allowing for the data collection with
respect to the different input technologies.

5.3.3.4 Measures

To obtain a general understanding about the participants, a custom pre-task
questionnaire was applied to inquire some demographic information in regard to
their self-assessed prior experiences with VR technologies in general, and their
self-assessed prior experiences with the assigned input technology. Within the
scope of this first VE iteration, the evaluation was centered around the utilization
of three subjective methods. First, the Simulator Sickness Questionnaire (SSQ)
was utilized as a tool to inquire assessments about the users’ perceived VR
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Federal State Democratic % Republican % Distance to 50

Florida 48 49 3
Pennsylvania 48 48 4
North Carolina 47 51 4
New Hampshire 48 47 5
Michigan 47 48 5
Wisconsin 47 48 5
Georgia 46 51 5
Arizona 45 50 5
Nevada 48 46 6
Virginia 50 44 6

Table 5.3: Acceptable task answers ranked according to close match, i.e., the
combined distance of each percentage value to 50.

sickness, providing helpful complementary insights regarding the general design
of the immersive VE. Second, the Task Load Index (TLX) was applied with
the objective to obtain an understanding about the users’ cognitive workload
during the immersive data analysis activity in the VE. And third, the Flow
Short Scale (FKS) was used to measure the users’ flow of interaction with the
intent to reveal similarities and differences between the three input technologies.
Additionally, all user interactions in the VE were logged directly by the system
itself, allowing for task performance analysis in general. The researcher also made
observations during the users’ task solving activity, taking notes accordingly.
Finally, an informal interview with each participant was conducted, encouraging
them to state additional noteworthy feedback themselves as well as enabling the
researcher to pose questions based on the prior made observations. Foundational
aspects of these evaluation methods are described in Section 2.5.1.

5.3.3.5 Study Procedure
Each individual study session followed the same procedure of five stages:

1. Introduction (10 min);

2. Warm-up (5 min in the VE);

3. Task (20 min in the VE);

4. Questionnaires (15 min);

5. Interview (5 min).

Although there was no explicit time limitation from the researcher’s side, a
duration of approximately 45 to 60 minutes per study session was anticipated.
During the introduction, each participant was welcomed and asked to complete
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an informed user consent with regard to their participation in the evaluation
and the custom pre-task questionnaire. Thereafter, they were introduced to
the developed immersive data analysis environment. For this purpose, each
participant was shown a short pre-recorded introduction video with regard to
their assigned input technology, presenting all the features, and providing all
participants the same briefing beforehand.3 After watching the VE introduction,
each participant was given a short warm-up time to allow them to familiarize
themselves with the composition of the VE and the provided interactive features
as well as to become comfortable wearing the HMD and utilizing their respective
input technologies. Once the participant felt ready, the researcher initiated the task
stage as described in Section 5.3.3.3. To prevent a potential insights transfer from
warm-up to task stage, different datasets were used, i.e., the task stage featured
the setup as described in Section 5.3.3.2, while the warm-up stage featured a
dataset with representative dummy data. During the task stage, the researcher
made observations and took notes. Once the participant completed their task in
the VE, they were asked to complete the provided questionnaires, i.e., in order,
SSQ, TLX, and FKS. Finally, the informal interview was conducted, after which
the participant was thanked and sent off.

5.3.4 Results

5.3.4.1 Participants

A total of = = 24 participants were recruited to partake in the evaluation to compare
the different input technologies within the scope of the first VE iteration that
utilized the sphere data entity visualization design. Thus, based on the between-
group design, data from = = 8 participants per input technology condition were
collected. Figure 5.8 shows various participants during their task completion,
immersed and interacting with their assigned input modality, in the physical
study space. Table 5.4 summarizes their prior experiences per input technology.

5.3.4.2 Task Assessment

Based on the task design, each participant was asked to provide two answers,
i.e., two data items in the format of federal states. Table 5.5 presents a detailed
summary of the received answers. With 21 participants, the majority provided
two answers that were considered acceptable, and as such appropriate. Three
participants (one physical, tracked controller, and two gamepad) provided as one
of their answers a data item that was not within the anticipated target results.

3Three short introduction videos were prepared, one per input technology, of approximately
3 minutes in length each (see Appendix A).
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Figure 5.8: Immersed participants during their task completion in the evaluation
of the first VE iteration, wearing a HMD and interacting in the VE using one of the
three input modalities. Left: Gamepad. Center: 3D gestural input. Right: Physical,
tracked controller.

Input Technology 3D UI VR
No EXP EXP No EXP EXP

Gamepad 1 7 0 8
3D Gestural Input 2 6 2 6
Physical, Tracked Controller 4 4 0 8

Table 5.4: Demographic information about the participants in the evaluation of
the first VE iteration with respect to their self-assessed prior experiences (EXP),
per input technology condition, both in regard to their assigned input technology
as 3D UI and VR in general.
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Florida 48 49 3 6 1 5 12
Pennsylvania 48 48 4 3 4 5 13
North Carolina 47 51 4 0 1 0 1
Michigan 47 48 5 1 2 2 5
New Hampshire 48 47 5 1 1 2 4
Wisconsin 47 48 5 2 2 1 4
Arizona 45 50 5 0 0 0 0
Georgia 46 51 5 0 2 0 2
Nevada 48 46 6 1 1 0 2
Virginia 50 44 6 0 2 0 2

Maine 48 45 7 1 0 1 2
Minnesota 47 45 8 1 0 0 1

Table 5.5: The task answers of the participants in the evaluation of the first VE
iteration, ranked according to their combined distance as close match. None of
the participants provided Arizona as an answer. Maine and Minnesota are answers
that are not considered to be within the top ten expected acceptable answers for
this dataset (see Table 5.3).
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Input Technology Factor MEAN SD MIN MAX MEDIAN

Gamepad
Nausea 1.50 1.41 0 4 1
Oculomotor 2.00 2.73 0 7 0.5
TOTAL 3.50 4.00 0 11 2

3D Gestural Input
Nausea 1.50 0.76 1 3 1
Oculomotor 2.00 1.77 0 4 2.5
TOTAL 3.50 2.20 1 7 3.5

Physical, Tracked
Controller

Nausea 1.50 2.07 0 6 1
Oculomotor 2.13 1.64 0 5 2
TOTAL 3.63 3.58 1 11 2.5

Table 5.6: Results of the SSQ based on the participants’ self-assessments in the
evaluation of the first VE iteration, per input technology condition, and presented
grouped according to nausea, oculomotor, and total based on the alternative score
calculations proposed by Bouchard et al. (2007). Note: The scale maximums for
nausea, oculomotor, and total scores are 27, 21, and 48 respectively.

5.3.4.3 Questionnaires
Table 5.6 presents the collected self-assessments with respect to VR sickness
based on the SSQ. Figure 5.9 illustrates the workload results as inquired with the
TLX. The collected measurements with regard to the experienced interaction flow
using the FKS are presented in Figure 5.10 and Table 5.7.

5.3.4.4 Logging
Using the implemented logging system that was integrated as part of the VE,
it is possible to analyze the participants’ interactions in the VE with respect to
various relevant matters. Although there was no time limit and the participants
were encouraged to solve the task at their own pace, it is helpful to inspect
the task completion times per input technology as presented in Figure 5.11.
Similarly, Figure 5.12 presents the participants’ interactions per minute across
the three input modalities. Furthermore, it is possible to generate 2D pathway
visualizations that illustrate the participants’ travel interactions from data entity
to data entity in the VE. Independent of the three input technology conditions,
the participants followed different travel strategies to complete the task as the
examples in Figure 5.13 illustrate. Some participants (= = 10) completed the task
and named two data items as soon as they encountered two data entities they
considered suitable as answers, exploring the different data entities in the VE to a
comparatively minimal extent. In contrast, other participants (= = 6) explored the
data entities to a greater extend, traveling back and forth multiple times between
already visited ones.



118 CHAPTER �. SPATIO-TEMPORAL DATA ANALYSIS USING VR

0
10

0
20

0
30

0
40

0
50

0

TLX Factors (n=24; n=8 per condition)

A
dj

us
te

d 
R

at
in

gs
 (W

ei
gh

ts
 x

 R
at

in
gs

)

Mental
Demand

Physical
Demand

Temporal
Demand

Own
Performance

Effort Frustration

0
50

0
Gamepad 3D Gestural Input Physical, Tracked Controller

0
20

40
60

80
10

0

To
ta

l W
or

kl
oa

d 
Sc

or
es

 (W
ei

gh
te

d 
R

at
in

gs
)

Condition

0
10

0
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Flow Short Scale
Gamepad 3D Gestural

Input

Physical,
Tracked

Controller
MEAN (SD) MEAN (SD) MEAN (SD)

F I - Smooth automatized process 5.00 (0.33) 4.54 (0.33) 5.38 (0.52)
8) I knew what I had to do for each step of

the way. 4.63 (1.77) 4.88 (1.64) 5.38 (1.92)
7) The right thoughts/movements occur of

their own accord.
4.75 (1.49) 4.38 (1.92) 4.38 (1.51)

9) I felt that I had everything under control. 4.88 (1.55) 4.88 (0.99) 5.50 (1.93)
4) I had no difficulty concentrating. 5.00 (1.93) 4.25 (2.49) 5.88 (1.46)
5) My mind is completely clear. 5.50 (1.20) 4.13 (1.73) 5.63 (0.74)
2) My thoughts/actions ran fluidly and

smoothly. 5.25 (1.67) 4.75 (1.49) 5.50 (1.69)

F II - Ability to absorb 4.47 (1.54) 4.94 (0.88) 4.91 (1.61)
6) I was totally absorbed in what I was doing. 6.25 (0.71) 6.13 (1.13) 6.25 (1.04)
1) I felt the right amount of challenge. 4.50 (1.20) 4.75 (1.39) 4.63 (1.69)
10) I was completely lost in thought. 2.50 (1.20) 4.00 (1.60) 2.75 (1.49)
3) I did not notice time passing. 4.63 (1.85) 4.88 (1.13) 6.00 (1.31)

Flow experience (1-10) 4.79 (0.96) 4.70 (0.60) 5.19 (1.03)

F III - Concern 2.54 (0.76) 2.92 (0.40) 3.17 (0.97)
11) Something important to me was at stake

here.
2.38 (1.41) 2.63 (2.26) 2.88 (1.81)

12) I did not make any mistake here. 3.38 (1.69) 2.75 (1.98) 4.25 (1.83)
13) I was worried about failing. 1.88 (1.64) 3.38 (2.39) 2.38 (1.92)

Table 5.7: Results of the FKS based on the = = 24 participants’ self-assessments in
the evaluation of the first VE iteration, per input technology condition (= = 8) as
mean and standard deviation, and presented grouped according to the individual
FKS factors and items, i.e., smooth automatized process (F I), ability to absorb
(F II), flow experience, and concern (F III).
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Figure 5.13: Examples of different data exploration strategies based on a par-
ticipant’s travel interactions in the VE, observed across all input technology
conditions, compiled as pathway visualizations. Left: Highly complex and sys-
tematic. Center: Travel loops of lower complexity. Right: Straight walk. Note: An
overview of all pathway visualizations is presented in Appendix C.

5.3.4.5 Observations and Informal Interview

16 participants were observed utilizing the provided filter options in a systematic
manner to guide their immersive data analysis with the objective to identify
suitable answers. They traveled to a data entity, toggled the information panels
to inspect the voting results, and applied a filter option, for instance to find a
state that would have slightly more votes for one of the parties, and then travel
to that data entity accordingly. In most of these cases, this procedure was either
repeated or the participant would travel back if they considered the prior data
entity as a more suitable answer. It is noteworthy though that six participants
asked for further clarifications about the functioning of the filter options after the
initial VE introduction, while five users made only minimal use (if at all) of the
filter functionality to complete the task, instead rather following a trial-and-error
strategy to find suitable answers. Twelve participants actively emphasized the
pleasantness of their experience in the VE, positively highlighting the target-based
travel interaction for the automatic transition between different data entities. They
were also excited about the various possibilities provided by the VE in general.

The participants also expressed some feedback in regard to further improve-
ments. For instance, ten participants noticed occlusion issues, i.e., data entities in
more densely populated spaces in the VE interfering with the ability to view the
contents as displayed in the information panels. Five participants requested an
additional feature to assist with their orientation in the VE, asking for some kind
of map or birds-eye view in order to get an overview about all the data entities
as well as their own position, for instance by having a more traditional view on
the data entities from the top down. Four participants also suggested to “attach”
information that is textually displayed in the information panels directly to the
data entity spheres themselves, thus visually encoding data directly. They argued
that this could prevent a frequent toggle of the information panels when searching
for data entities that contain specific data variable values. Furthermore, five
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participants (3 gamepad, and 2 physical, tracked controller) had active troubles
remembering the feature-to-button mapping on the respective physical controllers.
They argued that the mapping did not feel intuitive, thus demanding mental
efforts to learn and remember what button triggered what feature. The data
entity selection through gaze-based input in the gamepad and 3D gestural input
conditions was physically noticeable according to four participants, especially
during attempts to select faraway spheres.

5.3.5 Discussion

As described in the introduction to Section 5.3, the development and evaluation
of this first VE iteration is considered a proof-of-concept validation in general,
investigating aspects of technical feasibility, the user’s ability to successfully
explore data, and the suitability of 3D gestural input compared to physical con-
trollers. Based on the presented data entity visualization design, VE composition,
interaction design, and the results of the empirical evaluation, it is possible to
discuss the findings and obtained experiences so far. These serve as important
foundations and impulses that subsequently inform the design of the next VE
iterations. The discussion is organized around the examined input technologies,
the participants’ immersive data exploration, and finally the hypotheses assess-
ments, addressing how visual representation and physicality aspects of the input
technologies affected the participants during their time in the VE.

5.3.5.1 Input Technologies
One of the empirical evaluation’s main purposes was to investigate the suitability
of 3D gestural input, i.e., enabling the user to simply use their hands, for the
interaction in an immersive VE within the context of IA. Therefore, 3D gestural
input as one input technology was compared to modalities based on a gamepad
and a physical, tracked controller. Table 5.2 highlighted the characteristical
differences between these three conditions, particularly in regard to their visual
representation in the VE and their physicality.

Task Assessment Generally, all three implemented interaction modalities
enabled the participants to solve the given data analysis task in a satisfying manner.
Based on the pathway visualizations created from the logging data, for instance as
shown in Figure 5.13, it seems that every participant followed their own strategy
to complete the data analysis task independent of the used input technology.
Even though the task solving approach differed from participant to participant, no
strong correlation (also under consideration of the sample size) between the input
technologies and the participants’ ability to solve the task could be identified.
Examining Table 5.5, it becomes apparent that compared to gamepad and physical,
tracked controller, all 3D gestural input participants provided answers within the
predetermined acceptable task answers. An additional examination of the logging



�.�. VE ITERATION �� DATA ANALYSIS USING SPHERES 123

data reveals that the 3D gestural input participants had less travel interactions
on average, but that did not prevent them from successfully completing the task.
However, the participants that utilized the physical, tracked controller provided
overall the more highly ranked answers.

VR sickness Based on the results of the SSQ that was administered only post-
task to not disrupt the participants’ task solving activity, the measured VR sickness
was very low overall across all three input technology conditions, with only small
variations between them (see Table 5.6). Consequently, no noteworthy differences
could be identified, indicating a rather comfortable experience independent of
the utilized input technology. In the presented evaluation and context, one can
argue that the input technology affected the user’s experienced VR sickness only
minimal based on each individual’s sensory perception in the VE. Furthermore,
gamepad and 3D gestural input participants utilized an Oculus Rift CV1 HMD,
while the physical, tracked controller participants used the corresponding HTC
Vive HMD for their visual immersion in the VE (see Section 5.3.3.1). Naturally,
the choice of display technology can impact the results of the SSQ. However,
given the overall low scores and comparatively identical device specifications (see
Table 2.1 in Chapter 2), it is hard to tell if either input technology or HMD had a
noticeable impact on the measured VR sickness.

Workload Examining the results of the TLX workload assessments as illustrated
in Figure 5.9, it is noticeable that the mental demand was reported comparatively
high across all input technologies. Arguably, this is an outcome from interacting
in the VE with the respective input technology on the one hand, while on the
other attempting at the same time to complete the exploratory data analysis task.
Although the individual workload assessments are overall rather unique to each
participant, it is possible to observe certain trends. For instance, the gamepad
condition scored a comparatively high adjusted rating for the effort factor. A closer
examination of the collected logging data revealed that the participants that used
the gamepad had the most contextually wrong interactions in the VE among the
three conditions. This indicates that the gamepad participants had a harder time
recalling the feature-to-button mapping, also as observed and pointed out by
some participants during the informal interview. It is worth considering whether
or not the fact that the gamepad controller itself has no visual representation in the
VE may have contributed to this circumstance. Furthermore, the reported higher
mental demand of the gamepad condition might also relate to the self-reported
higher effort in this condition.

Although the medians for the perceived physical demand across the three
conditions are relatively low in general, the reported higher physical demand
by the 3D gestural input participants compared to the other two conditions is
likely a result due to the increased hand, finger, and thumb movements to form
the respective hand postures for the various gestural commands. Cardoso (2016)
reported that interaction using the Leap Motion Controller for 3D gestural input
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required a considerably higher effort compared to gamepad and gaze-based
interaction techniques (measured using the ISO 9241-9 questionnaire) to complete
the path following tasks in their study. Their results correspond with the reported
high physical demand factor (see Figure 5.9).4

The reported frustration by the 3D gestural input participants was considerably
higher compared to the gamepad and physical, tracked controller conditions.
An examination of the logging data shows that the 3D gestural input users had
the least interactions in a wrong context on average. They were also all able to
solve the task successfully (see Table 5.5), requiring the least amount of time
to do so according to the calculated mean completion times (see Figure 5.11).
In combination with the researcher’s observations, a drawback of the logging
system becomes apparent. The logging system only keeps tracked of detected
interactions, such as pressing a button or in the case of 3D gestural input a
detected gestural command. However, gestural command detection is not always
reliable (Koutsabasis and Vogiatzidakis, 2019; Bachmann et al., 2018), either due to
the sensory tracking or a user not performing the gestural command adequately,
potentially still learning the 3D UI. In turn, some undetected interactions may have
simply not been recorded for the 3D gestural input condition. Quantitative data,
for instance based on video recording and subsequent analysis, could provide
a better picture about this matter, but was not collected within the scope of
this empirical evaluation. Nevertheless, participants utilizing the 3D gestural
input were at times observed attempting repeatedly to successfully perform a
respective gestural command in the VE. Despite their task success rate and the
overall few contextually wrong interactions, having to attempt some gestural
commands multiple times likely contributed to the reported higher frustration.
Interestingly, despite these higher rated physical demand and frustration factors,
the 3D gestural input participants assessed their own performance still competitive
in comparison to the gamepad and physical, tracked controller conditions.

Interaction Flow Examining the flow experience results based on the collected
FKS data as presented in Figure 5.10 and Table 5.7, it appears that the participants
utilizing the physical, tracked controller felt slightly more “in the flow” compared
to the other two conditions. However, the results are only marginally apart
from each other. The physical, tracked controller users reported the best flow
experience scores when interacting in the VE, which could relate to the lower
workload compared to gamepad and 3D gestural input (see Figure 5.9).

3D gestural input users reported a slightly less smooth automatized process
interacting in the VE. This arguably relates to the previously discussed frustration
of having to attempt some gestural commands multiple times, disrupting their
flow experience. In regard to the users’ ability to absorb, the physical, tracked
controller condition ranks first, followed by 3D gestural input, and gamepad last.

4Note that the effort TLX factor is not directly comparable with “effort” as defined in the ISO
9241-9 questionnaire, i.e., mental and physical (TLX) versus physical only (ISO).
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Potentially, the visual representation of the input technology in the VE may have
had an impact on these results, and should thus be taken into consideration.
Since humans primarily use their visual senses under normal circumstances,
the translation of their own movements, visually appropriately presented in the
VE as in the cases of the physical, tracked controller and the 3D gestural input
conditions, may have affected their perceived feeling of being absorbed in the
computer-generated 3D space.

5.3.5.2 Immersive Data Exploration
The participants were tasked to identify two data items according to certain
criteria (see Section 5.3.3.3). Independent of their data analysis and exploration
strategy, the majority of the participants were able to identify not just one but two
suitable answers, while only three of the 24 participants identified one data item
that was just outside the range of pre-determined answers (see Section 5.3.4.2).
Based on the provided dataset and task, the results indicate that the developed
first VE iteration can be used for immersive data analysis and exploration,
resembling a unified interface for data from multiple sources. Utilizing the
provided features and displayed information in the VE, the participants were
able to successfully solve a typical explorative data analysis task related to the
dataset. This is particular encouraging in regard to the further development of
visualization and interaction mechanisms as well as with respect to the display
and exploration of other datasets in such a VE. Considering the overall positive
response, enthusiasm, and ideas for future features from the participants in the
evaluation, the presented VE iteration appears to be an exciting and fun approach
to explore data in a computer-generated 3D virtual space.

It is also noteworthy that none of the participants quit or paused their
immersion in the VE during their study session. On the contrary, twelve of the
24 participants actively acknowledged their overall experience as pleasant. This
indicates the overall appeal of the VE iteration’s visualization and interaction
design. Both were, to a certain extent at this stage, held purposefully minimalistic
and clear. Yet, the participants were able to interpret and make meaning of the
data, as indicated by the successful task completion results. The implemented
target-based travel mechanism of the provided travel and selection feature
anchored the participants to one specific data entity at all times, preventing them
from straying off into the empty 3D space. This has arguably two advantages.
First, it focuses the user on the data, in particular one specific data item in the
dataset, represented in the format of a sphere with its complementary information
panels as details-on-demand. Thus, the user’s attention is usually set on that data
item, from where they can further explore and take the next steps in their analysis.
Second, the target-based travel, implemented as automatic transition in linear
motion from data entity to data entity, was perceived as pleasant, demonstrating
that this type of movement technique in the VE worked well within the presented
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context. This is also supported by the overall low experienced VR sickness (see
Table 5.6), particularly as the travel feature was one of the most frequently used
actions the participants performed in the VE.

The visualization of the participants’ pathways was particularly interesting,
illustrating their step-by-step travels in the VE, representing their data entity
exploration over time to solve the given task (see Figure 5.13). Although it was
explained to them that time is not an important factor, encouraging them to
analyze the data at their own pace and strategy, different participants ended up
following different approaches. As the pathway visualizations clearly illustrate,
some participants appeared ambitious to solve the task quickly, and thus only
explored minimal aspects of the data. Other participants took more time and
efforts to find a suitable solution. Some participants even explored the data to
a great extent, appearing very adamant on finding the best possible solution,
illustrating the general pleasantness of the VE. At the same time, those of them
that explored the data to a more minimal extent seemed to be satisfied with
their performance and exploration as well. With no given time limitation for
the task completion, the exploratory analysis approaches of the participants is
arguably dependent on multiple individual factors, such as their familiarity with
the displayed data, their eagerness to gain new insights, or simply their mood,
illustrating that users have their individual ambitions and task solving strategies.

Overall, based on the results of the empirical evaluation, the visualization
and interaction design as well as the composition of this first VE iteration can
be considered satisfactory, allowing a user to explore data utilizing immersive
display and interaction technologies, even enabling them to come up and apply
their own data analysis strategies. The results and the data-agnostic ability of
the VE to display other datasets, as long as the data are transformed according
to the respective Data Structure Reference Model as introduced in Section 4.2.1,
encourage the utilization of the presented immersive data analysis environment
in other contexts and scenarios. Under consideration of the presented results
and discussion within the scope of this first VE iteration, it is possible to regard
(1) the overall technological feasibility of utilizing off-the-shelf hardware and
software technologies for the development of an immersive data analysis system
using a VR approach as validated, and (2) the users’ ability to make use of that
system in order to explore data and successfully solve related tasks as validated.

5.3.5.3 Hypotheses Assessment
In regard to the investigation of the overall suitability of 3D gestural input
in comparison to other input modalities for the respective interaction in an
immersive data analysis environment, the presented empirical evaluation was
centered around two hypotheses (see Section 5.3.3). The hypotheses focus on
aspects of the input device’s visual representation in the VE and its physicality.
Based on the evaluation results, the hypotheses can be answered as follows.



�.�. VE ITERATION �� DATA ANALYSIS USING SPHERES 127

H1: A visual representation tied to the input technology in the VE will
have a positive impact on user experience and behavior. The physical,
tracked controller scored the most positive results in regard to the TLX (lowest
workload), arguably followed by the 3D gestural input (high physical demand and
frustration, but good own performance), and then gamepad (high mental demand
and effort). With respect to the reported workload assessments, this supports
the H1 hypothesis, as both the physical, tracked controller and 3D gestural
input conditions feature a visual representation tied to the input technology.
The physical, tracked controller arguably scored also better with respect to the
interaction flow (FKS). Particularly with an emphasis on the users’ ability to
absorb and the overall flow experience, the same ranking as with the TLX can be
observed, similarly supporting this hypothesis.

H2: A physical controller tied to the input technology in the VE will have
a negative impact on user experience and behavior. Considering that 3D
gestural input, in both TLX and FKS, ranks between the gamepad and physical,
tracked controller conditions, it is difficult to argue for supporting or rejecting
this hypothesis. While physical, tracked controller and gamepad participants
interacted and explored the displayed data the most during the task, based on
the amount of interactions and visited data entities, they also showed more
contextually wrong interactions compared to the 3D gestural input participants.
Prior experience with the physical controller’s button layout and respective
feature mapping is needed, as a few participants had noticeable challenges in
these aspects. This could indicate an overall less intuitive interaction approach
compared to the 3D gestural input condition, which allowed the participants to
learn and recall the implemented gestural commands rather easily.

The results of the presented input technology comparison are in line with
such findings as for instance presented by Gusai et al. (2017), indicating a slight
preference for a physical, tracked controller over 3D gestural input due to its
greater stability and accuracy. Aspects of performance and detection issues in
regard to the Leap Motion Controller have been reported in the past, favoring the
more stable sensory tracking of the HTC Vive system in comparison (Caggianese
et al., 2018). Arguably, even though the reported hand posture and gestural
command detection of the Leap Motion Controller led to a certain frustration
with the participants in the presented VE evaluation, it interestingly seemed
not to have led to a drastic decrease in their experienced interaction flow (see
Figures 5.9 and 5.10) within the context of an exploratory data analysis task
with no time limitations. It is interesting to observe that although users preform
measurably better overall under one condition (HTC Vive), they still subjectively
prefer another one (Leap Motion) for certain tasks, as reported by Figueiredo
et al. (2018). Although presenting mostly qualitative results and subjective
impressions, the findings by Streppel et al. (2018) are in line with the results of
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this first VE iteration, indicating a generally similar acceptance for both physical,
tracked controller and 3D gestural input, utilizing the HTC Vive and Leap Motion
Controller respectively, for the purpose of interacting in an immersive data
analysis environment. Furthermore, one would arguably assume that the 3D
gestural input and physical, tracked controller conditions are much more suited
for the interaction in the VE due to their 3D spatial tracking capabilities and visual
representation. Examining the overall results of all three input technologies, the
comparatively close scores of the gamepad condition can be explained due to the
general wide acceptance and familiarity with such devices (Lepouras, 2018).

Overall, based on the presented results and discussion, the choice of input
technology was not decisive on the immersive data analysis activity considering
various aspects such as workload, interaction flow, VR sickness, and task perfor-
mance. However, some interesting trends could be highlighted throughout the
discussion, for instance the indication of a preference in favor of an input device’s
visual representation in the VE, but not a clear trend towards the utilization
of physical controllers within the presented IA context. As such, 3D gestural
input, as one of the three conditions, can be considered suitable as an input
modality to enable user interaction in immersive data analysis environments.
Improved sensory tracking and input interpretation capabilities of 3D gestural
input technologies, enabling a more robust hand posture and gesture detection,
could arguably minimize experienced user frustration in the VE. At the same
time, the implemented gestural commands appeared to be generally suitable for
the utilization of the various features in the VE, and were overall swiftly learned
by the participants.

5.4 VE Iteration 2: Data Analysis Using Stacked
Cuboids

The design, development, and evaluation of the first VE iteration as described
throughout Section 5.3 served as an important validation with respect to the
presented immersive data analysis concept in general. While the first VE iteration
focused on the analysis of a multivariate dataset in general, and among others with
respect to spatial data variables, the objective with the design and development
of the second VE iteration is to advance the immersive data analysis activity to
support temporal contexts. Thus, two aspects are of main interest within the scope
of the second VE iteration. First, how can the data entity visualization design
be adapted to visually encode temporal data variables at a respective (spatial)
location? And second, based on the updated data entity visualization design,
what interactive features are required to support and facilitate the interaction
with such temporal data visualizations, and thus support the interaction with
spatio-temporal datasets in the VE?
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Dataset: Nordic Tweet Stream (NTS) The main data context within the scope
of the second VE iteration is centered around the Nordic Tweet Stream (NTS)
dataset, a dynamic corpus of real-world Twitter messages (Laitinen et al., 2018).
Besides the actual content of a tweet, usually in format of a text message, various
metadata are attached, such as the geolocation from where a tweet was published
and a language classifier of the tweet. Over 50 metadata variables for each
tweet exist in the NTS, and thus qualifying it as a multivariate dataset. More
specifically, the NTS corpus only includes tweets with an identified geolocation
that originates in one of the five Nordic countries (Denmark, Finland, Iceland,
Norway, and Sweden). As it is an ongoing project, new data items (tweets) are
constantly captured and added to the dataset. The partial NTS dataset used
within the scope of this thesis consists of overall 11.657.987 tweets, collected
within the time period from November 6th, 2016, to February 26th, 2018. The
number of tweets per day averages to 26.139. 1.452 unique locations and 188
unique languages (determined by each tweet’s lang metadata value) have been
identified.5 The coordinates for each location are described as a rectangular
bounding box, and the centroid geolocation coordinate as latitude and longitude
for each rectangle was calculated.6 Using these unique coordinates for each
location, it is possible to bundle locations into clusters. In particular, using the
R package leaderCluster,7 the 1.452 unique locations were compiled into a total
of 316 clusters with a radius of 60 km (utilizing the haversine distance metric).
Through the additional utilization of a lookup table, containing each unique
place and its assigned cluster, it is possible to allocate and aggregate the tweets
that were published from each place and also represent the location clusters
using their centroid latitude and longitude attributes. Due to the diversity of
the different metadata attributes of each data item in the NTS dataset, various
possibilities for data analysis arise. For instance, the analysis of tweets from a
sociolinguistic perspective with respect to geolocation and language over time,
i.e., a spatio-temporal context, is of particular relevance and interest to language
researchers (Tyrkkö et al., 2021; Laitinen et al., 2018).

5.4.1 Visualization Design and VE Composition

Compared to the overall sphere approach in the first VE iteration, the data entity
visualization design of the second VE iteration is centered around the concept
and format of a Stacked Cuboid, as conceptually illustrated in Figure 5.14. Similar
to the visualization approach of a stacked bar chart in 2D, a stacked cuboid can be

5The vast majority of tweets originated from the major urban areas through the Nordic region,
and only in a small subset of these unique languages.

6This was done for all the unique locations, and to accommodate the fact that not every tweet in
the corpus contained an exact latitude and longitude coordinate pair.

7Taylor B. Arnold. leaderCluster: Leader Clustering Algorithm. Retrieved June 1, 2022, from
https://cran.r-project.org/web/packages/leaderCluster/index.html

https://cran.r-project.org/web/packages/leaderCluster/index.html
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Figure 5.14: Stacked Cuboid visualization design of the second VE iteration.

regarded as its extension into the 3D space. It is composed of multiple different
cuboids (or layers in 2D), where each cuboid may be associated with, and thus
used to visually represent, a comparable data variable of the respective data item.
Consequently, the individual cuboids of a stacked cuboid may vary in size and
color, providing indications about the mapped data variables that the user can
visually observe to detect patterns and data entities of interest that are worth of
further exploration. Thus, the data entity itself can be used to make observations
and infer first insights without the need to display further details. Within the
presented context of spatio-temporal data visualization, stacked cuboids are
utilized in the second VE iteration as follows. Similar to the approach in the
first VE iteration, each stacked cuboid can be placed in the VE in accordance
to a data item’s geolocation values. Furthermore, the size and color of each
cuboid is configured to represent individual comparable data variables for a
given time domain relevant for the dataset. In the practical case of the NTS
dataset, each data entity presents a cluster of tweets, where each tweet originated
in close proximity to the identified cluster’s geolocation on a per week basis. Each
data entity consists of four cuboids, where the top three represent, in order, the
amount of tweets of the three most frequently used languages, while the fourth
one contains the remaining. All the individual cuboids are scaled in height,
based on the amount of tweets they represent, and are color-coded, for instance
yellow to represent the Swedish language. The overall height of each data entity
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is scaled logarithmically8 to reflect the total amount of tweets, and thus providing
an indication of the overall Twitter traffic. Thus, data entities with a high amount
of Twitter traffic appear as taller stacked cuboids, while those with a low amount
appear shorter. By utilizing the described approach to visualize the NTS dataset,
the immersed user can obtain a visual impression of the Twitter social network
activity according to location and language variability for a determined temporal
context by looking around within the virtual 3D space. Due to the uniform color
coding of the languages as well as the height scaling of tweet numbers, it is
possible, among others, to spot data entities that are visually distinct compared
to others, and are thus potentially interesting for further investigation.

To display more detailed information about a data entity in the VE (REQ 9 in
Table 4.1), the same approach of utilizing a composite of three information panels
is used as in the first VE iteration (see Section 5.3.1). In particular, the center
panel features a detailed listing about the language distribution of the selected
data entity, i.e., language name and its assigned color, share in percentage, and
number of tweets. The right panel displays all unique location names contained
within the respective data entity, i.e., the cluster of tweets. The left panel provides
additional information, also in a listing format, among others, the total number
of tweets and the selected time (REQ 11 in Table 4.1).

The second VE iteration features generally the same virtual floor setup, using
a grid of solid and dashed lines as described in the first iteration (see Section 5.3.1).
However, in alignment with the presented NTS dataset, and to provide visual
guidance in the format of navigation and orientation cues to the immersed user
as they move around and explore the data, the virtual floor additionally features
the five Nordic countries rendered as color-coded extruded surfaces on the floor
(REQ 11 in Table 4.1). The individual data entities are virtually placed at their
appropriate locations on the virtual floor, enabling the user to get an overview
about the data, particularly the more distance ones. However, with ergonomic
considerations in mind, it would be rather cumbersome for the user in the VE
to physically reach down on the virtual floor in order to select a data entity in
close proximity. To address this matter, a mechanism is implemented in the
VE that automatically lifts data entities in close proximity to the user’s chest
height. This mechanism aims to facilitate closer examination and interaction
with each data entity, without losing the desired general perspective offered by
neighbouring data entities. While a data entity may be raised for such facilitated
ergonomic interaction, its shadow is projected on the virtual floor to maintain
a visual indication of its exact location. This is particularly important for those
that are located in border regions, for instance close to both Norway and Sweden.
While one could argue that the list of unique real-world place names in the right

8A logarithmic scale has been chosen in order to deal with the wide range of tweet frequencies
within the different clusters of this dataset, as more populated areas may show several thousand
tweets per day, while clusters in rural areas rarely show more than single- or double-digits.
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information panel provides enough indications in regard to whether or not the
cluster is located in one country or the other, it is also important to keep novice
users in mind. They might be unfamiliar with the dataset or context, and in turn
wish to use the VE to learn about the dataset and its characteristics. Therefore, it
is arguably important to provide a range of features and visual indications that
facilitate the immersive data analysis activity.

5.4.2 Interaction Design
Aligned with the stacked cuboid visualization approach as described in Sec-
tion 5.4.1, the VE provides several interactive features under utilization of 3D
gestural input as exclusive input modality. Table 5.8 provides an overview of
these features, their analysis task and interaction technique classifications, as well
as describing how the interaction is performed in the VE using the 3D gestural
input. Figure 5.15 illustrates the interactive features from the user’s field of view
in the VE. The remainder of this section provides additional descriptions about
the implemented features.

Travel and Select The mechanisms that allow the user to travel and select data
entities in the VE generally follow the same interaction concepts as implemented
in the first VE iteration (see Section 5.4.2). In particular, two options are provided
in the VE. Using select-through-touch the user can approach a data entity in close
proximity by walking up to it and then simply touching it (REQ 7 in Table 4.1).
Although the immersed user is theoretically able to walk near infinitely within
the virtual space, the physical real-world boundaries limit their actual movement,
thus requiring an alternative selection technique to select those data entities that
are located outside the VR system’s calibrated safe interaction area. Using the
multimodal select-through-point, the user can gaze at a faraway data entity to
highlight9 it, and then, using an analogy of “I want to go there”, make a point
forward hand posture to initiate a target-based travel transition to the indicated
data entity (REQ 8 in Table 4.1). Adopting the gaze-based interaction principle of
gaze suggests, touch confirms as discussed by Stellmach and Dachselt (2012), this
select-through-point mechanism implements the principle of gaze suggests, point
confirms. Once the user arrived at their destination, the exploration of the new
close-proximity data entities can continue. The selected data entity, i.e., the
selected stacked cuboid, distinguishes itself from all others by featuring a red
wireframe outline as opposed to a black one (REQ 12 in Table 4.1).

Information Panels The display of the three information panels as details-on-
demand (REQ 9 in Table 4.1) follow generally a similar concept as implemented
in the first VE iteration (see Section 5.4.2). The user in the VE may display and
hide these panels by performing a “thumbs up” hand posture (thumb pointing

9A highlighted stacked cuboid is temporarily increased in its size (scale) to provide a preview as
far away nodes appear smaller.



�.�. VE ITERATION �� DATA ANALYSIS USING STACKED CUBOIDS 133

upwards, fingers not extended) with their right hand. The three information
panels feature the same arrangement and are also anchored in accordance to
the user’s head position and rotation at the time of display initiation. However,
compared to the first VE iteration and based on some of the received feedback,
travel and select mechanisms continue to be available while the information
panels are displayed. This enables the user to quickly switch between displaying
details-on-demand for data entities in close proximity without the need to first
dismiss and hide information panels, as these are automatically updated upon
data entity selection. In case of a travel operation to a faraway data entity, the VE
automatically dismisses the information panels.

Time Event Selection A stacked cuboid represents comparable data variables
of a data item for a specific time domain and at their respective location. For
instance, in the case of the NTS dataset, the data has been preprocessed for
visualization in the VE on a per week basis with respect to the temporal context.
Consequently, a mechanism to allow the user to change the temporal context
and thus to explore the dataset with respect to its temporal characteristics is
required (REQ 13 in Table 4.1). For this purpose, the VE provides an adapted 2D
graphical menu (LaViola, Jr. et al., 2017, Chapter 9.5), attached and juxtaposed
to the user’s left hand, enabling them to adjust the currently select temporal
context for all data entities. In particular, the hand menu features two virtual
buttons, i.e., the right button moves the temporal context one step forward,
while the left button moves it one step backward. In case of the NTS dataset,
this enables to user to move step-wise to the next week, and to the previous
one respectively. Additionally, the hand menu also features a textual label that
displays the currently selected temporal context (REQ 11 in Table 4.1). With
respect to its invocation and availability characteristics (Dachselt and Hübner,
2007), the display of the menu is user-dependent, only appearing when the
user’s left hand palm is facing towards them, and can be invoked freely at any
given point in time during the data analysis activity, allowing the user to change
the temporal context in the VE at any time. With a selected data entity and
the displayed information panels, the changes in the data item’s data variable
values can be observed in the center panel. With the hidden panels, the user
can instead focus on the observation of how the data entities, i.e., the stacked
cuboids, visually change throughout the various locations in the VE.
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Figure 5.15: Impressions of the various features (see Table 5.8) available in the
second VE iteration, from the immersed user’s field of view, and utilizing the 3D
gestural input modality.
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ID When What n Participants

A May 2018 lab experiment 7 first-year linguistics students
B May 2018 demonstration 26 linguistics researchers at ICAME 39
C Nov 2018 demonstration 11 attendees at LNU Big Data 4
D May 2019 lab experiment 15 first-year linguistics students
E May 2019 demonstration 26 researchers at ADDA 2
F Dec 2019 demonstration 12 attendees at LNU Big Data 5

Table 5.9: Overview of the various lab experiments and hands-on demonstrations,
allowing participants to operate the second VE iteration. The students in A and D
were enrolled in the Sociolinguistics module of the English language B.A. program
at Linnæus University. Notes: An initial work-in-progress prototype of the
developed VE as presented in A and B featured a physical, tracked controller as
input modality, based on the HTC Vive, similar as implemented in the first VE
iteration (see Section 5.3.2). The VE presented in C–F utilized the 3D gestural
input modality as described throughout Section 5.4.2. D is included here as part
of the collaborative system evaluation, and described in detail in Section 6.3.3 as
part of Chapter 6. The attendees at the LNU Big Data conferences were comprised
of students, researchers, and practitioners.

5.4.3 Case Study: Linguistics

At multiple instances throughout the development of the second VE iteration the
immersive data analysis environment was presented to the respective target group
of linguists in the format of lab experiments with students as well as hands-on
demonstrations with both students, researchers, and practitioners (see Table 5.9).
These served as an opportunity to gather empirical feedback in regard to the
visualization and interaction design as well as with respect to the comparatively
novel approach of exploring Twitter data from a sociolinguistic perspective in
an immersive VE. In contrast to the interpretation of static visualizations with a
predetermined view on the data, the immersive VE enables linguists to be placed
in-situ into a virtual landscape that they recognize, and are free to explore places
of interest in the 3D space, to extract insights. Naturally, the NTS dataset and its
exploration from a sociolinguistic perspective, as introduced in Section 5.4, served
as the foundational scenario for the experiments and demonstrations. Users were
able to explore the Twitter traffic with respect to the distribution of the main
Nordic languages (Danish, Finnish, Icelandic, Norwegian, and Swedish) and
English across the Nordic region (spatial) and over time (temporal). Figure 5.16
provides some impressions of various participants engaging with the developed
second VE iteration during the public demonstrations.

Within the scope of the various hands-on demonstrations, the overall objective
was to gather feedback and thoughts from the linguistics researchers as experts.
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Figure 5.16: Immersed participants trying hands-on the second VE iteration at
various public demonstrations, i.e., at The 39th Annual Conference of the International
Computer Archive for Modern and Medieval English (ICAME 39 in 2018), The 2nd
International Conference: Approaches to Digital Discourse Analysis (ADDA 2 in 2019),
and The 4th and 5th Big Data Conference at Linnæus University (LNU Big Data 4
and 5 in 2018 and 2019).
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The first lab experiment (see Table 5.9 A) was organized as a small pilot study
to collect feedback directly from linguistics students. Additional feedback from
linguistics students was acquired within the scope an empirical evaluation (see
Table 5.9 D) that involved the presented second VE iteration and the stacked
cuboid visualization approach in a collaborative data analysis setting. The
students were introduced to the concept of multilingualism as part of the course
work before the respective lab experiments. Naturally, throughout all experiments
and demonstrations, the participants were briefly introduced to the data context as
well as the VE and its features, allowing them thereafter to immerse themselves in
the data analysis environment. This enabled them to provide hands-on feedback
as they were interacting in the VE,10 and of course post-VE immersion, continuing
their conversation with the respective researchers.

As a practical task reference, the participants were generally encouraged to
explore the “data landscape” freely to identify a location that seemed of interest
to them. Additionally, a second alternative task was posed to the participants in
some instances, asking them to identify regional patterns, for instance analyzing
the distribution of English in Nordic tweets or examining where people tweet
most in a specific language. It was interesting to observe that similar data
exploration strategies emerged as observed in the evaluation of the first VE
iteration (see Section 5.3.5.2). Some would travel from data entity to data entity,
guided by the temporal data encoded directly in the stacked cuboid, previewing
the most dominant languages at a location. Naturally, locations with many tweets,
indicated by an increased height in the VE compared to stacked cuboids with
fewer tweets, often caught the participants’ attention. At the same time, they
were also able to detect anomalies, for instance a location that featured a different
dominant language compared to most of the others in their spatial surroundings.
Some participants initiated their data exploration by first moving to a peripheral
location, allowing them to get an overview by having most of the data entities
in their field of view, followed by a subsequent point of interest identification.
However, there were also participants that utilized previous knowledge or a
personal connection to a location to guide their data analysis. For instance, they
either traveled to a location they knew would be interesting based on existing
background information, such as the demographics in a specific region, or
attempted to find a specific data entity that included data about the place where
they grew up, to name just two examples. Seemingly, most of the participants
attempted first to find an interesting location based on the selected temporal
context at the start of their data analysis activity, and only engaged with the
time event selection feature in-situ when they were at an interesting location,
already examining details-on-demand. The utilization of the time event selection,
globally changing all data entities in the VE, with the objective to identify an

10To provide a general reference, most of the participants spent 10 to 15 minutes in the VE,
independent of lab experiment or demonstration. The exact duration was not measured.
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interesting location to begin with, was a mechanism the participants made use
of as they became more familiar in the VE later during their data analysis
activity. Even though they were visually immersed in the virtual 3D space, their
interactions generally led to enthusiastic conversations with the researchers, and
other bystanders in case of the public demonstrations, speculating about possible
reasons behind the observed phenomena.

None of the participants had prior experiences with the developed VE iteration.
In fact, only few of them had even tried VR technologies beforehand. Nonetheless,
all of the participants were able to learn the 3D UI and adopt the features provided
in the VE comparatively swiftly – naturally some slightly quicker than others.
Furthermore, all of them were able to make meaningful assessments. In the case
of the students, their assessments were adequate with respect to what is expected
of them at that stage in their education according to a respective expert, i.e., a
professor of English linguistics.

The participants were generally able to orient themselves in the Nordic region,
based on the Nordic countries that were displayed as color-coded extruded
surfaces on the virtual floor (see Section 5.4.1). Nevertheless, some of them
thought that it would be worth considering to have additional landmarks on
the map for further guidance, for instance with respect to the capital cities. The
participants were able to quickly understand the visualization concept of the
stacked cuboids. Arguably to be expected, some of the participants commented
that it would be interesting to read the actual tweets while being immersed in
the VE as part of the displayed interface. During their interaction in the VE,
particularly when inspecting the data presented in the information panels, several
participants became confused with the language entry Unknown. In these cases,
the researchers explained that such a language classification in the NTS dataset is
commonly related to tweets that only contain a hyperlink or multimedia content.
Some of the participants also observed and actively discussed the distributional
differences in the amounts of tweets from region to region that appeared to vary
significantly between different time event (week) selections. Such observations
were particularly made for regions with a comparatively low population in
general.

5.4.4 Use Case: Swedish Election

Following the overall concept of the presented stacked cuboid data entity vi-
sualization and interaction design of the second VE iteration as presented in
Sections 5.4.1 and 5.4.2, a proof-of-concept prototype was developed with two
intentions in mind. First, the presented immersive data analysis environment
is demonstrated in the context of a dataset and scenario that differs from the
NTS one, which is used as the main data context through the presented second
VE iteration. And second, to illustrate the overall data-agnostic capabilities of
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the developed system (REQ 5 in Table 4.1), enabling the display of data across
various contexts with comparatively minimal additional implementation efforts.

Inspired by the election data context used in the first VE iteration, the
developed proof-of-concept prototype is centered around the immersive data
analysis of the Swedish parliament (Sveriges riksdag) election results. The election
results for each political party on a per municipality basis for the parliament
elections in the years of 2010, 2014, and 2018 are provided by the Swedish Election
Authority.11 Additional information about all the municipalities in Sweden are
available through Statistics Sweden.12 Based on these two data sources, a dataset
was compiled under consideration of the system architecture’s data structure
reference model (see Section 4.2.1). Importing the dataset into the developed
second VE iteration, it is possible for the immersed user to explore the election
results in regard to the various municipalities (spatial) and across the three
included election years (temporal).

Figure 5.17 provides some impressions of the presented use case. Compared
to the NTS main data context and VE composition as described in Section 5.4.1,
the Swedish election use case features a VE composition as follows. All 290 mu-
nicipalities are displayed as as colored extruded surfaces on the virtual floor. The
brightness of a municipality’s color encodes the respective voter participation, i.e.,
a brighter color value represents high voter participation, and a lower brightness
low voter participation. Each stacked cuboid data entity visualization represents
an individual municipality, placed accordingly at the respective centroid of an
extruded surface. Each stacked cuboid is composed of four cuboids, i.e., the
three top ones representing, in order, those political parties that received the
most votes, and the forth cuboid accumulating the share of all remaining parties.
The immersed user can display details-on-demand in the format of the three
information panels. The center panel features a detailed listing about the voting
results distribution of the selected municipality, i.e., political party name, assigned
color coding, voting results in percentage, and absolute received voting numbers.
The left panel displays more detailed information about the municipality within
the context of the election, among others the total numbers of valid votes, the
total numbers of votes, the total number of eligible voters, and the final voter
participation in percentage. The right panel displays some information about
the use case and the utilized data sources. Interaction in the VE is possible as
described in Section 5.4.2. The immersed user can travel around in the 3D space,
make selections, display details-on-demand, and change the temporal context by
selecting a new time event with respect to the three available election years.

11Valmyndigheten. Valresultat. Retrieved June 1, 2022, from https://www.val.se/valresultat.h
tml

12Statistikmyndigheten SCB. Digitala gränser. Retrieved June 1, 2022, from https://www.scb.se
/hitta-statistik/regional-statistik-och-kartor/regionala-indelningar/digitala-granse
r/

https://www.val.se/valresultat.html
https://www.val.se/valresultat.html
https://www.scb.se/hitta-statistik/regional-statistik-och-kartor/regionala-indelningar/digitala-granser/
https://www.scb.se/hitta-statistik/regional-statistik-och-kartor/regionala-indelningar/digitala-granser/
https://www.scb.se/hitta-statistik/regional-statistik-och-kartor/regionala-indelningar/digitala-granser/
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Figure 5.17: Impressions of the second VE iteration, demonstrating the immersive
data analysis use case for the Swedish Election. Top: The VE composition, from an
angled top down view to provide an overall impression. Middle: The immersed
user’s field of view during an overview-like spatial exploration. Bottom: The
immersed user’s field of view during a details-on-demand temporal exploration
with the data entity selected that represents Söderköping Municipality, displaying
the information panels and the time event selection hand menu.
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5.4.5 Discussion

The response from the participants in regard to the presented second VE iteration
was overall very positive, with several of them stating that the immersion allowed
them to experience the displayed data in a subjectively “real” and memorable
manner. The majority of the positive feedback from the students, researchers,
and practitioners was related on the immersive characteristics of the VE, enabling
them to focus their attention on the displayed data – due to the nature of the
involved technologies, arguably even requiring them to do so. Compared to a
visualization shown on a TV, projected against the wall, or printed in a book, the
immersive data visualization cannot just be casually glanced over or looked at
quickly. Based on the hands-on experiences of the students, it appears that such
an immersive data analysis approach can be a particularly useful teaching tool,
allowing the students themselves to discover relations and patterns in the data in
an interactive and engaging way.

Compared to the first VE iteration as presented in Section 5.3, the second one
utilized a stacked cuboid visualization design to encode temporal information
directly in the data entity, allowing for spatio-temporal data analysis in the VE.
In that regard, it was particularly interesting to observe how the participants
explored the temporal data context and utilized the respective time selection
feature. The majority started their data analysis under consideration of the spatial
context first, and engaged more deeply with the temporal contextual exploration
only later in their activity. Arguably, a spatial location, i.e., a data entity in the
VE, provided them with an important reference point at the start of the data
analysis. Such a reoccurring data analysis behavior is something to take into
consideration, especially with respect to the design of a VE. For instance, what
changes could be made to the VE design to facilitate the user’s ability to first
analyze the displayed data in regard to a temporal context, and only afterwards
with respect to the spatial data variables? The time event encoding and related
interactive features worked well in general. However, the immersed users also
noticed that it was somewhat difficult for them to get an overview about the
temporal data context, for instance in regard to their ability to identify trends over
time. In the case of the presented NTS dataset and the sociolinguistic analysis
scenario, such diachronic trends can be of particular interest to the linguists. In
that regard, the visual encoding of only a single time event in a data entity was
not sufficient enough for the participants to properly grasp the overall trend of a
data variable over time at a specific location.

Some of the researcher participants at the demonstrations also expressed a
desire to take notes or read textual data, such as respective tweets, directly in the
VE. According to them, the inability to do so could limit certain research tasks.
The export of their findings for use after the immersive data analysis activity
seemed of particular importance and interest to them, allowing the researcher to
continue their data analysis workflow using other tools and methods.
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To summarize, the positive and constructive empirical feedback, obtained
from various linguistics researchers and students with respect to the developed
second VE iteration, highlights the overall potential that VR-based tools can offer
to data-rich disciplines in the humanities. Immersive display and interaction
technologies may support and facilitate data analysis as part of the workflow
alongside other non-immersive programming environments and statistical tools.
Particularly with respect to the visual stimuli, explorative data analysis in an
immersive VE can provide important impulses to detect patterns and points
of interest in the data that can guide and inform the subsequent data analysis.
Furthermore, the interactive and immersive VE represents a tool that can be
utilized by students to explore large multivariate datasets that highlight linguistic
diversity in an engaging manner that is arguably often lacking in the existing tools
in corpus linguistics. As such, immersive data analysis tools have the potential to
synergize with existing tools and practices, complementing data exploration and
result visualization in the presented context.

5.5 VE Iteration 3: Data Analysis Using
3D Radar Charts

Based on the insights gained throughout the design, development, and evaluation
of the second VE iteration as described throughout Section 5.4, a third and, within
the scope of this thesis, final VE iteration was approached. The main objective of
the third VE iteration is to further advance the data analysis support with respect
to the temporal context. Compared to the second VE iteration, the third one
focuses on two aspects in particular. First, while the stacked cuboid visualization
design was used to visually encode data with respect to a single time event at a
time, the data entity visualization design in the third VE iteration should support
the encoding of a time series that consists of two or more time events. And
second, inherent from such a more complex data entity visualization design, the
support for features to accommodate interactive data analysis of the time-series
visualization should be investigated.

Dataset: Plant-Weather timelines (PWt) After the utilization of the NTS corpus
as a real-world dataset throughout the work on the second VE iteration (see
Section 5.4) and mainly used for explorative analysis tasks due to the corpus’
characteristics, a baseline dataset should aid the empirical evaluation of the work
within the scope of third VE iteration, for instance to appropriately evaluate user
performance for confirmative analysis tasks. A variety of open data sources for
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Figure 5.18: An example of the generated Plant-Weather timeline data for one
location. Each of the plant (fruit) variables is either positively or negatively
correlated to each of the two weather (sunlight and humidity) variables. Note:
Within the scope of this thesis, the plant variables are utilized in the third VE
iteration, while the weather variables are utilized in the non-immersive desktop
terminal as part of the collaborative data analysis scenario (see Section 6.4).

real-world inspiration and potential use were considered.13 Also in anticipation
of potential collaborative data analysis tasks, later described in Section 6.4 as part
of Chapter 6, a spatio-temporal dataset was needed that allowed the convenient
evaluation of the users’ data analysis activity with respect to their performance,
not just for open-ended explorative analysis tasks, but also for confirmative
analysis tasks, where they examine the dataset to confirm or reject hypotheses
that they were given beforehand (see Section 5.2). In particular, a confirmative
analysis task allows for a more direct task performance comparison among
different study sessions. Thus, a baseline or “benchmark”-like dataset was
needed that would allow to define representative analysis tasks that could be
used to asses in a comparative way the participants’ ability to complete a specific
task using the interfaces provided as part of the third VE iteration. Unfortunately,
to the best assessment, none of the referred real-world datasets would have
allowed to easily achieve this.

13(1) Global Change Data Lab. Our World in Data. Retrieved June 1, 2022, from https://ourworld
indata.org/; (2) Christopher K. Wikle, Andrew Zammit-Mangion, and Noel Cressie. Spatio-Temporal
Statistics in R. Retrieved June 1, 2022, from https://spacetimewithr.org; (3) Edzer Pebesma. Time,
Space, Spacetime in R. Retrieved June 1, 2022, from http://pebesma.staff.ifgi.de/R/Lancaste
r.html; (4) The Agency for Digital Government (DIGG). The Swedish dataportal. Retrieved June 1,
2022, from https://www.dataportal.se/en; (5) Swedish Meteorological and Hydrological Institute.
Official Website. Retrieved June 1, 2022, from https://www.smhi.se/en/

https://ourworldindata.org/
https://ourworldindata.org/
https://spacetimewithr.org
http://pebesma.staff.ifgi.de/R/Lancaster.html
http://pebesma.staff.ifgi.de/R/Lancaster.html
https://www.dataportal.se/en
https://www.smhi.se/en/
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Consequently, the correlated-timelines project, developed by Aris Alissan-
drakis,14 was utilized to create the Plant-Weather timelines (PWt) dataset for
use within the scope of the third VE iteration, i.e., a custom, representative
multivariate dataset that features artificially generated data. The data context is
held purposefully simple to understand, allowing to be as inclusive as possible
with respect to the recruitment of participants for any related empirical evalu-
ations, as no expert knowledge is required. With the focus on spatio-temporal
data, time-series data of plant and weather data variables were generated for
39 (spatial) locations, i.e., 39 countries in Europe. Each location features five
plant data variables (different types of fruits or vegetables) and two weather data
variables (sunlight and humidity). Each of these seven data variables per location
features a time series of 150 consecutive time events on a per day basis. Thus,
there is a total amount of 40.950 data variable values in the generated dataset.15

The special property of this artificially generated dataset is that each of five
plant variables features either a positive or a negative correlation to each of the two
weather variables. While the values for all of the variables are diverse across
the different locations, the correlations are coherent with a defined model, i.e.,
the correlations between the five plant and two weather variables are the same
independent of the location. Figure 5.18 presents an example of a generated
plant and weather timeline for one location. Within the scope of the the third
VE iteration as described throughout this section, the focus is on the utilization
of the five plant variables as the scenario for the immersive data analysis ac-
tivity. The contextual interplay between these and the two correlated weather
variables is relevant within the scope of the collaborative data analysis scenario
(see Section 6.4).

For each location, the two sunlight and humidity timelines were generated
using a R function.16 Each of the five plant17 timelines were generated by adding
the humidity and sunlight timelines, multiplied by the weights as dictated by the
model (either one or minus one, to indicate a positive or negative correlation re-
spectively). These timeline data were further validated to confirm the compliance
to the applied model.18

14Aris Alissandrakis. correlated-timelines. Retrieved June 1, 2022, from https://github.com/ari
salissandrakis/correlated-timelines

1539 ;>20C8>=B ⇥ 7 30C0 E0A801;4B ⇥ 150 C8<4 4E4=CB = 40.950 30C0 E0A801;4 E0;D4B

16Each timeline was generated taking into account length (number of time events), minimum and
maximum values, a regression slope, amount of noise, and a series of normal distributions that could
be added at different places along the timeline. The function output was further smoothed as a spline,
and vertically scaled and/or re-positioned. For more details, see the GitHub repository referred in
Footnote 14 and Appendix D.

17Apples, Oranges, Bananas, Berries, and Grapes for the fruits scenario; Tomatoes, Carrots, Potatoes,
Cabbages, and Lettuces for the vegetables scenario.

18Sign and value of Pearson’s correlation coefficients agreed to the defined model, and p-values
were below significance level for the majority of plant-weather pairs, allowing the model to be applied
as the base truth to measure the participants’ observations against.

https://github.com/arisalissandrakis/correlated-timelines
https://github.com/arisalissandrakis/correlated-timelines
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Figure 5.19: An example of a radar chart and its components, adapted from
Kolence and Kiviat (1973).

Radar Chart: Foundations The idea of utilizing a radar chart approach, among
others also known as Kiviat figures or star plots, for the purpose of software
unit visualization has been described in 1973 by Kolence and Kiviat (Kolence,
1973; Kolence and Kiviat, 1973). Rather than presenting values of individual
data variables perpendicular to one another, as for instance in the format of a
histogram or bar chart, they are instead radially arranged as data variable axes
(Kolence, 1973). The values for each data variable along the different adjacent
axes can then be connected by a polyline, resulting in a visually interpretable
pattern (Kolence and Kiviat, 1973). Figure 5.19 provides an example of a radar
chart and its components.

The radar chart has become an established method to visualize multivariate
data in 2D across various contexts and scenarios. Within modern 3D graphics
computing over the years however, various attempts to transfer the concept of
the original 2D radar chart into the 3D space have been made, often with the aim
to utilize the additional graphical dimension to visualize further information. A
common use case is to utilize that third additional dimension to visually encode
time events, visualizing changes in the data over time by stringing together
multiple 2D radar charts in 3D. The idea of using a 3D volumetric approach
to generate a Kiviat tube within the context of visualizing parallel computing
processes has been demonstrated by Hackstadt and Malony (1995) as well as
Heath et al. (1995). Akaishi and Okada (2004) describe their Time-tunnel approach,
a 3D presentation tool viewed through a normal computer monitor, placing
individual time-series data variables in the format of 2D line charts as data-wings
along the third dimension in radial arrangement. Individual axes can then be
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rotated and overlapped with other axes in 3D, allowing comparison between
different data variables (Akaishi and Okada, 2004). A series of different 3D axes-
based visualization approaches for temporal data contexts has also been explored
by Tominski et al. (2005), for instance as 3D Time Wheel, 3D Multi Comb as a similar
approach to the one presented by Akaishi and Okada (2004), and 3D Kiviat tube
that is inspired based on the work by Hackstadt and Malony (1995). A slightly
different approach is described by Kerren and Jusufi (2009), using the 3D space
and a fanning out metaphor to create interactive visualizations of software metrics,
allowing users to interact with the individual axes to examine the data in different
spatial configurations with the aim to overcome occlusion problems. Draper et al.
(2009) surveyed radial methods within the context of InfoVis, including star plots.
Forlines and Wittenburg (2010) explored an approach of visualizing radar charts
in 3D as Wakame, stacking 2D radar charts in 3D, creating a hollow tube-like
shape that encodes time along the third dimension. The application of temporal
radar plots within the context of VA has also been explored by Peters (2014).
Aiello et al. (2015) investigated the placement of individual 2D radar charts in the
3D space with the specific goal to highlight trends in the data variables’ values
over time. The use of 3D Kiviat plots, similar to the Wakame approach described
by Forlines and Wittenburg (2010), was extensively explored by Wang (2017) in a
scenario aimed towards fault detection and process monitoring.

Such approaches of transferring 2D visualizations into the 3D space are
promising and invite for further investigations. It is noteworthy that all the work
described throughout the previous paragraph utilized 3D graphics, but were
displayed through a non-immersive 2D visual display. Within the scope of this
thesis and the analysis of data in an immersive VE, some exciting possibilities
arise with respect to the utilization of a 3D radar chart as data entity visualization,
for instance allowing the encoding of not just one time event of the dataset,
as presented with the stacked cuboid approach in Section 5.4.1, but instead
the encoding of a time series that consists of multiple consecutive time events.
Considering the advantages that immersive technologies can provide, among
others a better spatial understanding through stereoscopic depth cues as described
in Section 2.2.1, revisit and reiteration of 3D visualization approaches and their
respective interactive features are subjects that are worth investigating further.
Consequently, the design and development of the third VE iteration for spatio-
temporal data analysis is centered around a 3D radar chart approach that is
inspired by the overall concept of visualizing data as Kiviat figures (Kolence and
Kiviat, 1973) and has similarities to the Time-tunnel approach originally presented
by Akaishi and Okada (2004).

5.5.1 Visualization Design and VE Composition
The visualization design to represent individual data entities as 3D Radar Charts in
the third VE iteration is, as previously stated, similar to the Time-tunnel approach
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Figure 5.20: 3D Radar Chart visualization design of the third VE iteration.

(Akaishi and Okada, 2004). Figure 5.20 conceptually illustrates the 3D radar chart
approach of the third VE iteration. In 3D, the vertical dimension represents the
time domain and is visualized through a black axis with start and end points.
Following the conceptual approach of radar charts in general, individual data
variables are organized as individual spokes in a radial arrangement around
the time axis, i.e., the time-series data for each data variable is visualized as
a 2D frequency polygon. The angular rotation for each spoke, or data variable
axis, is based on the overall amount of displayed data variables. As the time
axis represents the origin for each data variable axis, naturally if a data variable
value (magnitude or frequency) is closer to zero, it is located closer to the time
axis, while higher values are farther away. Each data variable axis is color-coded
and semitransparent. Such an arrangement in 3D, and facilitated through the
stereoscopic capabilities of a HMD, should allow the user to get a spatial visual
impression of the data over time. Rather than creating an occlusive 3D tube,
the visualization of each data variable axis as a semitransparent 2D frequency
polygon is intended to prevent occlusion, independent of the user’s viewpoint in
the VE. Thus, the user should be able to visually perceive, at the least, a preview
of those data variable axes that are located behind the ones that are currently in
the front. This overall visualization design is intended to provide the user with
the ability to visually detect patterns and identify time events and ranges deemed
interesting, both per individual data variable as well as in relation to all others in
a 3D radar chart.

Conceptually following the features provided throughout the first and second
VE iterations (see Section 5.3.1 and 5.4.1), the user can engage in a closer in-
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situ interaction with an individual 3D radar chart, among others to display
details-on-demand (REQ 9 in Table 4.1). In the case of the 3D radar chart
visualization, the display of details-on-demand is implemented through (1) a
2D radar chart visualization that is directly integrated into the 3D radar chart
itself, and (2) one juxtaposed information panel. In particular, the integrated
2D radar chart, subsequently referred to as time slice, is a semitransparent 2D
mesh created from the 3D vertices based on the individual values in all the
data variable axes at a given point in time. Thus, the time slice represents the
traditional interpretable pattern of a radar chart, facilitating the examination
and comparison of all data variables and their values at a specific point in time
(REQ 11 in Table 4.1). Naturally, the time slice updates its shape in accordance
to the selection of new events along the displayed time-series data of the 3D
radar chart. The vertices of the time slice are additionally highlighted as small
spheres to provide visual guidance, and are color-coded based on the respective
data variable axes. To provide textual and numerical information about the data
using the 3D radar chart visualization design, the VE displays a complementary
information panel that is juxtaposed to the time slice. This approach is similar to
the information panels utilized in the first and second VE iterations, but differs
in a few aspects. Arguably most noticeably, it consists of only one information
panel instead of three. Furthermore, rather than aligning it with the user’s head
position and rotation in the VE upon display, it is anchored next to the time
slice of a 3D radar chart. Once the position of the time slice is updated along
the 3D radar chart’s vertical time axis, the position of the information panel is
updated accordingly. As for the composition of the information panel’s contents,
it features a traditional 2D radar chart presentation of the currently selected
time event (REQ 11 in Table 4.1). Each data variable axis displays a caption that
consists of the axis’ respective color coding as well as the data variable’s name
and value. Additionally to the 2D mesh representing the current time event, the
information panel displays a radar chart outline that represents the calculated
average values across the data variables for the entire time series.

Based on the presented data entity visualization design as 3D radar charts,
the composition of the VE follows generally the same approach as presented
in the second VE iteration (see Section 5.4.1). The grid on the virtual floor
remains to indicate the immersed user’s safe interaction area and its boundaries.
Additionally, the floor is populated with the respective visual representation of
geographic features that are relevant within the context of the dataset (REQ 11
in Table 4.1). For instance, in case of the presented PWt dataset, not just the
Nordic countries are displayed as extruded surfaces on the virtual floor, but the
majority of countries across the European landmass. Individual 3D radar charts
are placed in accordance to their geolocation in the VE with the time axis at the
respective center, floating 40 cm above the floor, and casting a shadow indicating
its exact location. The technological implementation of the 3D radar chart (see
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Appendix B) enables various options for configuration. For instance, the vertical
length (or height) can be predetermined and set to a static value independent
of the amount of displayed time events. Alternatively, that length may also be
dynamically derived from the amount of displayed time events and based on
a fixed distance descriptor that specifies the vertical distance between two time
events in the data variable axis. Throughout the application of the 3D radar
charts within the scope of this thesis and the presented empirical evaluations,
unless otherwise noted, the 3D radar charts have been configured to feature a
fixed vertical length that corresponds to 100 cm. Thus, a 3D radar chart’s top is
located approximately in the upper chest region, depending on the height of the
user and their position in the VE. Through the encoding of the time-series data
directly in the 3D radar chart as described throughout this section, it is possible
to simultaneously display many temporal data values in the VE. A detailed
example for this is described as part of the VE setup of the second evaluation (see
Section 5.5.5), displaying 39 3D radar charts, each with five data variable axes
that are composed of 150 time events, resulting in a total of 29.250 time event
data values displayed in the VE.

5.5.2 Interaction Design
To facilitate the analysis of spatio-temporal data in an immersive VE, and aligned
with the 3D radar chart visualization design presented in Section 5.5.1, various
interactive features are available in the VE. Following a prototypical approach as
well as naturally considering the various theoretical aspects (see Sections 2.2.4
and 5.2) and the obtained insights from the first and second VE iterations, several
features to interact with 3D radar charts via 3D gestural input were designed.

Naturally, during the immersive data analysis activity, the user is arguably
going to perform certain tasks more frequently than others. This requires
to keep in mind hand comfort recommendations, for instance as reported by
Rempel et al. (2014), to avoid the use of uncomfortable hand configurations
for anticipated frequent interactions. Assuming a general VE composition as
described in Section 5.5.1, i.e., the VE being populated with various data entities,
each representing different time-series data according to their respective location,
a travel feature as presented in the first and second VE iterations remains necessary
to enable user movement beyond the physical space limitations of the VR system’s
calibrated safe interaction area. Consequently, the virtual 3D space can be utilized
in order to allow the user to explore the data in a more overview-like manner
(Shneiderman, 1996), conceptually similar to walking among the data (Ivanov et al.,
2019; Streppel et al., 2018). Naturally, when discovering something of interest,
the user is expected to engage in-situ with the data to display details-on-demand
(Shneiderman, 1996), thus entering a closer contextual interaction (Nehaniv et al.,
2005). At this stage, the user is expected to select time events and time ranges as
well as to potentially reconfigure (sort) the order and filter out individual data
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variables. Besides these envisioned frequent tasks, the user may also use other,
arguably, more infrequent ones, such as to zoom in and out of the temporal data
context or to reset any prior interactions and manipulations with a 3D radar chart.

Table 5.10 provides a comprehensive overview of these features and their
descriptions, the analysis task and interaction technique classifications, as well
as with respect to hand posture comfort based on the assessments provided by
Rempel et al. (2014). Figures 5.21, 5.22, and 5.23 provide an overview of the
implemented interactive features from the user’s field of view in the VE. Addition-
ally, Figure 5.24 illustrates the applied hand posture comfort configurations. The
remainder of this section provides detailed descriptions about the implemented
interactive features within the scope of the third VE iteration.

Travel To virtually move around to data entities outside the immersed user’s
safe interaction area, the same multimodal approach of gaze-based input and
gestural command is followed as in the prior VE iterations (REQ 8 and REQ 12
in Table 4.1). Once the user centers their gaze on a faraway 3D radar chart, a
black frame is temporally displayed to provide visual feedback with the aim to
clearly indicate which 3D radar chart is targeted. Applying the same “I want to
go there” analogy and gaze suggests, point confirms principle, the user can then
point towards the targeted 3D radar chart to initiate an automatic transition via
target-based travel. As in the second VE iteration, the destination data entity is
always placed to be located in the center of the immersed user’s safe interaction
area, ensuring that they can freely move around the 3D radar chart, without
obstacles, to observe and inspect all its data variable axes – a mechanism that is
arguably even more important in this VE iteration compared to the second one,
as the 3D radar chart approach encodes a considerable larger amount of temporal
data values and in a radial arrangement than in comparison to the stacked cuboid
approach (see Sections 5.4.1 and 5.5.1).

Selection through Mode Toggle To engage into a closer in-situ and details-
on-demand interaction with a 3D radar chart, a Mode Toggle feature is provided
(REQ 7 and REQ 9 in Table 4.1). In particular, a mode toggle widget in the format
of sphere is placed above a 3D radar chart. By directly touching the widget, the
user can iterate between three overall interaction states, i.e., (1) Activate/Rotate,
(2) Reconfigure/Filter, and (3) Deactivate. The widget is color-coded to provide
visual feedback about its state, i.e., red when the user is not engaged with the
3D radar chart (state 3), and green when the user is engaged (states 1 and 2).
Once activated, the 3D radar chart displays the time slice to indicate what time
event is currently selected, subsequently enabling the selection of a new time
event, as well as the juxtaposed information panel to show details-on-demand.
Additionally, the mode toggle controls what other indirect widget is currently
displayed, i.e., either the rotation handle or the reconfiguration and filter handle
widget. While the user is engaged in such a close interaction with an activated
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3D radar chart (REQ 12 in Table 4.1), the travel feature is temporally deactivated
to prevent accidental travel operations to other data entities.

Rotation, Sort, and Filter Once the user engaged into close interaction with
a 3D radar chart via respective mode toggle interaction, and thus based on its
interaction state, one of two possible 3D widgets are available that allow indirect
interaction (LaViola, Jr. et al., 2017, Chapter 7.7.3) with the 3D radar chart. The
Rotation Handle is composed to represent the 3D outline of a geometrical shape
that is aligned with the total amount of data variable axes in the 3D Radar Chart,
for instance the shape of a pentagon in the case of five data variable axes. The
handle’s rotation in the VE is directly linked with the rotation of the 3D radar
chart and thus with the data variable axes. Thus, the user may grab and hold
the rotation handle, and then drag it left or right to rotate the 3D radar chart in
place. Alternatively, they can also give it a little left or right “flick” with their
hand, to initiate a physics-based rotatory movement, similar to a carousel in the
real world. The Reconfigure and Filter Handle is composed of various data variable
axis spheres, equivalent to the amount of data variable axes displayed in the 3D
radar chart. Each data variable axis sphere is color-coded according the data
variable they represent, and visually connected through a line to the time axis
origin, resulting in a star-like shape. Data variable axis spheres are interactive in
order to implement two fundamental features. First, by grabbing and holding
a data variable axis sphere, the user can manipulate the radial arrangement of
the displayed data variable axes by moving the held sphere around, essentially
changing their order and thus sort the data variables (REQ 14 in Table 4.1). And
second, by grabbing and dragging a data variable axis sphere away from the
time axis origin, i.e., until its visual connection disappears (or “snaps”), the user
may filter out undesired data variables that will be removed from the 3D radar
chart19 (REQ 14 in Table 4.1). When available, either of the two widgets, i.e., the
rotation handle or the reconfigure and filter handle, are placed in between the
space above the 3D radar chart and beneath the spherical mode toggle widget.

Time Event Selection The selection of a new time event is possible by utilizing
the time slice that is integrated in the 3D radar chart (REQ 13 in Table 4.1). The
user can directly interact with the time slice and manipulate its position inside the
3D radar chart through a hand-based grasping technique. More specifically, they
can reach out with their hand, grab and hold the time slice, and consecutively
drag it up and down along the 3D radar chart’s time axis to a desired point in
time by naturally moving up and down their hand. The time slice automatically
updates its shape based on the newly selected time event along the way.

Time Range Selection With respect to potential interactions with the time-
series data, the VE does not just provide means to select a single time event, but

19Based on the overall concept of a radar chart, at least three data variables must remain at any
given point in time.
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also to select a time range that is composed of multiple consecutive time events
(REQ 13 in Table 4.1). Using a gestural command with both hands, each being
held in a pinch posture (thumb and index finger held together), the user can
vertically unfold and “sculpt” a desired range of time events. Those included
remain color-coded, while the time events outside the selected time range are
displayed in a neutral gray color. This allows the user to visually identify the
selected time range on the one hand, while on the other still retaining some visual
indications about the temporal context outside the selected time range. The user
is restricted to select time events only within the selected time range.

Zoom Depending on the amount of time events in the time-series encoded over
the length of a 3D radar chart, the VE provides a feature to zoom with respect to the
temporal data context (REQ 14 in Table 4.1). With a time range selected, the user
may zoom in by temporary “stretching” their time range selection over the entire
virtual length of the 3D radar chart, visually cutting off any time events outside
that range. Reversely, assuming the entire time-series is not already displayed,
the user may also zoom out from previous zoom in interactions. Aligned with
such zoom interactions, an underlying history functionality allows for step-wise
zoom out based on multiple prior zoom in operations. These interactions are
implemented through respective gestural commands with both hands, moving
them either apart to zoom in or towards each other to zoom out.

Reset Due to the comparatively more complex and advanced interaction
with 3D radar charts as data entity visualizations than compared to the sphere
and stacked cuboid approaches used in the first and second VE iterations (see
Section 5.3.2 and 5.4.2), there is consequently also a higher need to provide the
user with means to reverse selections and manipulations. Thus, the VE provides
a reset feature that conveniently reconfigures a 3D radar chart back to its original
state, i.e., displaying all available time-series data as well as all data variable axes
arranged in their original order (REQ 14 in Table 4.1). Naturally, such a reset
operation is a comparatively drastic one, that in turn should be performed with
caution. To prevent the unintentional operation of the reset feature in the VE
through the 3D gestural interface, it has been mapped onto a respective gestural
command with both hands that is arguably rather unlikely to be performed by
accident under normal circumstances. In particular, the user is required to hold
up and cross their index fingers, composing a “X”-like posture accordingly.

Pause / Resume The VE allows the user to temporarily pause (and resume) any
kind of interaction, by briefly holding their hands in front of them in a “stop”-like
posture. The intention is to provide a mechanism that actively prevents feature
execution due to unintentional hand movements (Pavlovic et al., 1997) during
periods when the user desires to make observations in the VE more passively.
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Figure 5.21: Impressions of the various features (see Table 5.10) available in the
third VE iteration, from the immersed user’s field of view, and utilizing the 3D
gestural input modality. Note: Part 1 of 3.
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Figure 5.22: Impressions of the various features (see Table 5.10) available in the
third VE iteration, from the immersed user’s field of view, and utilizing the 3D
gestural input modality. Note: Part 2 of 3.
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Figure 5.23: Impressions of the various features (see Table 5.10) available in the
third VE iteration, from the immersed user’s field of view, and utilizing the 3D
gestural input modality. Note: Part 3 of 3.

Figure 5.24: An overview of the applied hand posture comfort configurations, in
accordance to the report and recommendations by Rempel et al. (2014). Note:
The applied label coding corresponds to the comfortable and uncomfortable hand
posture configurations as presented in the manuscript by Rempel et al. (2014).
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5.5.3 Evaluation 1: Visualization Design Validation

Within the scope of the third VE iteration, this first evaluation is dedicated to the
overall validation of the proposed 3D radar chart data entity visualization design
as well as its initial interaction design with the aim to confirm the immersed
user’s ability to make analytical assessments. The results of this evaluation are
important to provide impulses and to determine the future direction of this
VE iteration, for instance with respect to the visualization design in general as
well as through the extension of additional analytical features. The evaluation
methodology was centered around a series of tasks that required the participants
to make data assessments with respect to the different data variables and their
values, for an individual data entity as well as for a comparison between two
data entities. Based on the obtained insights from the prior VE iterations (see
Sections 5.3 and 5.4) and at this stage in the development of the third VE iteration,
only a first set of basic features were provided, implemented through a mixture
of various interaction techniques, i.e., hand-based grasping, gestural command,
and graphical menus. Measurements with respect to usability, engagement, and
task performance allow for the evaluation of the presented visualization and
interaction design. The VE setup was the same across all participants. Each study
session was conducted in an one-on-one scenario between one participant and
one researcher at a time. One study session was aimed to take approximately 45
to 60 minutes to conduct, whereof the participant would spend approximately
25 to 30 minutes immersed in the VE and wearing the HMD. All study sessions
were conducted at the VRxAR Labs research group lab at Linnæus University.

5.5.3.1 Physical Study Space
The physical study space generally featured the same setup as in the prior
evaluations, for instance as described in Section 5.3.3.1. With respect to the
utilized display and input devices, each participant wore a HTC Vive HMD with
a Leap Motion Controller attached in front of it to enable 3D gestural input.

5.5.3.2 VE Setup
Within the scope of this first evaluation, the overall data context and scenario were
inspired by the NTS corpus, as used in the second VE iteration (see Section 5.4),
and thus related to the investigation of language variability on social media in the
Nordic region over time. However, with respect to the anticipated task design,
a baseline dataset was required to allow for a more accurate task performance
assessment compared to using more noisy, real-world data. Thus, time-series
data for different data items were generated using the same approach as utilized
for the PWt dataset (see Section 5.5). More specifically, the dataset utilized in this
evaluation featured (1) two data items, i.e., one representing Sweden and one
Denmark, for the subsequent creation of two data entities as 3D radar charts in
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the VE, (2) six language identifiers as data variables (Swedish, Danish, Norwegian,
Finnish, Icelandic, and English) in each data item, thus each 3D radar chart was
composed of six data variable axes, (3) time-series data for a total of 50 events
on a per day basis for each data variable, and (4) frequencies representing the
amount of social media posts for each language as data variable values for each
time event. Consequently, the generated dataset contained a total of 600 data
variable values,20 with 300 data variables values encoded in each 3D radar chart.

Furthermore, at this stage in the development, a basic set of initial features
for the interaction with 3D radar charts in the VE was provided. In particular,
and with reference to the feature overview presented in Table 5.10, the following
features were available to the participants: Travel, Mode Toggle (Activate/Rotate and
Deactivate), Rotation, Time Event Selection, and Time Range Selection.21 Additionally
to the presented 3D UI design, some of these features were also available as
adapted 2D menus (via graphical menu), following a generally similar approach as
applied in the second VE iteration (see Section 5.4.2). The VE provided an adapted
2D graphical menu, attached and juxtaposed to the user’s left hand, featuring
two virtual buttons for the step-wise selection of the next, respectively previous,
time event by remotely moving the 3D radar chart’s time slice accordingly. A
second adapted 2D graphical menu is attached and juxtaposed to the user’s right
hand, featuring a virtual button that is dedicated to the time range selection.
Pressing the button iterates through three states, the first two of the three being
in correspondence with the current position of the time slice: (1) Select the start
point for the time range selection, (2) select the end point and thus apply the
time range selection, and (3) reset to show the entire dataset. Once a start point is
selected, a visual highlight provides a preview of the to be selected time range as
user feedback. At this stage in the development, rather than displaying the values
of the data variables axes outside of the selected time range in a neutral gray
color (see Section 5.5.2), they were “cut off” to be visually excluded.22 Figure 5.25
presents the described additional graphical menu-based interaction techniques
that were available to the participants in this first evaluation.

Finally, at this stage in the VE’s development and in regard to the overall
system architecture, the support for User Session Data Transfer according to the
descriptions in Section 4.2.3 was implemented as a proof-of-concept feature.
The purpose of this feature is to allow the immersed user in the VE to capture
their observations and thoughts, similar to a general note taking process, and
later revisit those for the use in other, different data analysis tools (REQ 10

202 ;>20C8>=B ⇥ 6 30C0 E0A801;4B ⇥ 50 C8<4 4E4=CB = 600 30C0 E0A801;4 E0;D4B

21The following interaction features were not available as part of the visualization design validation
presented here: Mode Toggle (Reconfigure/Filter), Data Variable Sort, Data Variable Filter, Zoom (in/out),
Reset, and Pause/Resume. These features were later added and evaluated within the scope of the
second evaluation presented in Section 5.5.5.

22The neutral gray color data variable axes design, previewing the data values outside of the time
range selection, was adopted later within the scope of the second evaluation presented in Section 5.5.5.
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Figure 5.25: An impression of the additional graphical menu interaction tech-
niques available in the first evaluation of the third VE iteration, from the immersed
user’s field of view, and utilizing the 3D gestural input modality. Left: The user’s
left hand features a juxtaposed adapted 2D graphical menu to select a new time
event. Right: The user’s right hand features a juxtaposed adapted 2D graphical
menu to (1) select a new time range (top), and (2) record a virtual note (bottom).

in Table 4.1). The main intent with this experimental feature is to provide a
graspable impression of how such a feature could look like, establishing a basis
for further discussion and investigation in the future. Within the scope of the
presented third VE iteration, the User Session Data Note Taking and Report interfaces
have been implemented as follows. In the VE, an additional second virtual button
is integrated in the adapted 2D graphical menu that is attached and juxtaposed
to the user’s right hand. Pressing that button triggers two system events in
iteration, i.e., (1) initiate a virtual note, and (2) complete a virtual note. While the
virtual note taking process is ongoing, the user can simply speak aloud noteworthy
observations and thoughts, which are recorded by a microphone connected to the
computer system and the VE. Two screenshots are captured based on the user’s
field of view at the start and the end of the note taking. Once the note taking
process has been completed, the recorded audio and image data are transferred as
user session data to the respective repository. After the immersive data analysis
activity has finished, the user can play back and view their notes in the format of
an illustrative report outside the VE on another computer system, for instance
via normal web browser. Figure 5.26 illustrates the implemented user session
data report interface. Finally, Figure 5.27 provides a representative overview of
the system architecture as set up within the scope of this evaluation.
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Figure 5.26: A screenshot of the implemented user session data report interface,
displaying the virtual notes, in the format of audio and image recordings, taken
during the immersive data analysis activity as part of the first evaluation of the
third VE iteration. Note: The virtual note taking interface implemented in the
VE is presented in Figure 5.25.
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Figure 5.27: Conceptual system overview of the third VE iteration in its first
evaluation. Detailed descriptions about the various system components are
provided in Section 4.2.
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5.5.3.3 Task
Each participant was asked to complete the same series of tasks, involving making
observations and interacting with the two 3D radar charts – initially individual,
and then together for some comparative tasks. The tasks were designed with
the objective to evaluate a participant’s ability to make sense of the 3D radar
chart visualization design insofar to assess its underlying data. To complete the
individual tasks, they had to state their answers spoken aloud to the researcher,
who made the respective documentations accordingly. Based on the task’s type,
an answer corresponds either to a data variable value, the time event as a date
(internally corresponding to the time index of the time slice), or a time range
composed of a start and an end date. In particular, the participants had to
complete the following tasks:

T1: For the first 3D Radar Chart, determine the minimum and maximum values
for all data variables.

T2: For the first 3D Radar Chart, determine the date when all data variables
are minimized/maximized simultaneously as much as possible.

T3: For the first 3D Radar Chart, determine the date when the Swedish data
variable has the highest value and Finnish has the lowest, and vice versa.

T4a: For the first 3D Radar Chart, determine a time range that contains the most
low/high data variable values.

T4b: For the second 3D Radar Chart, determine a time range that contains the
most low/high data variable values.

T5: Considering both 3D Radar Charts, determine a time range in each that
contains the most low/high data variable values and make a comparative
assessment.

Additionally, after each time range selection in tasks T4a, T4b, and T5, the
participants were asked to use the implemented proof-of-concept note taking
feature in the VE to capture some observations. Each participant was encouraged
to solve the tasks as best to their ability using the provided interactive features in
the VE, using their own strategy and pace with no time constraints.

5.5.3.4 Measures
To obtain an understanding of the participant sample in general, a custom
pre-task questionnaire was applied to inquire some demographic information
(educational/professional background) and their self-assessed prior experiences
with VR technologies in general. The participants’ task performance was measured
with respect to their ability to make accurate assessments, based on their provided
answers to all the individual tasks, independent of the time needed to make
these assessments. Furthermore, the System Usability Scale (SUS) and User
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Engagement Scale - Short Form (UES-SF) questionnaires were utilized to measure
the participants’ subjective self-assessment with respect to usability and user
engagement. The researcher made observations during the participants’ task
completion, taking notes accordingly. An informal interview allowed each
participant to freely provide some additional feedback based on their own
impressions of interacting in the VE, as well as the researcher to pose questions
as a follow-up based on the made observations. Foundational aspects of these
evaluation methods are described in Section 2.5.1.

5.5.3.5 Study Procedure
The format of the overall study procedure follows conceptually the setup of
prior study procedures, for instance as described in Section 5.3.3.5, anticipating
an overall study duration of approximately 45 to 60 minutes per study session,
dependent on the participant. Each individual study session followed the same
procedure of five stages:

1. Introduction (10 min);

2. Warm-up (5 min in the VE);

3. Task (25 min in the VE);

4. Questionnaires (5 min);

5. Interview (10 min).

With the objective to validate the presented visualization design and based
on an overall easily understandable data context, i.e., language variability on
social media over time, no specific user target group was defined as no specific
prior knowledge was required for the participation. The researcher welcomed
the participant in the introduction, outlined the study procedure, asked them
to complete an informed user consent, administered the pre-task questionnaire,
and introduced the data context as well as the developed VE. For the latter, the
researcher and the participant watched together a brief video demonstration
(see Appendix A). After watching the video, each participant was given some
warm-up time to become familiar with the VE and the involved technologies, i.e.,
wearing the HMD, walking around in the VR system’s calibrated safe interaction
area, and interacting in the VE using the provided features via 3D gestural
input. Once the participant felt comfortable in the VE, the task completion
stage was initiated through the researcher, presenting the participants with
the tasks as described in Section 5.5.3.3. As in the prior study procedures, it is
noteworthy that the warm-up stage used a different representative dummy dataset
to prevent a potential insights transfer from the warm-up to the task stage. The
researcher in their role as moderator spoke aloud the individual tasks in order,
and documented the respective answers from the participants. Additionally, the
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Figure 5.28: Immersed participants during their task completion in the first
evaluation of the third VE iteration, wearing a HMD and interacting in the VE
using 3D gestural input.

researcher also observed the participants during the task completion and took
notes accordingly. Once all tasks were completed, the participants were asked
to complete, in order, the SUS and the UES-SF questionnaires. Finally, a short
informal interview concluded the study, starting with a brief examination of each
respective participant’s recorded virtual notes displayed in the format of the user
session data report interface in a normal web browser.

5.5.4 Results of Evaluation 1

5.5.4.1 Participants

A total of = = 15 participants were recruited for the evaluation to validate the
3D radar chart data entity visualization design. With respect to the sample’s
demographics, twelve participants categorized their background as technical,
one as design related, one as pedagogy related, and one as humanities related.
Furthermore, seven participants reported to have no prior VR experiences, six
a little, and two a lot. Figure 5.28 provides some impressions of several participants
during their task completion, immersed and interacting in the VE.
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5.5.4.2 Task Assessment

Task T1 Seven participants were able to determine the lowest and highest
values for each language data variable, with no mistakes. Five participants made
a single mistake, as shown in Figure 5.29 (left). Figure 5.29 (right) indicates that
the mean value error of those mistakes was less than one percent.

Task T2 Figure 5.30 (right) indicates that although only a few participants
managed to determine the exact dates when all data variables were simultaneously
minimized or maximized, most were able to come rather close (with two notable
outliers for the maximized case). Figure 5.30 (left) indicates that even when
not determining the correct date, the sum of the data variable values was
appropriately minimized or maximized.

Task T3 It was easier for the participants to determine the date that the Finnish
data variable was at its lowest while the Swedish one was at its highest, given
that the lowest Finnish value was the same as the overall minimum. It was
more difficult for the reverse case, as the lowest Swedish value was much higher
than the overall minimum. These results are illustrated in Figure 5.31 (left).
However, Figure 5.31 (right) shows that for both cases the participants were able
to determine a date very close to the correct one.

Tasks T4a and T4b Given that the participants were not restricted regarding
the length of the selected time ranges (neither in T4a/b nor T5), a precise solution
could not be pre-determined. However, the individual dates (not time ranges)
where the sum of all data variables is minimized/maximized, are indicated
in all relevant following figures. Figure 5.32 (top) illustrates the time ranges
determined initially (T4a/b) for the two data entities, containing the most low and
high data variable values. Some participants selected short time ranges, while
others selected relatively long ones. Nevertheless, some overall consensus can be
identified. Figure 5.32 (bottom) shows the mean sum of the data variable values
from the selections in Figure 5.32 (top), indicating that despite the variance in the
time range selections themselves, these mean sums satisfy the task instructions,
i.e., the value medians are not far from the targets, and the low value selections
were smaller than the high value selections.

Task T5 Comparing the latter time range selections in Figure 5.33 (top) with the
initial selections in Figure 5.32 (top) indicates similar patterns with less variance
around the corresponding dates. Similarly, comparing Figure 5.33 (bottom) with
Figure 5.32 (bottom) also indicates overall consistency with less variance.

5.5.4.3 Questionnaires
Figure 5.34 presents the collected self-assessments in regard to user engagement
(left) and system usability (right).
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Figure 5.29: Results of task T1, determining the min and max values for each of
the six language parameters in the first 3D radar chart. Left: Most participants
made zero to one mistakes over the twelve questions. Right: For those mistakes,
the average value error was less than one percent.
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Figure 5.30: Results of task T2, determining the time indexes when all language
parameters are minimized or maximized in the first 3D radar chart. Left: Sum
of all parameters at the time index the participants selected. Right: The time
indexes that the participants selected. Note: For both figures, the correct target
values for the min and max cases are indicated in red. In both cases (although
there were some outliers for the max case), the participants chose a time index
very close to the target, which also closely satisfied the task goal.
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Figure 5.31: Results of task T3, determining the time indexes when the value for
Swedish (SWE) is at its lowest while the value for Finnish (FIN) is at the same
time at its highest, and vise versa, in the first 3D radar chart. Left: Looking at
the parameter values, it was easier for the participants to find a close answer
for SWE high, FIN low. Right: Except a couple of outliers (that still were close
to satisfying the task), most participants chose a time index very close to the
pre-determined correct answers (indicated by red lines).

5.5.4.4 Observations and Informal Interview

The researcher’s notes from the participant observations and the informal inter-
views were combined and compiled into reoccurring themes. These are presented
throughout the following paragraphs.

Interaction Eleven participants were observed to approach the task completion
in a noticeable structured and strategic manner, i.e., first examining a 3D radar
chart in general by walking around and rotating it in place to get an overview
of the time-series data, and then examining specific events (or ranges) in time
by strategically manipulating the position of the time slice to obtain further
information. One participant emphasized the stereoscopic capabilities of the
HMD used to visually perceive the contents in the VE, stating that the “3D [effect]
is actually really good, because you can really see it and get an impression without
turning.” Another participant positively stated, “It is quite interesting to look at
the graph like this. I have this negative impression from [3D UIs in] Science Fiction
movies.” Two participants seemed to make not much use of the visualization
overview, but rather focused on the step-wise movement from time event to
time event to extract insights from the information panel. Eight participants
explicitly mentioned that the interaction using the 3D gestural input felt “very
natural.” Comments of the participants included, “I felt like I am already used to
it.” (first time VR user), “It felt very intuitive, very logically, and easy to learn.”, and
“Once I learned the pinching [for the time range selection feature], I felt fairly fluent.”
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Figure 5.32: Results of tasks T4a and T4b, determining the time ranges that
contain most low and high languages parameter values in the first (n1) and second
(n2) 3D radar chart. Top: The time ranges that the participants selected. The
participant order is the same to allow comparisons. The red lines indicate the 3D
radar chart’s min and max time indexes (n2 features two very close minimums).
Bottom: The mean sum of parameter values for the time period selections shown
in Top. The red lines indicate the theoretical possible min and max values for
each 3D radar chart.



�.�. VE ITERATION �� DATA ANALYSIS USING �D RADAR CHARTS 169

0

10

20

30

40

50

Ti
m

e 
R

an
ge

 s
el

ec
ti

on

max n1
max n2

min n1

min n2
min n2

40

60

80

100

120

M
ea

n 
su

m
 o

f p
ar

am
et

er
 v

al
ue

s
in

 T
im

e 
R

an
ge

 s
el

ec
ti

on

low n1 high n1 low n2 high n2

min n2

min n1

max n1
max n2

Figure 5.33: Results of task T5, determining a time range selection that includes
the most low and high values in each of the two 3D radar charts (n1 and n2)
to make a comparative assessment. Top: The time ranges that the participants
selected. The participant order is the same to allow comparisons. The red lines
indicate the 3D radar chart’s min and max time indexes (n2 features two very
close minimums). Bottom: The mean sum of parameter values for the time period
selections shown in Top. The red lines indicate the theoretical possible min and
max values for each 3D radar chart.



170 CHAPTER �. SPATIO-TEMPORAL DATA ANALYSIS USING VR

1

2

3

4

5

UES-SF scores (n=15)

Focused
Attention

Perceived
Usability

AEsthetic
appeal

ReWard
factor

overall user
engagement

0

20

40

60

80

100

SUS scores (n=15)

worst
imaginable

poor

ok

acceptable
good

excellent

best
imaginable

Figure 5.34: Left: Results of the UES-SF, presented according to the different
engagement dimensions and the overall user engagement. The median for all
individual factor scores (incl. overall engagement) is above average. Right: Results
of the SUS, presented including the original numerical scale and the supplemental
adjective ratings (see Section 2.5.1). The mean value (" = 75,(⇡ = 11.38) is well
above the acceptable threshold.

Three participants noted that moving the time slice sometimes felt “tricky.” One
participant stated that grabbing and moving the time slice felt “a bit uncomfortable
over time.” In regard to the two interaction technique alternatives implemented
for the time range selection (see Section 5.5.3.2), six participants were observed
mainly using the symmetric bimanual gestural command, five mainly used the
adapted 2D graphical menu attached to the user’s hand, and the remaining
four used a mixture of both. Participants who preferred the gestural command
technique elaborated on their choice afterwards with comments such as, “Oh, this
[3D gestural input] invites you to do it without buttons.”, and “Pinching worked fine
and felt more natural than using the hand GUI.” A participant who mainly used the
graphical menu argued, “I preferred the GUI for a more precise selection of the time
range.”

User Session Data Note Taking and Report Ten participants were generally
enthusiastic and positive towards the demonstration of the implemented virtual
note taking feature (see Section 5.5.3.2) and reviewing the notes of their own
study session in the respective report interface via web browser afterwards,
finding it “very useful and meaningful.” One participant further highlighted that
“Providing an annotation feature is a must for an analysis workflow.” Five participants
were observed to capture very structured and elaborate notes (approximately
1 to 3 minutes in duration per note) of their findings within the tasks.
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Analytics One participant explicitly pointed out their ability to visually detect
patterns. Another participant found that only limited statistics and textual
information in terms of numbers were displayed in the VE. Furthermore, one
participant thought that the scaling along one data variable axis (the 2D frequency
polygon visualization of the time-series data) looked sometimes very close to
each other, while more detailed examination of the actual data variable values
revealed that they were more apart than expected.

Technical During five study sessions, minor glitches were observed in the
sensory tracking of the used VR hardware (HTC Vive), occasionally causing the
participants to experience brief moments of vection, i.e., the illusion of self-motion
(see Section 2.1.2). The participants stated that it did not impact their experience
in the VE in a major capacity. However, it is noteworthy that one participant
asked to take a short (approximately 5 minutes) break between tasks T4a and T4b.
One participant was observed to unintentionally perform a gestural command to
apply a time range selection. Furthermore, one participant was observed wanting
to naturally interact with objects outside the Leap Motion Controllers’ sensory
interaction zone.

5.5.5 Evaluation 2: Uniform 3D Gestural Interface Design

Based on the results and insights obtained throughout the initial evaluation
to validate the 3D radar chart visualization design as presented throughout
Section 5.5.3, a second empirical evaluation was carried out with the focus on the
interaction design. In particular, compared to the initial version, the 3D UI design
for the interaction with 3D radar charts in the immersive VE was rigorously
iterated in several aspects as follows:

• Beyond the basic set of interactions as described in Section 5.5.3.2, all
features as described throughout Section 5.5.2 were made available to the
participant. In particular, Mode Toggle (Reconfigure/Filter), Data Variable Sort,
Data Variable Filter, Zoom (in/out), Reset, and Pause/Resume features were
additionally available.

• The design of the 3D UI through 3D gestural input focused on hand-based
grasping and gestural command techniques with the objective to provide
a uniformed interaction approach, i.e., without the use of any alternative
graphical menu-based system control techniques.

• Some overall quality-of-life changes were implemented to further improve
the presented 3D radar chart design in general. For instance, the time range
selection features now a semitransparent neutrally colored (gray) preview
for the time-series data outside the selected time range instead of simply
hiding the unselected data, facilitating the user’s temporal data analysis.
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Based on these changes and extensions, it is possible to contribute with
additional insights towards the applied 3D UI design for 3D gestural input within
the context of immersive spatio-temporal data interaction. Therefore, this second
evaluation was centered around a series of predefined representative interaction
tasks in a more walkthrough-like manner compared to the earlier evaluation.
Measurements in terms of usability, engagement, and observations enable the
assessment of the 3D UI design through the identification of usability issues and
remarks on the interaction in the VE. Overall, this second empirical evaluation
followed an approach similar to the first one (see Section 5.5.3). The VE setup was
identical for all participants. Each study session was conducted in an one-on-one
scenario between one participant and one researcher at a time. The conduction
of a study session was aimed to take approximately 50 to 60 minutes, whereof
the participant would spend approximately 25 to 30 minutes immersed in the VE
and wearing the HMD. All study sessions were conducted at the VRxAR Labs
research group lab at Linnæus University.

5.5.5.1 Physical Study Space
The setup of the physical study space was for the most parts identical to the
prior ones, as described in Section 5.5.3.1. In particular, the researcher had
their workstation and the participant their dedicated desk as well as the safe
interaction area during their time immersed in the VE. A HTC Vive HMD with
a Leap Motion Controller attached in front of it were utilized with respect to
the display and interaction technologies. It is noteworthy that this evaluation
was conducted during the COVID-19 pandemic, requiring the implementation of
some additional practical measures as documented in Section 1.4.

5.5.5.2 VE Setup
For the evaluation of the interaction design, the VE was set up with a represen-
tative IA scenario in mind that allows for spatio-temporal data analysis. The
artificially generated PWt dataset was utilized to illustrate a scenario in regard to
fruit production over time, as introduced in the beginning of Section 5.5. The VE
was populated with 39 3D radar charts, each respectively placed at the center
of a European country.23 These countries were displayed as extruded polygons
on the floor. Each 3D radar chart featured five data variables (Apples, Oranges,
Bananas, Berries, and Grapes), each with a time-series of 150 consecutive time
events on a per day basis, thus encoding a total of 750 data variable values.24

The scenario allows for spatial (European countries) and temporal (time-series at

23Although all 39 data entities were displayed and available for interaction in the VE, the task
series required the participants to closely interact just with two (see Section 5.5.5.3). The intent of
displaying all data entities was to provide an impression of a representative real-world analytical
scenario that included all data of a dataset and not just a subset.

241 ;>20C8>= ⇥ 5 30C0 E0A801;4B ⇥ 150 C8<4 4E4=CB = 750 30C0 E0A801;4 E0;D4B
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each country) data analysis featuring an easily understandable data context. All
implemented features as presented throughout Section 5.5.2 and Table 5.10 were
available to the immersed user in the VE.

5.5.5.3 Task
A series of 31 tasks was created, documented in Table 5.11, comprising a mixture of
all implemented features, and structured to be representative of a typical analytical
activity, interacting in the VE in a walkthrough-like manner. Furthermore, the
tasks featured a mixture of definite tasks (e.g., navigate to time event X) and
indefinite tasks (e.g., select the event X you deem appropriate), enabling the
participants to partially make their own data observations and interpretations.
All participants started at the same location, i.e., the eastern border of all 3D
radar charts. The researcher was responsible for monitoring the task progress
of the participants, posing the next task immediately upon completion of the
current one. Some tasks required the participants to state a solution, which were
communicated spoken aloud to the researcher, who in turn documented these.
The same task series order was applied across all participants.

5.5.5.4 Measures
In line with the prior empirical evaluations, a custom pre-task questionnaire
was applied with the objective to collect some demographic information (educa-
tional/professional background) about the participants and their self-assessed
prior experiences with VR technologies. The SUS was utilized to assess the
usability of the interactive features provided in the VE. Similarly, the UES-SF was
utilized obtain a better understanding about the user engagement with respect to
the interactive features. Furthermore, during the task completion, besides taking
care of the moderation in general, the researcher also made observations and
took notes about the users’ interactions. Finally, a brief semi-structured interview
was prepared, posing a set of pre-defined questions to each participant, while
maintaining the freedom to also pose custom follow-up questions based on their
answers and the potentially prior made observations. The prepared interview
consisted of an introductory preface and two questions as follows:

Introductory preface: 3D gestural input, or maybe more commonly referred to as
“hand interaction”, allows you to interact in a virtual environment, for instance by
directly grabbing and manipulating virtual objects, or by making hand postures
and gestures that are associated with certain features.

• Question 1: How do you feel about hand interaction that allows such an interaction
in virtual reality?

• Question 2: In regard to the experienced prototype, what is your impression of
how the hand interaction was implemented there?
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No. Task Feature

T01 Move to Italy. Travel

T02 Move to Sweden. Travel
T03 Activate the 3D Radar Chart at your current location. Mode Toggle
T04 Navigate to day 120. Time Event Selection
T05 Rotate the 3D Radar Chart entirely around its own axis. Rotation
T06 Name the data variable with the second highest value. *
T07 Name the data variable with the second lowest value. *
T08 Select a time range you deem appropriate that contains three peaks Time Range Selection

in the Berries variable.
T09 Zoom in into the selected time range. Zoom (in)
T10 Select a time range you deem appropriate that contains one valley in Time Range Selection

the Oranges variable and one valley in the Grapes variable.
T11 Zoom in into the selected time range. Zoom in
T12 Zoom out once. Zoom out
T13 Switch to the reconfigure and filter mode. Mode Toggle
T14 Navigate to a time event of your choice that you deem interesting, Time Event Selection

and briefly describe why it is interesting to you.
T15 For the currently selected time event, sort all data variables in Data Variable Sort

ascending order based on their value.
T16 Zoom out once. Zoom out
T17 Reset the state of the 3D Radar Chart. Reset
T18 Deactivate the 3D Radar Chart at your current location. Mode Toggle

T19 Move to Italy. Travel
T20 Activate the 3D Radar Chart at your current location. Mode Toggle
T21 Switch to the reconfigure and filter mode. Mode Toggle
T22 Navigate to day 56. Time Event Selection
T23 For the currently selected time event, remove all the data variables Data Variable Filter

with a value lower than 20.
T24 Reset the state of the 3D Radar Chart. Reset
T25 Pause the 3D hand interaction. Pause
T26 Attempt to navigate to a different time event. **
T27 Resume the 3D hand interaction. Resume
T28 Navigate to a time event of your choice that you deem interesting, Time Event Selection

and briefly describe why it is interesting to you.
T29 Navigate to day 98. Time Event Selection
T30 For the currently selected time event, sort all data variables in Data Variable Sort

descending order based on their value.
T31 Deactivate the 3D Radar Chart at your current location. Mode Toggle

Table 5.11: The series of 31 tasks and their associated interaction features
(see Table 5.10) as applied in the second evaluation of the third VE iteration.
Note: * ensure understanding of visualization concept (T06, T07); ** interaction paused
demonstration (T26). The terms peak and valley (T08, T10) refer to time ranges that
contain high, respectively low, data variable values.
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5.5.5.5 Study Procedure
The study procedure followed the same five stages as applied in the first evaluation
(see Section 5.5.3.5), anticipating an overall duration of approximately 45 to 60
minutes per study session:

1. Introduction (10 min);

2. Warm-up (5 min in the VE);

3. Task (20 min in the VE);

4. Questionnaires (5 min);

5. Interview (10 min).

The introduction began with the participant filling out an informed user
consent and a pre-task questionnaire to provide demographic information. Since
the chosen data scenario was designed to be easily understandable, there were
no specific prior knowledge requirements. The researcher introduced the overall
context, scenario, and VE including all its interactive features, utilizing a pre-
recorded video (see Appendix A). Each participant was then given some warm-up
time, allowing them to get comfortable wearing the HMD, and familiarize
themselves with the composition of the VE and the 3D gestural input. Once they
felt ready, the researcher initiated the task stage as described in Section 5.5.5.3.
As in the prior evaluations, to prevent a potential insights transfer from warm-up
to task stage, different datasets were used. Each participant completed the tasks
one by one until all were completed. The researcher observed the participant
in the physical real-world space and in the VE from their HMD point of view
as mirrored to a screen on the researcher’s workstation, and took notes. The
researcher read aloud the individual tasks, and noted the participant’s answers.
Once all tasks were completed, the participant was asked to complete, in order,
the SUS and UES-SF questionnaires. Finally, the semi-structured interview was
conducted, after which the participant was thanked and sent off.

5.5.6 Results of Evaluation 2

5.5.6.1 Participants
A total of = = 12 participants were recruited, who reported a variety of back-
grounds, i.e., 5 Computer and Information Science, 5 Linguistics and Language Studies,
and 2 Forestry and Wood Technology. Eight participants stated a little, three average,
and one a lot prior experiences with VR technologies. None of them reported any
visual perception issues when asked during the warm-up phase, for instance in
regard to their ability to differentiate the five data variable axes.25

25The applied color coding throughout the third VE iteration adopted recommendations by: Cynthia
Brewer, Mark Harrower and The Pennsylvania State University. ColorBrewer: Color Advice for Maps.
Retrieved June 1, 2022, from https://colorbrewer2.org/

https://colorbrewer2.org/
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5.5.6.2 Task Assessment
All participants were able to successfully complete the task series, as presented
in Section 5.5.5.3, and provide correct answers as pre-determined, or otherwise
contextually appropriate based on their own selection choices. Based on the
analysis of the collected log files, the task completion times averaged with
" = 13.95 <8= ((⇡ = 3.15 <8=; tasks were presented in a swift manner without
noticeable breaks; participants were instructed to complete them at their own
pace). When the participants were asked to select a time event that they deemed
as “interesting” and to briefly describe why (T14 and T28), they made their
own observations, generally ending up selecting time events that featured either
comparatively high or low data variable values. These time events were visually
noticeable, allowing them to make comparisons and to begin speculating for
potential reasons. Descriptions by the participants (P) included:

• “Berries are very low, while Bananas and Oranges are high. This could indicate
a different season of the year, thus the values across the different dimensions
representing a change of season.” (T14, P1, day 75)

• “Oranges and Bananas appear to be very high, while Grapes and Apples are very
low. It seems like there is a relationship between those, maybe a seasonal event.”
(T14, P7, day 132)

• “Berries are very low, and then increasing afterwards. This is interesting, what is
happening here?” (T14, P9, day 72)

• “Oranges and Bananas are very high, while the others are very low. This looks
like opposite trends.” (T14, P10, day 126)

• “Oranges appear to be very high compared to the time series before and after the
selected time event, maybe this could be because of a seasonal effect.” (T28, P2,
day 58)

• “The values . . . seem to be at their dimension’s average at the same time. It’s a
perfect overlap.” (T28, P4, day 86)

• “Peak in the Grapes dimension, and it seems that Grapes are generally rather low
overall compared to all other dimensions, therefore this is interesting.” (T28, P6,
day 133)

• “Grapes are high and we are in Italy, so this should be great for the wine season.”
(T28, P12, day 145)

5.5.6.3 Questionnaires
Figure 5.35 presents the results of the reported self-assessments by the participants
in regard to user engagement (left) and system usability (right).
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Figure 5.35: Left: Results of the UES-SF, presented according to the different
engagement dimensions and the overall user engagement. The median for all
individual factor scores (incl. overall engagement) is above average. Right: Results
of the SUS, presented including the original numerical scale and the supplemental
adjective ratings (see Section 2.5.1). The mean value (" = 76.25,(⇡ = 9.62) is
well above the acceptable threshold.

5.5.6.4 Observations

Generally, all the participants appeared to understand the concept and learn
the operation of the implemented features rather quickly, enabling them to
interact in the VE seemingly natural and in an enjoyable manner. Nevertheless,
some interesting observations were made throughout the various study sessions,
thematically structured and presented in the following paragraphs.

Usability Issues Most noticeably, the time event selection by grabbing, dragging,
and releasing a 3D radar chart’s time slice appeared comparatively sensitive
during the interaction’s conclusion. The participants had seemingly no problems
initiating and continuing the grabbing mechanic, navigating back and forth in
time while simultaneously interpreting the data and reading the updated labels in
the juxtaposed information panel. However, when asked to select a specific time
event (T04, T22, and T29), at times the time slice would snap to an adjacent time
event during the release of the hand-based grasping. By opening up one’s hand,
the hand tracking would first interpret a time slice movement before concluding
the grasping gesture and discontinuing the time event selection. In these cases,
participants had to attempt this interaction more than once until the time slice
remained in the desired position. Such reoccurring observations were made
during nine study sessions.
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The zoom in/out gestural command seemed to require the comparatively
longest learning phase. Depending on a participant’s hand placement, the
tracking sensor would sometimes discontinue detecting the lower hand, as it
appeared to be (partially) occluded by the hand above. Once the participants
appeared to have gotten a more cautious understanding and feeling of the hand
tracking, they were able to perform these gestural commands seemingly fluent.
One participant was observed repeatedly attempting the gestural commands in
their reverse concept, i.e., moving their hands together to zoom in, and moving
their hands apart to zoom out.

Some instances of unintentional commands were observed, i.e., triggering a
feature through the 3D gestural input without the explicit intent. Most noticeably,
this occurred during intended mode toggle interactions, resulting in unintended
travel. In these cases, rather than touching the 3D radar chart’s mode toggle
widget with a hand and all fingers extended, the participant would attempt to
touch it with only the index finger extended, similar to a “poking” hand posture.
This however was in conflict with the same hand posture configuration designed
and implemented as part of the travel feature’s gestural command (gaze suggests,
point confirms), thus resulting in an unintentional position transition to another
data entity instead.

General Operation and Interaction To make data observations, the participants
appeared to use a balanced mixture of actively moving around a 3D radar
chart and in-place rotation using its rotation handle widget. Even though not
explicitly asked, some participants made on own accord noticeable use of various
implemented features to assist them with their task solving process, for instance
sorting the data variables before selecting a time range (T08 and T10) or filtering
out proclaimed “uninteresting” data variables (T14 and T28). The participants were
asked to sort the data variables in ascending (T15) and descending (T30) order.
However, at no point were they told what these orders mean within the presented
context – this was intended by design to observe how the participants interpreted
these tasks. The majority associated ascending with a clockwise and descending
with a counter-clockwise radial arrangement of the data variables with respect
to their order in the 3D radar chart’s information panel. A few participants
appeared rather self-critical with their perceived performance operating the
3D UI, but became seemingly more confident over time as they got “a better
feeling” for the sensory hand tracking. Sometimes, participants attempted to
perform gestural commands rather quickly, while their hands were not yet in the
tracking sensor’s interaction zone. Although their gestural interaction was correct
in concept, the tracking sensor appeared too slow in its initial hand detection,
thus preventing them from the practical execution of the respective interaction.
This was frequently observed for those features classified as gestural commands,
but not so much for the hand-based grasping ones.



�.�. VE ITERATION �� DATA ANALYSIS USING �D RADAR CHARTS 179

5.5.6.5 Interview

At the end of the study session, the researcher conducted a brief semi-structured
interview with each participant, inquiring their feedback in regard to hand
interaction in a VE using VR in general (Question 1), and how the hand interaction
was implemented in the presented VE (Question 2), as described in Section 5.5.5.4.
Their feedback can be summarized as follows.

General Hand Interaction Overall, the participants expressed a rather positive
attitude towards the concept of hand interaction in VEs. They thought that it
has the potential to allow for very natural and intuitive interaction mechanisms.
Some of them mentioned their appreciation that no additional sensors needed to
be physically attached to one’s hands. One participant expressed minor concerns
about imprecise command recognition, i.e., when an interaction is not triggered,
even though correct in concept, it might make the user feel insecure, as it is
difficult to determine whether the detection problem was due to them or the
system. Four participants explicitly expressed their appreciation to simply use
their hands instead of physical controllers that can “sometimes feel weird for the
interaction, as one is grabbing a controller and the controller is grabbing a virtual object,”
therefore having some kind of middle layer impression – which, according to
them, is not the case with hand interaction.

3D UI in the presented VE In regard to their impression about the hand
interaction implemented in the presented third VE iteration, the participants
were generally positive about the provided features. The majority stated that the
3D UI felt very natural and easy to operate once one had learned all possibilities.
They acknowledged their impression of learning the various features quickly,
with one participant elaborating that it felt like “riding a bike” at that stage.
Some of them noted themselves that the 3D UI featured logical and coherent
analogies for the different hand postures and gestures. A few were genuinely
surprised that seemingly many features relied on the utilization of both hands
simultaneously, expecting more one-handed gestures. Participants also addressed
some of the encountered usability issues, most dominantly mentioning that the
precise time slice placement appeared to be “fairly tricky” at times, as described
in Section 5.5.6.4, making it feel as if the hand tracking was too sensitive in these
instances. Some also reflected on experienced unintentional gestural commands.

5.5.7 Use Case: Forestry Data

Similarly in intent as the previously presented use case for the second VE iteration
(see Section 5.4.4), a proof-of-concept prototype was also developed to demonstrate
the concept of the 3D radar chart data entity visualization and interaction design
in a different context compared to the main PWt one. Thus, a use case was
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conceptualized around the Swedish National Forest Inventory.26 The inventory
contains data that allows the analysis of the standing volume, based on stems for
various tree species, in the forests of Sweden from a spatio-temporal perspective,
i.e., based on counties in Sweden for the period from 1955 to 2017. Such an
analysis is relevant, among others, within the context of forest management to
make relevant decisions in an informed and strategic manner.

Figure 5.36 provides some impressions of the immersive data analysis en-
vironment that was set up as follows. In line with the overall approach of
displaying relevant geographical areas on the virtual floor, extruded surfaces
representing the 21 counties in Sweden are visualized utilizing data provided by
Statistics Sweden – following a similar approach as described in Section 5.4.4. The
inventory contains data differentiating between three categories of tree species,
i.e., scots pine, norway spruce, and all deciduous tree species. For each of these groups,
data variables exist to indicate the amount of counted tree stems (in millions)
across different stem diameter classes. Thus, three individual 3D radar charts
were set up for each county, one to represent each tree category, each featuring
five data variables axes where each axis represents the temporal data from 1955
to 2017 for the respective stem diameter class. One additional 3D radar chart was
created for each county, combining all the data to visualize the total amount of
tree stems accordingly. The 3D radar chart representing the total data is displayed
by default, placed at the centroid of its respective county. The user can switch on
demand between the display of either that 3D radar chart or the three others for
the individual tree species. Interaction in the immersive VE is generally possible
in accordance to the features as described throughout Section 5.5.2.

In addition to the immersive interaction mode, a non-immersive display
and interaction variant was developed within the scope of this proof-of-concept
prototype.27 Building on the capabilities of the Unity cross-platform game engine
(see Section 4.2.5), an interactive version of the 3D visualization was created that
utilizes display through a normal monitor and interaction through keyboard and
pointer (mouse) input. All the interactive features as described in Section 5.5.2
were mapped to various keyboard and pointer commands. For instance, the
user can use the pointer to click on the extruded surface of a county to make a
respective selection, and then use keyboard input to interact with the associated
3D radar chart, for instance utilizing the up and down keys to move the time
slice up and down to select a new time event. In addition to the other keyboard
commands, the user could also hold the spacebar button to automatically orbit
around the selected 3D radar chart. Furthermore, various pointer commands

26Sveriges lantbruksuniversitet (SLU). The Swedish National Forest Inventory (NFI). Retrieved
June 1, 2022, from https://www.slu.se/en/Collaborative-Centres-and-Projects/the-swedish
-national-forest-inventory/

27The non-immersive display and interaction variant was developed to test the visualization
environment outside the usual VR setup and laboratory environment due to the at the time (fall 2020)
ongoing work-from-home recommendations in response to the global COVID-19 pandemic.

https://www.slu.se/en/Collaborative-Centres-and-Projects/the-swedish-national-forest-inventory/
https://www.slu.se/en/Collaborative-Centres-and-Projects/the-swedish-national-forest-inventory/
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Figure 5.36: Impressions of the third VE iteration, demonstrating the immersive
data analysis use case for the Forestry Data. Top: The VE composition, from an
angled top down view to provide an overall impression. Middle: The immersed
user’s field of view during a details-on-demand temporal exploration with the
data entity selected that represents the total amount of stems in Dalarna County.
Bottom: The immersed user’s field of view during an overview-like spatial
exploration, examining the individual tree species data in Dalarna County (from
left to right: scots pine, norway spruce, deciduous tree species).
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were made available to support free camera movement and rotation, enabling the
user to change the displayed field of view. While inherently different compared
to the perception and interaction in the immersive VE, the non-immersive variant
can be used to get an overall conceptual impression and understanding of the
data entity visualization design.28

5.5.8 Use Case: Urban Climate Data

In addition to the use case of utilizing forestry data to demonstrate the third VE
iteration, as described in Section 5.5.7, a second proof-of-concept prototype was
developed to further illustrate the practical application of 3D radar charts in yet
another data context. In particular, the intention with this prototype was to explore
the visualization of urban climate data in an immersive data analysis environment.
Urban climate data commonly feature spatio-temporal characteristics, such as
various climate related data variables over time as well as geolocation information
about where these climate measurements were collected – typically, as the name
suggests, in urban areas. Among others, the analysis of urban climate data is
relevant to identify heat-exposed areas and other aspects of local conditions,
which are important with respect to the strategical decision making within the
context of urban planning (Vuckovic et al., 2022; Rød and Maarse, 2021). In
contrast to climate data provided by general weather stations that commonly
cover broader areas, urban climate data typically rely on sensor measurements as
voluntary contributions through citizens to build up a desired higher resolution
dataset that comprises data from more sensors at various locations (Navarra
et al., 2021; Neset et al., 2021; Rød and Maarse, 2021). Adopting the overall IA
approach in the format of 3D radar charts as presented in Sections 5.5.1 and 5.5.2,
it is possible to create a respective situated visualization, i.e., visualizing and
displaying the urban climate data contextually where it was collected (Bressa
et al., 2022; Thomas et al., 2018).

Figure 5.37 provides some impressions of the proof-of-concept prototype
that was developed in a collaborative exploratory effort involving researchers
from Linköping University and Linnæus University, Sweden. The overall third
VE iteration approach was utilized to visualize urban climate data within the
context of the city of Norrköping, Sweden. Individual 3D radar charts were
created, each representing a unique climate sensor, placed at their respective
geolocation in the immersive VE. Each 3D radar chart features three data variable
axes, visualizing temporal data for temperature, humidity, and pressure for the time
period of January 2019 to March 2021 on a per day basis. Data provided by

28The described proof-of-concept prototype was presented at The 6th Big Data Conference at Linnæus
University (Dec 2020) as part of the talk Interdisciplinary Exploration of Forestry Data Using Machine
Learning and Immersive Visualization.
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Figure 5.37: Impressions of the third VE iteration, demonstrating the immersive
data analysis use case for the Urban Climate Data. Top: The VE composition,
from an angled top down view to provide an overall impression. Middle: The
immersed user’s field of view during a details-on-demand temporal exploration
with the data entity selected that represents Sensor 35, displaying the information
panel and attempting to grab the 3D radar chart’s time slice. Bottom: The
immersed user’s field of view while selecting a time range at the data entity that
represents Sensor 35.
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The Swedish Mapping, Cadastral and Land Registration Authority29 was used
to visualize and display the various districts of the the city of Norrköping as
extruded surfaces on the virtual floor, following a similar approach as applied in
the prior proof-of-concept prototypes (see Section 5.4.4 and 5.5.7). The user is able
to explore the urban climate data as sensor measurements in the immersive VE
with respect to their spatial and temporal contexts, extracting insights accordingly.
In the future, it is conceivable to visualize such urban climate data juxtaposed
with additional information and other visualization artifacts in an immersive VE,
for instance by providing a respective visualization about the physical real-world
buildings to represent the urban composition of the city of Norrköping. For
instance, following a similar approach as presented by Alatalo et al. (2016), who
built an interactive immersive 3D representation of the city of Oulu, Finland,
urban climate data visualizations could be placed in-situ at a sensor’s respective
geolocation, enabling further situated visualization and data analysis accordingly
(Bressa et al., 2022; Thomas et al., 2018).

5.5.9 Discussion

The third and, within the scope of this thesis, final VE iteration is centered around
the 3D radar chart visualization design to represent spatio-temporal data entities
that can be interacted with through 3D gestural input. For this purpose, two
empirical evaluations were conducted. The first to validate the visualization
design in general, including a first set of basic interactive features. Based
on the insights from that evaluation, additional features to support analytical
tasks in the immersive VE were implemented, following a uniform 3D gestural
interface design that focused on hand-based grasping and gestural command
techniques without alternative graphical menu-based system control techniques.
The extended 3D gestural interface was likewise empirically evaluated. The
results of both evaluations, as presented in Sections 5.5.4 and 5.5.6, allow for
discussion and various reflections with respect to the presented utilization of 3D
radar charts for IA purposes.

5.5.9.1 Visualization Design Validation
The 3D radar chart data entity visualization design, as described in detail through-
out Section 5.5.1, enabled the visual encoding of temporal data across multiple
data variables not just for one time event, but multiple ones, thus representing a
time series. The conducted empirical evaluation allowed participants themselves
to analyze data in a scenario of investigating language variability on social media
in the Nordic region – a scenario informed by the overall data context of the

29Lantmäteriet. Distriktsindelning Nedladdning, vektor. Retrieved June 1, 2022, from https:
//www.lantmateriet.se/sv/Kartor-och-geografisk-information/geodataprodukter/produktl
ista/distriktsindelning-nedladdning-vektor/

https://www.lantmateriet.se/sv/Kartor-och-geografisk-information/geodataprodukter/produktlista/distriktsindelning-nedladdning-vektor/
https://www.lantmateriet.se/sv/Kartor-och-geografisk-information/geodataprodukter/produktlista/distriktsindelning-nedladdning-vektor/
https://www.lantmateriet.se/sv/Kartor-och-geografisk-information/geodataprodukter/produktlista/distriktsindelning-nedladdning-vektor/
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second VE iteration (see Section 5.4), and based on an artificially generated
time-series dataset. Based on a series of explorative data analysis tasks that the
participants were asked the complete, it was possible to collect various measure-
ments, for instance in regard to usability, user engagement, and task completion.
Using the collected quantitative data as well as the additional qualitative data
from observations and informal interviews, the overall 3D radar chart data entity
visualization design could be validated.

Usability The analysis of the reported SUS scores indicates an overall good
usability, suggesting that the participants generally accepted the concept and
interaction design in the VE, and in turn that the presented approach is usable
within an IA context. Some of the lower SUS scores may be attributed to the
observed sensory tracking issues in regard to both the HMD and the 3D gestural
input, and to some users expressing that the gestural command detection and
subsequent interaction not always worked on the first try. Similar technology-
related observations inherent from the utilization of such input device types
were also made in prior evaluations, for instance as described in Section 5.3.5.1.
Nevertheless, all participants were able to learn the various interaction features in a
comparatively short amount of time, i.e., during an approximately 5 to 10 minutes
warm-up phase, with the majority stating that they found the interaction very
natural. This can be regarded particularly positive, especially considering that
most of the participants had either no prior or just a little experience with VR
technologies prior to the evaluation.

User Engagement The analysis of the received UES-SF assessments indicates an
overall above average user engagement, suggesting that the participants felt engaged
in the VE, interacting and making assessments to complete the given analytical
tasks. This result can be supported by the general enthusiasm the majority of
the participants expressed. Most of them engaged in the task completion process
quite motivated, approaching the search for a solution in a very strategic manner,
making use of the various features available in the VE, supported through the
capabilities of the immersive VR technologies, i.e., the HMD enabling stereoscopic
viewing and the 3D gestural input for hand interaction in the VE. Investigating
the results of the individual dimensions of the UES-SF questionnaire, it becomes
apparent that the reported perceived usability is in line with the results of the SUS.
Even though the researcher provided no indications about the participants’ task
performance, the majority of participants reported a rewarding experience. Even
though the result for the reported aesthetic appeal can be considered generally
okay, it also indicates potential for further improvements. For instance, as part of
the second evaluation (see Section 5.5.5), various minor changes were applied
to improve the 3D radar chart design, such as for instance adjusting the size of
various interactive widgets and other elements in the UI, resulting in a subjectively
“cleaner” visual design. In comparison, the aesthetic appeal was rated more
positively in the second evaluation compared to the first one (see Figures 5.34
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and 5.35). The participants reported mixed results with respect to the focused
attention, that in retrospect may be attributed to the fact that they had to carefully
listen to the researcher phrasing the tasks as well as subsequently reporting
back their results – all spoken aloud in a verbal dialog between researcher and
participant. Arguably, this may have taken some focus away from their experience
immersed in the VE.

Task Assessment Considering the overall motivation of providing a tool that
would support the user with their explorative analysis of spatio-temporal data
in general, and in the case of the 3D radar chart with particular focus on the
temporal data aspects, the reported task completion results can be interpreted
as satisfactory. They point towards the participants’ ability to make use of the
presented data entity visualization design and its provided interaction features,
allowing them to complete representative data analysis tasks in a satisfying
manner, both in regard to the actual task completion as well as a subsequent
rewarding feeling, as indicated by the comparatively high rated UES-SF reward
factor (see Figure 5.34). The participants were able to investigate different time
events in the data to find appropriate solutions, both with respect to individual
dates as well as time ranges. It is noteworthy that the tasks requesting a time range
as answer did not specify any duration details, leaving it up to the participant
to answer what they thought was most appropriate. Naturally, some reported
shorter time ranges as answers, and some reported longer ones. Nevertheless,
certain trends in the answers among all participants could be identified, indicating
that the majority provided appropriate solutions for the given tasks. Overall, their
successful task completions indicate that the participants were able to make sense
of the 3D radar chart visualization concept, and thus make adequate assessments
across the different data variables and time events.

Interaction The provided set of basic interactive features, implemented using
3D gestural input and a mixture of hand-based grasping, gestural command,
and graphical menu interaction techniques as described in Section 5.5.3.2, were
generally perceived positively. Except for a few minor disruptions caused through
technical issues, that are arguably normal and to be expected given the underlying
nature and concepts of the applied sensory hardware, the participants were able
to naturally interact in the immersive VE. The majority of them appreciated
being able to directly manipulate the time slice by grasping and moving it up
and down within the 3D radar chart in order to inspect different time events.
At the same time, it was interesting to observe how some participants made
targeted use of the adapted 2D graphical menu attached to their hand as an
alternative, i.e., they moved the time slice to an area of interest using the hand-
based grasping, and then utilized the two-button hand menu to iteratively move
forward and backward in time to examine consecutive time events. It seems
that the participants utilized the hand-based grasping to move quickly in time,
and then utilize the graphical menu for a more detailed step-by-step analysis of
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the time-series data. All participants were able to make use of the implemented
interaction alternatives for the time range selection to solve the respective tasks,
arguably approving the usability for both, independent of their overall mixed
preferences. Some participants enthusiastically preferred the symmetric bimanual
gestural command using a pinching hand posture with each of their hands, stating
that the 3D gestural input basically offers itself for such interactions. Others
however preferred to use the adapted 2D graphical menu, arguably because it
enabled them to be more precise with the respective time slice placement, and
thus to be more precise in regard to what events to include in and exclude from
their time range selection. Finally, some participants were observed using a
mixture of both alternatives, sometimes trying one, and other times the other. For
the task completion, the researcher did not provide any indications of whether
the participant should use one interaction alternative over the other, but let it
open for the participant to decide. This was entirely exploratory to informally
investigate, on the side, a potential preference for one interaction technique over
the other. At that stage, the results did not indicate a clear preference. However, a
slight trend towards the ability to directly manipulate a 3D radar chart in the VE
using hand-based grasping and gestural commands was noticed based on some
of participants’ enthusiasm and feedback. Consequently, the decision was made
to further explore this matter by practically removing the graphical menu-based
UI elements and focusing on an interaction design that is centered exclusively
around hand-based grasping and gestural command techniques in the second 3D
radar chart evaluation (see Section 5.5.5). The discussion and reflections on this
interaction design decision are subsequently presented in Section 5.5.9.2.

User Session Data Note Taking and Report The implemented proof-of-concept
virtual note taking and report feature received positive feedback. The feature was
implemented to both conceptually and practically demonstrate the usefulness of
user session data transfer as introduced in Section 4.2.3. Each participant was
asked to record three virtual notes during their task completion, that were later
briefly examined as part of the informal interview using the respective report
interface within a normal web browser outside the VE (see Figure 5.26). The
participants were in agreement, assessing the feature as a meaningful addition
to such a type of VE, and especially useful within the context of IA. Some
of the participants even went a step further and categorized the feature as
“necessary” for serious future IA applications. At this stage, it was particularly
interesting to observe the different note taking strategies of the participants, with
some just briefly stating a to the point observation, while others recorded very
elaborate explanations of their observations including hypotheses of why certain
phenomena in the data might be as they are. Consequently, the ability to take
such elaborate observations, recorded as virtual notes in the conceptual format of
user session data from the immersive analysis activity, and use them as input
and guidance for further analysis activities using different tools appears to be
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logical and desired. For instance, Fonnet and Prié (2021) discovered that so far
only few investigations exist that are dedicated to similar immersive annotation
features, thus requiring further research.

5.5.9.2 Uniform 3D Gestural Interface Design
The first evaluation of the 3D radar chart design confirmed the overall usability
of such a data entity visualization approach for IA purposes, confirming that
users can successfully make assessments and data interpretations. Based on
these insights, a second evaluation of an extended 3D radar chart design was
conducted, as described in Section 5.5.5. This evaluation focused primarily on
the evaluation of an extended set of features, implemented through a uniform
3D gestural interface design using hand-based grasping and gestural command
techniques, without interactive graphical menus as were available during the
initial evaluation (see Section 5.5.3). The decision to abandon the utilization
of graphical menu-based system control techniques after the initial evaluation
was twofold. First, the participants were generally positive and enthusiastic
of the more direct interaction and manipulation possibilities using the hand-
based grasping and gestural command techniques. Thus, the operation of the
extended features in the VE, i.e., Mode Toggle (Reconfigure/Filter), Data Variable
Sort, Data Variable Filter, Zoom (in/out), Reset, and Pause/Resume, was designed
around these interaction techniques. And second, by not providing alternative
operation possibilities for the existing features, a by comparison more uniform 3D
gestural interface design could be embraced, rather focusing on a more coherent
interaction style overall than a mixed one. Naturally, similar to the other empirical
evaluations, to a certain extent this was an exploratory investigation to further
examine the utilization of 3D gestural input within the IA context.

The participants interacted with illustrative spatio-temporal data of the PWt
dataset (see Section 5.5) to complete a series of tasks in a walkthrough-like manner,
aiming to represent a typical data analysis activity in the VE. Generally, all of
them were able to do so organically and intuitively using the implemented 3D
gestural interface, having a smooth and responsive experience in the developed
immersive VE. In contrast to the results of the evaluated 3D gestural interfaces
presented by Streppel et al. (2018), the majority of the participants in this
second 3D radar chart evaluation managed to learn the various features of the
3D UI comparatively quickly, both conceptually and operationally, completing
the different tasks accordingly. Huang et al. (2017) reported similar subjective
impressions towards learnability and intuitiveness based on the evaluation of
their prototype. When asked to do a certain action within the task series, the
3D radar chart users were able to quickly associate the correct interaction in the
VE, i.e., the visual object they had to manipulate or the hand posture/gesture
they had to perform. The median score of the measured usability (SUS) was
above the good threshold. Given the presented focus on hand-based grasping and
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gestural command techniques, the overall results are satisfactory considering the
participants were asked to conduct a multitude of predefined tasks rather than
just freely exploring the data at their own leisure. The overall user engagement
scores (UES-SF; between 3 and 5, median slightly below 4) are also encouraging,
indicating positive engagement with the prototype by the participants. This aligns
with researcher’s observations, as the participants would often use features such
as rotation, data variable sort, and data variable filter, even when not explicitly
asked for, seemingly naturally engaging with the artifacts in the VE. Closer
examination of the individual engagement factor scores (see Figure 5.35) reveals
indications that the participants paid close attention during the task completion,
assessing the developed VE as aesthetically appealing, and their experience as
rewarding (all three with medians around 4) – all in anticipation with the general
design objective for this 3D UI. In comparison to the individual engagement
score results received in the initial evaluation (see Figure 5.34), all three of these
score slightly better in the second evaluation, arguably reflecting on some of the
applied improvements.30 Somewhat in contrast is the result of the perceived
usability (median around 3, tendencies towards 4) that also compares worse to
the much better SUS score for usability in general. While the participants were
overall excited about the 3D gestural interface and able to intuitively interact with
data in the presented context, this may be attributed to some identified usability
aspects that can be improved upon.

Hand-based Grasping A major aspect on the 3D gestural interface design was
concerned with the utilization of hand-based grasping for the interaction with
visible virtual objects in the VE, which was appreciated by the participants. They
were able to interact with the data variable axis spheres of the reconfigure and
filter handle as an indirect widget to adjust the configuration of the 3D radar
chart, similar to the node movement interaction as demonstrated in the prototypes
by Osawa et al. (2000) and Huang et al. (2017). The participants could intuitively
grab and drag the time slice in order to make respective time event selections,
reconfirming the results of the first evaluation that utilized the same approach.
While this interaction was valued, some shortcomings were identified when the
participants had to place the time slice at a specific time event. The tracking and
implementation felt “too sensitive” as the time slice would sometimes “snap” into
one of the adjacent time events when attempting to release the grab, occasionally
resulting in slight frustration and requiring some additional interaction to recover
from this error – a cost that should not be ignored at a larger scale (Büschel et al.,
2018). The time slice movement is dependent on the detected grab-position of the
hand, i.e., the position where fingers and thumb meet. In the process of releasing
the grab, this position is likely to be updated slightly before the grab is detected
as discontinued, thus no longer updating the time event selection. Based on the

30It is noteworthy that the first and second 3D radar chart evaluations featured different tasks and
evaluation objectives, and are as such not strictly comparable.
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current implementation, this issue is proportionally dependent to the length of
the 3D radar chart and the amount of included time events, i.e., the resolution of
time events. As reference, a 3D radar chart was scaled to corresponded to a total
length of 100 cm in the VE, with a total of 150 time events encoded, resulting in
an effective gap distance between two time events of 0.67 cm. A lower amount of
included time events over the same length would result in a larger gap between
individual time events (for instance in the case when the user zoomed in), which
would prevent the time slice from snapping to an adjacent time event accordingly.
Vice versa, including even more events in the time series would further increase
the perceived sensitivity. While one can expect 3D gestural input technologies
to become more precise, it is also possible to envision some solutions that are
based on the overall 3D UI design and implementation. For instance, rather
than exclusively relying on the finger and thumb positions for the grab detection,
one could implement an additional dependency based on the hand’s back or
palm position. In the presented case of grabbing and vertically dragging the
time slice, the hand’s back and palm positions are likely to remain relatively
static in space during the release of the hand-based grasping compared to finger
and thumb movements. A threshold could be implemented to prevent time
slice movement in such instances, enabling the system to “interpret” the user’s
intention to discontinue their interaction. Alternatively, another approach of
solving this challenge could be based on an asymmetric bimanual interaction,
similar as presented in the prototype by Betella et al. (2014). While grasping
the time slice with one hand, a gestural command made with the other could
“lock” the current time slice position in place, allowing to safely disengage from
the interaction without unintentionally moving forward or backward in time.
Furthermore, it is noteworthy that this overall matter was not prominent during
the initial 3D radar chart evaluation (see Section 5.5.9.1). The reason for this
is arguably twofold. First, even though a 3D radar chart was also scaled to
correspond to a total length of 100 cm in the VE, it only featured a total of 50 time
events, as opposed to 150 time events in the second evaluation. Consequently, the
distance between time events corresponded to 2 cm instead of the much closer
gap of 0.67 cm, likely preventing the subsequent adjacent “snap” phenomena
when discontinuing the time slice interaction via hand-based grasping. And
second, the initial version also featured the alternative graphical hand menu that
enabled a more step-wise precision control of the time slice, that one may also
have to take into consideration. While focusing on an overall uniform interaction
design, one could consider the implementation of interaction mode alternatives
that can be seamlessly switched in-situ, for instance as described by Wagner et al.
(2021), allowing the user themself to chose the preferred interaction technique for
their current task.

Gestural Commands In addition to the interaction with visible virtual objects,
various invisible gestural commands were available for feature interaction in
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the VE. Gestural commands such as for travel and time range selection were
positively received. The participants appreciated the responsiveness of the time
range selection, allowing them to directly highlight the time ranges they were
interested in. The continuous semitransparent neutrally colored visualization of
the time-series data outside of these ranges provided them with further preview
of the data, which was particularly important for them when making the cutoff
and deciding whether or not to include additional time events in their selection.
The two-handed gestural commands worked generally well. However, based on
the researcher’s observations and the received feedback from the participants,
some improvements can be made in regard to the zoom (in/out) feature. In the
initial hand posture of holding both hands vertically slightly apart with their
palms facing each other, the tracking sensor sometimes did not recognize the
lower hand as it was occluded through the one above. Thus, even though the
participants were holding their hands in the correct configuration, they needed to
move them around slightly before the sensor detected, interpreted, and translated
them appropriately in the VE. Similar feedback was stated by the participants in
the evaluation as reported by Huang et al. (2017), expressing a desire for a more
robust gesture recognition in such instances. Moving both hands together and
then apart, or vice versa, for zoom operations was also reportedly preferred as a
gestural command by the participants in the study of Austin et al. (2020), and
are thus in alignment with the implemented 3D radar chart interaction design.
Thus, the presented findings as part of the second 3D radar chart evaluation,
in alignment with the findings described by Huang et al. (2017), highlight the
importance for a reliable implementation of bimanual interactions in future
applications to satisfy anticipated user preferences.

Unintentional Commands No unintentional reset interactions were observed,
even though the participants were able to perform the command swiftly. Similar
to the considerations by Fittkau et al. (2015), the gestural command for the reset
feature was intentionally designed to prevent unintentional performance, as
resetting a 3D radar chart’s configuration is a comparatively drastic operation.
However, cases of unintentional gestural commands (Pavlovic et al., 1997) occurred
most noticeably when participants wanted to display details-on-demand by
touching the mode toggle widget, but instead triggered a travel interaction, as
their hand posture was detected as pointing forward. While participants were
able to travel back and recover from such an error comparatively quickly, it also
caused them a mixture of slight surprise, frustration, and uncertainty towards the
mode toggle interaction. This is an excellent example for such an unintentional
command, demonstrating that different users may attempt the same interaction
differently in regard to their hand posture. One can envision that such an issue
can be fixed based on the current implementation in various ways, for instance
through the implementation of a distance threshold between the virtual hand
model and the mode toggle widget, i.e., preventing travel if a user’s hand is
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detected in close proximity to the widget. Thus, the 3D UI could infer in-situ
that the user intends to engage with a 3D radar chart rather than attempting
to travel. Of particular relevance in regard to this matter is the discussion by
Nehaniv et al. (2005) about the importance of a computer system’s ability to infer
the user’s intent with their interactions (see Section 2.2.4 as part of Chapter 2).
Similarly, Lee et al. (2021) highlight and reflect on the potential of a visualization
tool’s ability to be context aware, especially under consideration of the capabilities
of modern sensor and input interpretation technologies. An immersive data
analysis system could be extended through functionalities that enable the system
itself to have a better understanding of the user’s in-situ context, and in turn their
intent, allowing for more robust user experiences.
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Collaboration is major aspect of data exploration and analysis, allowing multi-
ple users to combine their expertise and make meaning of data together. Naturally,
the developed immersive data analysis environments presented throughout Chap-
ter 5 hold potential to be extended through respective collaborative features,
allowing joint data exploration by more than one user. Rather than enabling
multiple users to be immersed in the same Virtual Environment (VE), this thesis
aims to investigate possibilities for synchronous cross-platform data analysis,
applying a combination of immersive and non-immersive interfaces to bridge
Immersive Analytics (IA) with Information Visualization (InfoVis) and Visual
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Analytics (VA). To explore the application of heterogeneous display and interac-
tion technologies within the overall context of Collaborative Immersive Analytics
(CIA), two collaborative systems have been developed under conceptual and
technological guidance of the presented system architecture (see Chapter 4). The
first collaborative setup was aligned with the second VE iteration (Stacked Cuboids)
and centered around an explorative analysis task with physically co-located
users, focusing on the joint analysis of the spatial data context. Based on the
insights and experiences obtained from this first exploratory investigation, a
second collaborative setup was evaluated, aligned with the third VE iteration
(3D Radar Charts) and centered around a confirmative analysis task with remote
users, who explored data in the spatio-temporal context.

This chapter begins by introducing the concept of Hybrid Asymmetric Collabora-
tion in Section 6.1, aimed to clearly distinguish between technological (hybrid) and
user role (asymmetric) aspects within the context of collaborative data analysis.
To aid the empirical evaluation of such a collaborative setup, and within the
overall context of spatio-temporal data analysis, the Spatio-Temporal Collaboration
Questionnaire is constructed and described in Section 6.2.

The collaborative setup aligned with the second VE iteration is described in
Section 6.3. Its overall scenario focuses on the exploration of multilingualism in
the Nordic region. In addition to the immersive VE that encouraged spatial data
analysis, a non-immersive collaborator interface was implemented that focused
on the exploration of hashtags in tweets with respect to language variability. A set
of collaborative features was developed to allow the transfer of respective signals
from one interface to the other, providing the ability to make spatial references
in the data. Pairs of linguistics students explored the data to extract respective
insights from a sociolinguistic perspective, providing valuable feedback and
impulses for improvement of the system’s various collaborative aspects.

Finally, the collaborative setup aligned with the third VE iteration is described
in Section 6.4. Its scenario focused not just on collaboration within the spatial
data context, but also the temporal. To explore the design of visual references
as collaborative information cues, three design options were conceptualized that
informed the subsequent development of several spatio-temporal reference vari-
ants. Based on an empirical evaluation, these reference designs were subjectively
assessed by various participants with respect to aesthetics, legibility, and general
preference. Furthermore, the overall hybrid asymmetric collaboration concept
was also evaluated in a dedicated empirical evaluation through participant pairs,
who completed a confirmative analysis task by identifying various correlations in
a representative spatio-temporal dataset. The positive results of this, within the
scope of this thesis, final evaluation are promising for the future application of
hybrid asymmetric collaboration, allowing for respective design reflections and
considerations.
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6.1 Hybrid Asymmetric Collaboration

Nowadays, with large multivariate data collected in various contexts, data analysis
is seldom conducted in isolation but in collaboration with multiple analysts, either
with the same background or as interdisciplinary efforts where each analyst
contributes with their specific domain knowledge. Furthermore, due to the
increasing complexity of these multivariate datasets, it is often insufficient to use
just one analysis tool or application. Instead, multiple ones are required, each
for their own data analysis purpose, to examine dedicated aspects of the data
(Vuckovic et al., 2022). These form comprehensive analysis workflows where
insights gathered using one tool may serve as input in another, leading to further
data discoveries.

Naturally, the interplay and collaboration with other users is also of particular
relevance within the context of IA, utilizing immersive display and interaction
technologies for data analysis purposes. Important foundational aspects in regard
to Collaborative Virtual Environments (CVEs) and CIA have been presented in
Sections 2.3 and 2.4.1 as part of Chapter 2. These provide exciting opportuni-
ties and impulses for further research in regard to collaborative data analysis
experiences that incorporate immersive technologies. For instance, a recently
published literature survey of IA research, covering the years from 1991 to 2018,
revealed that out of the identified 127 system papers, i.e., papers that describe
and potentially evaluate an IA system, only 15 focused on collaboration (Fonnet
and Prié, 2021). The authors put this lack of research further into perspective,
arguing that collaboration is widely considered one of the major aspects for the
future success of IA (Fonnet and Prié, 2021). Their argument is in line with the
reports and statements of other IA research (Fröhler et al., 2022; Skarbez et al.,
2019; Wang et al., 2019; Billinghurst et al., 2018). As presented in Section 2.4,
collaborative analytics is considered a major topic of the current IA research agenda,
among others including challenges with respect to supporting behavior with collabo-
rators, supporting cross-platform collaboration, and integrating current collaboration
practices (Ens et al., 2021). All these further highlight the relevance of integrating
immersive data analysis tools with non-immersive ones to bridge collaboration
across various interface types. After all, IA aims to provide novel, intuitive,
and purposeful three dimensional (3D) data analysis tools that complement and
synergize with InfoVis and VA workflows rather than replacing them (Wang
et al., 2019; Cavallo et al., 2019; Isenberg, 2014).

To further specify and guide the empirical research efforts within the scope
of this thesis, particularly with respect to the defined third research objective (see
Section 1.2), the following stance in regard to CVEs and CIA is adopted:

• There exists a synergy between immersive and non-immersive analytics
interfaces.
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• Different visualization and interaction approaches can satisfy different data
analysis needs.

• Collaboration between multiple users is anticipated and encouraged, facili-
tating their joint analytical reasoning and data understanding, independent
of their role and background.

With a focus on utilizing heterogeneous display and interaction technologies
for cross-platform collaboration within a data analysis context, Sections 2.3
and 2.4.1 have presented several existing concepts and definitions, for instance
Hybrid Virtual Environments (Wang et al., 2019), Collaborative Hybrid Analytics
(Cavallo et al., 2019), Hybrid Collaboration (Neumayr et al., 2018), and Cross-
Virtuality Analytics (Fröhler et al., 2022). However, arguably all of these put
an emphasis on the involved technological aspects as part of their definition,
i.e., the use of different types of interfaces for data analysis purposes. It is
furthermore noteworthy that these mixtures of interface types are not exclusive
to the combination of immersive and non-immersive interfaces, but can also
evolve around different types of non-immersive tools, respectively different
immersive ones, for instance combining Virtual Reality (VR) and Augmented
Reality approaches. The role of the user, specifically the analyst within a data
analysis context, is often rather implicitly addressed, as sometimes different
interface types are utilized for the overall same purpose, while serving their
own distinct purposes at other times. Aligned with the previously presented IA
research agenda (Ens et al., 2021), the overall third research objective within the
scope of this thesis (see Section 1.2) is to investigate collaborative aspects in a
scenario where two analysts explore a multivariate dataset at the same time from
different perspectives, immersed and non-immersed, each assuming a distinct
role in order to contribute to the joint data analysis activity. While various
related works assume the non-immersed user commonly in a more “guiding” or
“assisting” role (Ens et al., 2021; Welsford-Ackroyd et al., 2020; Thomsen et al.,
2019; Peter et al., 2018), this chapter aims to explore scenarios where the involved
analysts contribute more equally, each based on their interface and perspective.
Consequently, under consideration of the relevant related literature, the concept
of Hybrid Asymmetric Collaboration is defined and adopted as follows within the
scope of this thesis:

“Hybrid Asymmetric Collaboration is the use of immersive 3D and non-
immersive 2D display and interaction technologies in a collaborative data
analysis activity with two or more analysts where each individual analyst
assumes a distinct role, based on their knowledge and facilitated by their
respective technological interface, with the objective to equally contribute to
the joint data interpretation and analytical reasoning.”

– Reski
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The overall objective with the concept of hybrid asymmetric collaboration is
to satisfy a desired analytical workflow that incorporates different display types
and interaction modalities (Wang et al., 2019; Cavallo et al., 2019; Isenberg, 2014),
where collaborators are potentially coming from different domains, providing each
their own perspectives and data insights, anticipating a rather equal interaction
and contribution to the joint data analysis activity, instead of a remote expert
scenario (Ens et al., 2019). A fundamental aspect within this context is concerned
with providing features that support and facilitate the interplay between the
collaborators. While both the immersive and the non-immersive interface have
to serve their own purpose and modality, it is important to consider anticipated
means of communication and coordination between the collaborators in order to
provide meaningful interface extensions that assist them with these endeavors.
The design of collaborative information cues is particularly important within the
context of immersive technologies, as these are often user-centric in nature, i.e.,
they are by default rather tailored to be experienced by a single user (Skarbez
et al., 2019). Thus, they introduce more remote-like characteristics in regard to
potential collaboration, even in physically co-located scenarios, and important
visual information cues (gestures, mimic) are not as easily accessible, if at all.
Consequently, nonverbal communication features become particularly important
in such setups (Cruz et al., 2015).

Some overall considerations for the practical implementation and connection
of immersive 3D and non-immersive two dimensional (2D) data analysis interfaces
have been presented in Section 4.2.4. An integral aspect as part of the proposed
system architecture is the Real-Time Networking Interface between the Immersive VE
and the Collaborator Interface, such as a Non-Immersive Desktop Terminal. It allows
for the transfer of state updates from one interface to the other, and vice versa,
and is thus responsible for providing various synchronous collaborative features.
Such state updates can include features that allow each collaborator to send and
retrieve signals in their interface, aiming to facilitate their overall collaboration
through the ability to share their in-situ data analysis context and to make visual
references in the data. Furthermore, it is envisioned that the collaborators are able
to communicate verbally, i.e., talk to each other, either locally in close physical
proximity or remotely via an established audio link.

6.2 Spatio-Temporal Collaboration Questionnaire

Under consideration of the hybrid asymmetric collaboration concept as described
in Section 6.1, parts of this thesis are concerned with the empirical evaluation
of the analysts’ collaboration. Keeping in mind the mixture of immersive and
non-immersive interfaces as well as the focus on the analysis of multivariate
data, in particular spatio-temporal data (see Section 5.1), there is a need to
assess the collaborators’ ability to work together and to solve analytical tasks
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supported by the collaborative features that are integrated in their respective
interfaces. Naturally, evaluation methods such as observations and interviews
(see Section 2.5.1) can assist with a qualitative collaboration assessment. However,
for the empirical evaluation of collaborative aspects in the presented context, it
would arguably also be beneficial to assess the collaborators’ own perception of
their collaboration after they completed a joint data analysis activity. For that
purpose, means of self-reporting through the participants are required, commonly
implemented through Likert scale statements as quantitative data collection
methods. Within the scope this thesis, and thus the related literature, no dedicated
standardized questionnaire for the purpose of investigating collaboration in VEs
could be identified. Some potential alternatives exist, for instance the Social
Presence Module as part of the Game Experience Questionnaire (Ĳsselsteĳn et al.,
2013; Poels et al., 2007), but are arguably not specific enough within the presented
context where two collaborators analyze and interact with spatio-temporal data –
in itself a comparatively common data analysis use case (Fonnet and Prié, 2021).
Thus, efforts were conducted with the objective to design a self-constructed
questionnaire that satisfies these needs.

Based on relevant literature, among others in regard to CVEs and CIA as
presented in Sections 2.3 and 2.4.1, important aspects and dimensions of collabo-
ration could be identified. For instance, Dix (1994) presents a general framework
for Computer-Supported Cooperative Work (CSCW), as illustrated in Figure 2.11,
dissecting its components in cooperative work and various aspects of computer
support, i.e., communication, computerized artifacts of work, and non-computerized
artifacts. The importance of communicative aspects as part of the cooperative
work is emphasized throughout the framework, in particular as computer mediated
communication, arguing for its appropriate integration respectively (Dix, 1994).
Five key features that CVEs should strive to support within the context of CSCW
are defined by Churchill and Snowdon (1998) as well as Snowdon et al. (2001),
and have been described in Section 2.3, namely transitions between shared and
individual activities, flexible and multiple viewpoints, sharing context, awareness of
others, and negotiation and communication. Aligned with these five key features,
Sarmiento et al. (2014) explored an approach to numerically describe the degree
of collaboration in a CVE. For that purpose, Sarmiento et al. (2014) propose a
set of ten collaboration aspects across two groups, i.e., five related to interaction
(predictability, peripheral awareness, implicit communication, double level language,
overview) and five related to immersion (management of coupling, simplification
of communication, coordination of action, anticipation, assistance). The conceptual
framework and taxonomy by Gutwin and Greenberg (2002) are dedicated to
awareness within the context of group work. Awareness, seen as a state of being
attentive and informed about the events in a situation and environment, can be
maintained rather easily and naturally in face-to-face workspaces as opposed to
groupware ones that do not feature face-to-face communication (Gutwin and
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Greenberg, 2002). Gutwin and Greenberg (2002) differentiate between situation
awareness, workspace awareness, and awareness maintenance, and in turn propose
a Workspace Awareness Framework to describe aspects related to environment,
knowledge, exploration, and action. Pinelle et al. (2003) propose a task model to sup-
port collaboration usability analysis. They categorize the mechanics of collaboration
into different aspects of communication and coordination, and go on to describe
their task model that consists of scenario, task (individual and collaborative), and
action components (Pinelle et al., 2003). Andriessen (2003) proposes a heuristic
classification of the major activities involved in cooperative scenarios according to
interpersonal exchange processes (communication), task-oriented processes (cooperation,
coordination, information sharing and learning), and group-oriented processes (social
interaction). Within the more specific context of Collaborative Visual Analytics,
Heer and Agrawala (2008) discuss important design considerations to facilitate
collaborative data exploration, among others relevant to common ground and
awareness, reference and deixis, and incentives and engagement.

Based on the insights and impressions gained from the various classifications
according to the described literature, all discussing collaboration in regard to
similar themes from slightly different perspectives, the subjective decision was
made to follow and adopt the descriptions by Churchill and Snowdon (1998)
as well as Snowdon et al. (2001) respectively, emphasizing various key aspects
that CVEs should aim to support. Arguably, the investigation of transitions
between shared and individual activities, negotiation and communication, sharing
context, and awareness of others (Churchill and Snowdon, 1998) should allow
for the retrieval of insights in regard to different important collaborative aspects,
thus providing a “bigger picture” of the collaboration during the completion
of a data analysis task.1 Consequently, to assess these aspects in a setting of
synchronous collaboration and within the context of spatio-temporal data analysis,
a self-constructed questionnaire, titled Spatio-Temporal Collaboration Questionnaire
(STCQ),2 was designed as follows. It features a total of 17 5-point Likert scale
statements that are thematically relevant to the four dimensions as adopted from
Churchill and Snowdon (1998), and described in the following way:

• Transitions between Shared and Individual Activities (TSIA): The interplay
between individual and group efforts, including the ability to switch
between these, within the scope of collaborative work.

• Negotiation and Communication (NC): Verbal conversation (i.e., talk) facili-
tated through the ability of utilizing nonverbal information cues in order to
discuss and interpret any task-related aspects of the activity (e.g., findings
in the data, roles and structure of task approach, and so on).

1It is noteworthy that the described fifth key feature for CVEs according to Churchill and Snowdon
(1998), namely flexible and multiple viewpoints, was excluded at this point in time, as it was deemed
negligible within the scope of this thesis.

2The STCQ was designed in collaboration with Aris Alissandrakis.
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• Sharing Context (SC): Characteristics and features of the shared space that
facilitate and support focused and unfocused collaborative work, leading
to shared understandings.

• Awareness of Others (AO): The ability to understand your partner’s activity
during times of (1) focused collaboration and active communication (i.e.,
group efforts), as well as (2) more independent and individual work.

Table 6.1 presents an overview of all item statements and their Likert scales
across these four dimensions. The design of the individual item statements is held
purposefully generic, anticipating re-usability, remix, and further adoption for
evaluations in similar contexts in the future.3 While the STCQ is anticipated to aid
the self-assessment of the collaborators’ joint spatio-temporal data analysis within
the context of a hybrid asymmetric collaboration setup, it is generally considered
to be independent of the involved interface technologies. Thus, the questionnaire
should also be easily applicable in other collaborative data analysis scenarios that
focus on spatio-temporal data. In fact, only the items AO.2, AO.3, AO.5, and AO.6
as part of the AO dimension (see Table 6.1) are rather context specific in regard
to the collaborator’s ability to send and retrieve spatio-temporal references using
their respective interfaces, inquiring ratings about the collaborator’s location in
space and time reference during group and individual efforts.

In practice, the questionnaire is to be filled out by each collaborator individu-
ally, in isolation, and directly after the respective task completion. The evaluation
of the answers should allow for a quantitative analysis of a system’s collaborative
features, and provide insights in regard to the collaboration as perceived by the
collaborators themselves. Furthermore, the results should be interpreted within
the context of the tested system and against its anticipated design, for instance to
assess if an anticipated role distribution between the collaborators was fulfilled
as intended, to name just one example.

6.3 Collaboration in VE Iteration 2: Stacked Cuboids
The first empirical efforts in regard to the presented concept of hybrid asymmetric
collaboration were conducted within the scope of the second VE iteration, i.e.,
utilizing the Stacked Cuboid data entity visualization design and the Nordic Tweet
Stream (NTS) dataset as described in detail throughout Section 5.4. Utilizing
the developed VE, the immersed user is able to explore spatial and temporal
aspects of the NTS corpus with a focus on multilingualism. However, besides
language, location, and time related data variables, each tweet contains a variety of
additional metadata variables, for instance all the hashtags4 used in a tweet. Due

3A link to an online repository with the STCQ is included in Appendix D.
4A hashtag on Twitter is utilized to index keywords and topics, enabling users on the social

networking platform to easily follow these.
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Figure 6.1: Conceptual system overview of the hybrid asymmetric collaboration
setup under utilization of the second VE iteration (see Section 5.4). Detailed
descriptions about the various system components are provided in Section 4.2.

to the diversity of these metadata variables, various possibilities for collaborative
data analysis arise. Even though head-mounted display (HMD) technologies
advance in various aspects, among others display resolution and tracking, it is
arguably still more convenient to read large amounts of text outside a VE, using
a normal computer monitor. Thus, an overall explorative data analysis scenario
(see Section 5.2) was adopted that is relevant for linguistics researchers, centered
around the collaborative analysis of hashtags in tweets in regard to language
variability. While the immersed user analyzes the NTS data with a focus on the
contextual spatial aspects of the dataset for a given point in time, identifying
potentially interesting locations during their exploration in the VE, the non-
immersed user is provided with an interface that enables a closer examination
of the used hashtags in the different locations. Consequently, the two users
collaborate by utilizing different display and interaction technologies (hybrid)
and take on different analysis roles (asymmetric) respectively, i.e., following the
concept of hybrid asymmetric collaboration as introduced in Section 6.1.

As a starting point for the practical investigation of this matter, i.e., hybrid
asymmetric collaboration within the context of spatio-temporal data analysis, the
decision was made to focus on supporting the collaborators’ mutual understanding
and their ability to make spatial references using their respective interfaces, but
not temporal references. Thus, for the data analysis at this stage, the collaborators
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were presented with the NTS dataset for a predefined point in time without the
ability to manipulate the temporal context using their interfaces.5

Figure 6.1 illustrates the overall system architecture, following the proposed
Collaboration Infrastructure as described in Section 4.2.4. The relevant data from
the NTS dataset are served to the respective interfaces, i.e., the immersive VE
and the non-immersive desktop terminal. Both interfaces are connected through
a real-time networking interface in order to allow support for synchronous
collaborative features. Furthermore, it is envisioned that the two collaborators are
co-located in physical proximity, such as being in the same room, allowing them
to communicate verbally without the need for a respective remote audio link.

6.3.1 Non-Immersive Desktop Terminal

The developed non-immersive desktop terminal, as illustrated in Figure 6.2, is
designed as an interactive InfoVis with the objective to support the analysis
of hashtags in tweets in regard to language variability. In terms of display
and interaction technologies, as indicated by its description, it is intended to
be operated using a normal desktop monitor and pointer (mouse) input. The
desktop terminal is composed of four views, supporting the overall main tasks
of (1) browsing the hashtags as detected in the various spatial locations, and
(2) applying subsequent sorting based on frequency and language. The four
views are partially interconnected, i.e., interactions in one view will cause others
to update accordingly.

View Composition and Interaction The top right part of the interface features a
Map View, displaying a geographic map of the Nordic region with all spatial data
entities represented as circles. Each individual data entity portrays a compiled
cluster of real-world places in accordance to the NTS dataset, as described in
Section 5.4. Using the pointer, each data entity can be selected by clicking on
it. More specifically, the user can select two data entities at a time, using the
pointer’s click and context-click respectively, i.e., left and right click. Data entities
selected through a normal click are referred to as selected and indicated by a
solid green outline, while those selected through a context-click are referred to as
bookmarked and indicated by a dashed green outline. The Desktop User Table View
in the top left part of the interface features two tables, each displaying hashtag
related information for the respective selected and bookmarked data entities in
accordance to the interactions in the map view. The table outlines are equally
color-coded to indicate these connections, i.e., solid green and dashed green.
Each table is composed of three columns, i.e., from left to right, the frequency
stating the total count of the hashtag, the hashtag itself, and the language of the
tweet the hashtag was detected in. Each column header can be clicked in order

5The support for both spatial and temporal references is explored as part of the subsequent
research efforts presented in Section 6.4.



204 CHAPTER �. DATA ANALYSIS USING HYBRID ASYM. COLLAB.

Figure 6.2: An impression of the implemented Non-Immersive Desktop Terminal
to explore hashtags in tweets in regard to language variability, and within the
context of the hybrid asymmetric collaboration setup with the second VE iteration.
Top Left: Desktop User Table View. Top Right: Map View. Bottom Left: Infor-
mation View. Bottom Right: VE User Table View.

to toggle between ascending and descending sorting of its respective column.
Similarly, as part of the implemented collaborative features (see Section 6.3.2),
the bottom right of the interface displays the VE User Table View, color-coded
with respective orange outlines, and presenting hashtag information based on the
immersed user’s selected and bookmarked data entities. Finally, the Information
View in the bottom left displays additional information, such as the temporal
context (date or week) of the data analysis, the unique real-world places in the
selected and bookmarked data entities, and a legend that illustrates the various
languages and their assigned colors.

6.3.2 Collaborative Features Design

To enable a pair of users to collaboratively explore and analyze the NTS dataset,
at the same time and using heterogeneous interface types, i.e., one utilizing the
immersive VE and the other the non-immersive desktop terminal as described
in Sections 5.4 and 6.3.1, additional features to support and facilitate their
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collaboration are needed. At this stage within the investigation, these collaborative
features are designed to address the following important CSCW concepts (see
Section 2.3):

• Common Ground and Awareness: Facilitate the users’ mutual understanding
of their in-situ spatial contexts during their joint data analysis activity.

• Reference and Deixis: Support for the transmission and reception of spatial
references as nonverbal communication cues in each of the collaborators’
respective interfaces during their joint data analysis activity.

The collaborative features should support the users’ verbal communication
through the display of the respective nonverbal information cues, particularly
keeping in mind the immersed user in the VE, wearing a HMD and thus unable to
establish visual contact with the non-immersed user. Verbal communication and
the use of deictic terminology along the lines of “look at that data entity behind you”
or “have a look at that one” under assistance of the provided nonverbal information
cues may facilitate their joint data analysis activity. Thus, the collaborative
features design aims to satisfy multiple intentions. First, based on additional
visual (nonverbal) information cues, the immersed user in the VE should be
made aware of what the non-immersed user is exploring, and vice versa. Second,
due to the increased context awareness, their verbal communication is eased.
And finally, due to the assisting collaborative information cues and the facilitated
verbal communication, the foundations for an engaging collaborative data analysis
activity are provided, enabling the users to make sense of the data together as
well as fostering their individual understanding of the data, while both of them
operate tools with different purposes to explore the same data.

Collaborative Information Cues: VE to Desktop Terminal The following
collaborative information cues from the immersive VE are displayed in the non-
immersive desktop terminal. The position, orientation, and field of view of the
immersed user in the VE are displayed within the map view of the non-immersive
desktop terminal (see Figure 6.2 top right). This should allow the non-immersive
interface user to have at all times a spatial understanding of where their immersed
partner is located, and what direction they are facing. Furthermore, both the
selected and the bookmarked data entities of the immersed user are visually
indicated in the map view through respective color coding that is in line with
the design of the non-immersive desktop terminal, i.e., a solid orange outline
for the selected data entity, and a dashed orange one for the bookmarked one.
Additionally, hashtag information about these data entities are displayed in the
VE user table view and updated in accordance to the immersed user’s interactions
(see Figure 6.2 bottom right). This allows the non-immersed user to quickly
switch ad hoc to the spatial context of their collaborator without the need to
make first the respective selections themself (REQ 16 and REQ 17 in Table 4.1).
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Figure 6.3: Impressions of the additional spatial reference features available in the
second VE iteration, and within the context of the hybrid asymmetric collaboration
setup. Left: Spatial reference pillar, set by the user of the non-immersive desktop
terminal. Right: Bookmark as a virtual pin, set by the immersed user in the VE
and signaled to the non-immersive desktop terminal.

Collaborative Information Cues: Desktop Terminal to VE The following
collaborative information cues from the non-immersive desktop terminal are displayed
in the immersive VE. To enable the non-immersed user to make a spatial reference
in order to point the immersed VE user to a specific data entity, a pillar design
was implemented (see Figure 6.3 left). In particular, a semitransparent white
cylinder object is placed at the center of a stacked cuboid in the VE, representing
the respective data entity that is bookmarked in the non-immersive desktop
terminal. The pillar’s height is scaled to be comparatively high, creating a
spotlight impression, similar to the bookmark feature initially implemented in
the first VE iteration (see Section 5.3.2). This design is intended to be easily
identifiable by the immersed user, to catch their attention and guide them to that
location, and thus to allow them to align their in-situ data analysis context with
the one of their non-immersed partner (REQ 16 and REQ 17 in Table 4.1).

6.3.3 Evaluation: Collaborative Explorative Analysis

An empirical evaluation was set up with the overall objective to explore and
validate the practical interplay between immersive and non-immersive interfaces
for collaborative data analysis. Naturally, the scenario of the evaluation was
centered around multilingualism and the NTS dataset, utilizing the second VE
iteration and its stacked cuboid data entity visualization design (see Section 5.4)
as well as the non-immersive desktop terminal and the implemented collaborative
features (see Sections 6.3.1 and 6.3.2). To evaluate this real-world scenario, pairs
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of first-year linguistics students were recruited that alternated the roles of one
participant being immersed in the VE and the other one using the non-immersive
desktop terminal (within-subject design).

6.3.3.1 Physical Study Space
All study sessions were conducted at the VRxAR Labs research group lab at Lin-
næus University, featuring an overall setup as initially described in Section 5.3.3.1.
To briefly recap, it features (1) a workstation for the researcher to moderate the
study, collect data, and monitor the involved system components, (2) a designated
square two-by-two meter area with a visual three-by-three grid on the floor for
the immersed user, wearing the HMD, to move freely without obstacles, and
(3) an additional desk and several chairs for further use by the participants. The
VE user utilized a HTC Vive HMD with a Leap Motion Controller attached in
front of it to enable 3D gestural input. Within the scope of the collaborative
system evaluation, the additional participant desk was set up as the workstation
for the non-immersed collaborator, as shown in Figure 6.4. It featured a desktop
computer with a 27-inch monitor, keyboard, and mouse to run the developed
non-immersive desktop terminal in full-screen mode. The co-located placement
of both collaborators in the same physical location allowed them to communicate
verbally (REQ 18 in Table 4.1) without the need of additional technologies. Fur-
thermore, one of the complementary chairs beside the VR system’s calibrated
safe interaction area was taken over by a second researcher, i.e., a professor of
English linguistics in the role of the respective domain expert, assisting with
the data collection and the collaboration assessment. Overall, the physical study
space provided enough space for the two participants and the two researchers to
conduct such an experiment comfortable and uninterrupted.

6.3.3.2 Interfaces Setup
The non-immersive desktop terminal and all the collaborative features across both
interfaces were available to the participants as described throughout Sections 6.3.1
and 6.3.2. The VE for the immersed user was generally set up as introduced and
described in Sections 5.4.1 and 5.4.2, following the stacked cuboid data entity
visualization design. However, a few changes to the overall interface were applied
to accommodate the collaborative data analysis scenario of exploring hashtags
in tweets in regard to language variability. First, the three information panels
were modified as follows. Overall additional information and all unique location
names are displayed in the left panel. A pre-compiled tag cloud, displaying the
most prominent hashtags in the data entity, and color-coded in respect to the
tweet’s language are presented in the center panel. A detailed listing about the
language distribution of the selected data entity is displayed in the right panel.
Figure 6.5 provides an impression of the modified information panel setup from
the immersed user’s field of view. Second, with the current focus on the spatial
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Figure 6.4: Two photos for an extended impression of the VRxAR Labs research
group lab at Linnæus University. Left: A desk and chair where the non-immersed
collaborator can be seated to operate the desktop terminal, and the researcher’s
workstation as a standing desk. A corner of the set up safe interaction area can
be seen in the foreground. Right: The VR system’s calibrated safe interaction
area (two-by-two meter), outlined as a three-by-three grid on the floor, for the
immersed user to move freely without obstacles.

Figure 6.5: An impression of the modified VE interface, presenting the informa-
tion panel setup in the second VE iteration, and within the context of the hybrid
asymmetric collaboration setup. The original interface is described in Section 5.4.
Note: Additionally, the user’s right hand features a juxtaposed adapted 2D graph-
ical menu to temporarily pause/resume any kind of interaction – an exploratory
feature, further examined in the third VE iteration (see Section 5.5.2).
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data analysis and as such the collaborators’ ability to make spatial references, the
Time Event Selection feature in the VE was temporally disabled, i.e., the respective
graphical menu attached to the user’s hand was hidden. Consequently, the
VE user had no means to manipulate the selected time event after application
start-up, as intended, to ensure both collaborators remain in the same temporal
context during their joint data analysis. Third, similar to the non-immersed user’s
ability to make a dedicated nonverbal signal to the VE user (see Section 6.3.2),
the VE had to be extended for feature parity. To keep track and signal a data
entity that the immersed user determines as interesting, a visible marker can be
attached by grabbing a stacked cuboid and pulling out a virtual pin (see Figure 6.3
right). A signal about this “bookmarked” data entity is sent to the non-immersive
desktop terminal to update its VE User Table View accordingly (see Section 6.3.2).

6.3.3.3 Task
Each pair of participants was presented with an explorative data analysis task
(undirected search with no hypotheses given; see Section 5.2), requiring them
to collaborate within a sociolinguistic context. In particular, two tasks were
defined, requesting the collaborators to make respective assessments for each
of the five Nordic regions regarding (1) the language distribution of tweets, i.e.,
comparing regional data entities, and (2) how closely the distribution of the
hashtags’ language matches the distribution of the tweets’ language (for each
region). The collaborators were asked to combine their observations with respect
to both of these tasks into a final reasoning for each of the regions. For the
purpose of this evaluation, two temporal contexts were selected from the year 2017
within the NTS dataset, i.e., May 23 as dataset A, and October 21 as dataset B.6
For each study, the order of the datasets was randomized and the participant
roles (immersed and non-immersed) would switch accordingly. Consequently,
the described tasks were completed twice, once with dataset A, and once with
dataset B, with each participant operating each interface type once (within-subject
design). Overall, the task was designed to encourage an open exploration of the
dataset by the participants using their own strategy and pace.

6.3.3.4 Measures
A mixture of task performance and subjective methods were applied (see Sec-
tion 2.5.1), allowing for quantitative and qualitative data collection as follows. To
obtain insights about the usability of the collaborator interfaces, i.e., the immersive
VE and the non-immersive desktop terminal, the System Usability Scale (SUS)
was administered. A logging system, implemented as part of the collaborative
system, enabled the comprehensive collection of all user input across the two
interfaces. Furthermore, observations were conducted by two researchers, taking

6The birthdays of Carl Linnæus (May 23) and Alfred Nobel (October 21).
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notes about the collaborators’ verbal communication as well as their interactions
with the interfaces and as such with each other. Finally, a brief semi-structured
group interview was prepared, conducted after the collaborative tasks on both
datasets were completed, inquiring additional insights from both participants
with the freedom to pose follow-up questions based on their answers and prior
made observations. In particular, important collaboration aspects were defined
for the participants, followed by three general interview questions as follows:

Definitions: Communication refers to your your verbal communication and the
referencing actions in the interfaces. Coordination refers to your actions as a
result of your prior communication. Collaboration refers to the outcomes of prior
communication and coordination actions.

• Question 1: Do you have any comments about your communication/coordina-
tion/collaboration during your work on the two tasks?

• Question 2: Would you consider the two interfaces (immersed and non-immersed)
evenly balanced?

• Question 3: In a hypothetical scenario where you are only allowed to use one of
the two interfaces (immersed or non-immersed), which one would you prefer?

6.3.3.5 Study Procedure
In preparation of the empirical evaluation, a class of first-year linguistics students
was provided with an introduction to the developed system one week prior to
the practical conduction of the evaluation. A video demonstration was used to
present all the main functionalities of the immersive and non-immersive interfaces
(see Appendix A). They were also briefly introduced to the overall data context,
but no details about the tasks were revealed. Overall, this format was chosen to
ensure that all participants received the same introduction. With respect to the
actual study, each session followed the same procedure of four stages, anticipating
an overall session duration of approximately 60 minutes:

1. Introduction (10 min);

2. Collaboration 1 (20 min):

(a) Warm-up 1 (5 min in the VE),
(b) Task on dataset A or B (10 min in the VE),
(c) Questionnaire 1 (5 min);

3. Collaboration 2 (20 min):

(a) Warm-up (5 min in the VE),
(b) Task on dataset B or A (10 min in the VE),
(c) Questionnaire (5 min);

4. Group Interview (10 min).
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The introduction began with welcoming the participant pair and asking them
to fill out an informed user consent. Afterwards, each of the two collaboration
stages featured the same procedure of first providing a brief warm-up phase to
allow the participants to familiarize themselves with their respective interfaces,
then completing their exploratory data analysis task as described in Section 6.3.3.3,
and afterwards completing in seclusion the SUS questionnaire for the interface
they operated. Once the first collaboration stage was completed, the used dataset
and participant roles were iterated, after which the second collaboration stage
was conducted. Two researchers, the thesis author and a professor of English
linguistics in the role of the respective domain expert, observed the participants
during their task completion stages and took notes. Furthermore, it is noteworthy
that for each of the respective warm-up phases, data of a different temporal context
(July 4, 2017) was used to prevent the participants from taking over any data
insights from warm-up to task. Once the two collaboration stages were completed,
the semi-structured group interview was conducted with both participants and
both researchers. Finally, the participants were thanked and sent off.

6.3.4 Results

6.3.4.1 Participants
For this empirical evaluation, a total of = = 15 participants were recruited,
who were teamed up as pairs that allowed the conduction of overall eight
collaborative study sessions.7 The participants were first-year linguistics students,
enrolled in the Sociolinguistics module of the English language B.A. program
at Linnæus University (see Table 5.9 D). As part of the study preparation, all of
them were briefed about the developed collaborative system one week prior to
their participation (see Section 6.3.3.5). None of them had any prior hands-on
experiences with the developed interfaces.

6.3.4.2 Task Assessment
Based on the explorative analysis task (see Section 6.3.3.3), the collaborator pairs
were free to choose their own data exploration and analysis strategy. All of them
were able to utilize the provided interfaces to make assessments in regard to the
given task. Table 6.2 provides an overview of their assessments and what Nordic
regions they chose to analyze during their two tasks. The initially estimated ten
minutes limit per task proved insufficient for making assessments for all five
regions. Instead, the participants focused on different regions across the two
tasks, even though the temporal context during each of the tasks differed.

7Due to a last minute cancellation by the sixteenth participant, a doctoral student in linguistics at
Linnæus University was recruited as a substitute (their data are excluded from the results analysis),
allowing them to pair up with the fifteenth participant.
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Session
Assessed Regions

First Task Second Task

1 DK, FI SE, NO, IS
2 DK, IS, NO SE, FI
3 SE DK, IS
4 IS, NO, DK FI
5 SE, FI SE, NO, IS, DK
6 SE DK, NO
7 IS, DK FI, SE
8 DK, SE NO, FI

Table 6.2: For the first and second task of each study session, the Nordic regions
that the collaborator pairs analyzed. The presented order reflects the order of
regions that the pairs chose to analyze during their task completion. Country
Codes: DK (Denmark); FI (Finland); IS (Iceland); NO (Norway); SE (Sweden).

Exploring Denmark, the students discovered that the use of English and
Danish language in tweets (and hashtags) was rather equally distributed, with
some increased frequency of Danish towards the countryside. Students were
surprised by how dominant and “omnipresent” the use of Finnish language was
across the entirety of Finland, with English language appearing only in more
populated places. Additionally, they noted the low frequency of Swedish in
tweets that originated in Finland. These observation were declared as quite
different from those of other countries, initiating thoughts such as, “The Finns
really want to use it [the Finnish language] to prevent it from going away.” The students
were intrigued with their observations in Iceland, stating that both English and
Icelandic language were quite equally used in tweets, but more hashtags were
attached to English tweets. Investigating those hashtags, the students concluded
that tourism may be a reason. Exploring Norway, the students found that the
majority of hashtags attached to tweets were in Norwegian rather than English,
even though there seemed to be quite some English traffic along the coasts,
arguably attributed to “tourists visiting the fjords.” Sweden’s exploration was
more versatile, as students highlighted some differences between the south (fairly
uneven distribution of hashtags and languages) and the more center and northern
parts (more Finnish language towards the border to Finland; lots of tweets
discovered in other languages, while hashtags were rather attached to Swedish
and English tweets). The students also discovered that the use of Swedish was
dominant in the metropolitan areas both in terms of language and hashtag usage.
Similar to Norway, some students assessed that a fair amount of the hashtags
themselves were in Swedish.
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Figure 6.6: Results of the SUS for both interface types, i.e., the immersive VE
and the non-immersive desktop terminal, presented including both the original
numerical scale as well as the supplemental adjective ratings (see Section 2.5.1).
The mean values for both are slightly above the acceptable threshold (i.e., score >
68). An independent samples t-test was conducted to compare the two conditions’
mean SUS score. There was no statistically significant difference for the VE
(" = 68.5, (⇡ = 16.17) and desktop terminal (" = 69.67, (⇡ = 11.09) conditions;
C(24.79) = �0.23, ? > .05. Samples were tested for normality using the Shapiro-
Wilk test.

6.3.4.3 Questionnaires
Figure 6.6 presents the collected self-assessments in regard to system usability
for both interfaces of the collaborative system.

6.3.4.4 Logging
Using the collected data from the system logs, it was possible to reconstruct
aspects of the collaborative behavior of the pairs. For instance, following an
overall similar pathway visualization approach as utilized in the evaluation of
the first VE iteration (see Section 5.3.4.4), a pair’s travel interactions over time
can be visualized, providing visual indications about their spatial data analysis
contexts during the task completion. Examining these pathway visualizations,
for instance as illustrated in Figure 6.7, it becomes apparent that the collaborator
pairs explored only parts of the dataset (due to the set time limitations), and that
there were instances where they collaborated closely (each examining the same
spatial context) as well as sometimes more individually (each examining different
spatial contexts). Furthermore, based on the implemented collaborative features
that facilitated the pairs’ spatial referencing abilities across the two interfaces
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Figure 6.7: Examples of different data exploration strategies based on a participant
pairs’ travel and selection interactions using their respective interfaces, compiled
as pathway visualizations over time. Left: The participant pair collaborated closely,
examining the same spatial contexts for the most parts. Right: The participant
pair collaborated more individually, rather examining different spatial contexts.
Note: An overview of all pathway visualizations is presented in Appendix C.

Pair Task
Immersed User Non-Immersed User
referred (explored) referred (explored)

p1 1 8 (8) 10 (10)
p1 2 4 (4) 15 (14)
p2 1 0 12 (10)
p2 2 1 (1) 5 (3)
p3 1 1 (0) 3 (3)
p3 2 1 (1) 1 (1)
p4 1 2 (2) substitute participant
p4 2 substitute participant 4 (2)
p5 1 0 1 (1)
p5 2 2 (2) 3 (1)
p6 1 1 (1) 7 (5)
p6 2 4 (3) 4 (3)
p7 1 5 (5) 13 (5)
p7 2 3 (3) 20 (13)
p8 1 6 (4) 5 (5)
p8 2 7 (6) 5 (5)

Table 6.3: An overview of the dedicated spatial referencing interactions for the
immersed and the non-immersed users per pair, presenting the number of referred
data entities by each user and how many of these were subsequently explored by
their partner through respective travel and selection interactions.
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(see Section 6.3.2), the results presented in Table 6.3 indicate that the immersed
and non-immersed users referred to specific locations (data entities) that were
then explored by their partner. In some cases, these features were used more
than in others, but these deictic gestures were to a great extent acknowledged,
and benefited their collaboration, enabling them to successfully synchronize their
in-situ spatial data analysis contexts.

6.3.4.5 Observations
The notes from the observations conducted by the two researchers were combined,
coded, and examined in order to identify reoccurring patterns. Within the context
of this evaluation and the results presentation, references are made to sessions
and tasks. Session indicates that the phenomena were observed in both tasks,
while task indicates an occurrence in only one of the two tasks of an individual
collaborator pair.

Three pairs approached their task solving process noticeable systematical and
structured throughout their session, engaging in frequent verbal communication
and discussion to make informed assessments. Three pairs appeared to analyze
the data closely together, unconnected to whether they approached the task
completion systematically or not. One pair was observed exploring the datasets
rather individually and in silence during one task. In terms of the decision
making with respect to what spatial context to explore next, a rather equal
distribution between guidance through the immersed VE user and guidance
through the non-immersed desktop terminal user was noticed during three tasks.
The immersed user guiding the non-immersed one was observed in one task,
while the non-immersed user clearly guided the VE user in four tasks. The use
of deictic references and related terminology was explicitly observed throughout
four sessions and two tasks, and included phrases, such as:

• “I am here!”

• “Let’s look there!”

• “Do you want to to go there?”

• “Go here!”

• “Let’s finish here first!”

• “Where do you want me to go now?”

• “Do you see this/that?”

• “Have you seen this one?”

• “Where do you want to go? Select a place, and I will go there!”

• “Come here!”

• “Turn around!”



216 CHAPTER �. DATA ANALYSIS USING HYBRID ASYM. COLLAB.

• “Behind you!”

• “Next to you!”

• “Should I come to you?”

• “Look at this one, I pinned another one!”

• “I pinned this one here.”

• “This is quite interesting! Look at this one!”

During one session and one task, one member of the pair appeared more
dominating (arguably by personality) with respect to the collaborative team work
compared to their partner. Within one session and three tasks, the pairs made
strong use of their contextual and prior knowledge, discussing and commenting
on certain phenomena they discovered within the data, covering a variety of
topics, for instance anecdotes about places the participants had visited in real
life or about major news events that significantly influenced the Twitter hashtags
on the task dates. The use of the collaborative features, particular in terms of
the collaborators’ mutual ability to create spatial references by “pointing” in
the data, was frequently observed during five sessions and three tasks (see also
Table 6.3). Participants in three sessions gave active verbal acknowledgments
that the display of the VE user’s position and orientation in the map view of the
non-immersive desktop terminal supported their understanding and awareness
of their immersed partner’s current spatial context. During one session and
three tasks, the VE user was observed actively commenting on the underlying
map on the floor in the VE and, in conjunction, their ability to navigate and
orient themself based on their geographical knowledge. Visible and audible
indications of a generally pleasant experience, for instance through noticeable fun
and laughter, were observed during four sessions and two tasks. Six participants
appeared to be immediately very fluent with the 3D gestural input as interaction
modality in the immersive VE. Some additional initial efforts, for instance to
toggle the information panels by performing a “thumbs up” hand posture (see
Section 5.4.2), were observed with six participants.

6.3.4.6 Group Interview
In a joint group interview with both participants of each collaborator pair, they
were asked whether they considered their roles based on the two interfaces evenly
balanced. Additionally, they were asked to consider a hypothetical scenario where
they would only be allowed to use one of the interfaces to analyze the data, and
whether they would have a preference regarding the use of the immersive or the
non-immersive interface, given that each interface satisfies different data analysis
purposes. Four participants expressed the opinion that the balance between
the user roles across the immersive and non-immersive interfaces were rather
equal. Six participants favored the immersive VE over the non-immersive desktop
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terminal, while one participant preferred the non-immersive desktop terminal.
Four participants stated that their answer regarding preference would depend on
the task or the objective of the activity, thus not being able to decide whether
they would favor the immersive or the non-immersive interface. However, five
participants actively argued that they would prefer a collaborative scenario
as experienced within the study, regardless of their interface preference. Six
participants could not give a clear preference of one interface over the other.
The participants also provided some further general comments. In particular,
six participants emphasized that the immersive VE allowed them to get a good
overview of the data. Six participants stated that the non-immersive desktop
terminal featured a lot of details. Eight participants actively acknowledged
experiencing a learning effect in their collaboration and interaction between the
first and second task. One pair genuinely appreciated their experience, stating
that it felt like “a two-person job.” Another pair acknowledged the feeling of time
passing by rather quickly due to their engagement in the joint data analysis activity.
Another pair highlighted that, “It was so much fun to have both applications, especially
for the non-immersed user, otherwise it would be rather dull.” Two pairs emphasized
that they did not feel any barrier within their verbal communication, enabling
them to naturally speak and interact with each other using the provided features,
self-reporting their perceived coordination and collaboration as “good and easy”.

6.3.5 Discussion

The integration and bridging of immersive and non-immersive interfaces for
collaborative data analysis, interpretation, and meaning making is a subject of
high interest in the research community, among others highlighted by Fröhler
et al. (2022), Ens et al. (2021), and Wang et al. (2019). In addition to the related
literature, some reoccurring observations were made based on prior experiences
of demonstrating IA interfaces, for instance within the scope of the developed
second VE iteration and the linguistics case study as presented in Section 5.4.
At public demonstrations in particular, a typical setup would involve a single
user to immerse themself in the VE, mirroring their field of view on a large
display for bystanders to follow. However, those had no straightforward means
of engaging, communicating, and collaborating with the immersed user. To
their own frustration, any such attempt turned out rather difficult to achieve, as
the immersed user was not able to successfully identify where the bystander’s
referred point of interest was. There was either a lack of visual reference due
to the immersed user wearing a HMD and in turn not being able to establish
visual contact with the respective bystander, a lack of features in the bystander’s
verbal description, or both, thus preventing collaboration between the immersed
insider and the non-immersed outsiders. Motivated by both the literature and
these own experiences, a design space was created to investigate aspects of this
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subject within the overall context of CIA more closely, namely the concept of
hybrid asymmetric collaboration as introduced in Section 6.1.

Under consideration of the developed second VE iteration, the existing IA
interface was extended into a collaborative system that connects in real-time
to a non-immersive interface, enabling bi-directional referencing to spatial data
entities that facilitate the collaborators’ awareness and their ability to verbally
discuss and interpret the data together. Pairs of linguistics students used the
interfaces to collaboratively investigate a large Twitter corpus with a focus on
multilingualism in an explorative analysis task to obtain insights about the usage
of language and hashtags within the Nordic region. Based on the results of
this, within the scope of this thesis, first empirical evaluation with respect to
the hybrid asymmetric collaboration concept, the overall presented approach
and its designed collaborative features can be considered validated, allowing for
reflections with respect to usability and collaboration.

Usability The reported usability scores for the two interfaces, presented in
Section 6.3.4.3, point towards an acceptable usability for both, generally indicating
that the participants were able to operate the interfaces. Thus, one may infer that
the whole collaborative system, consisting of both interfaces, is indeed usable
within the presented CIA context. Some of the reported lower usability scores
for the VE may be attributed to the observed initial difficulty of learning the 3D
gestural input (see Section 6.3.4.5). However, given that it was each user’s first
interaction with the IA interface, and the comparatively short exposure time in
the immersive VE (approximately 10 to 15 minutes including warm-up), it is
noteworthy that all of them learned to utilize the implemented features for their
data analysis. Usability aspects in regard to utilizing 3D gestural input for various
analysis tasks have been investigated and discussed more closely within the scope
of the third VE iteration’s interaction design (see Sections 5.5.2 and 5.5.5).

Collaboration The design of the developed collaborative features (see Sec-
tion 6.3.2) hold characteristics of remote collaboration, even though the interface
users were co-located in the same physical space and able to communicate
verbally with each other without additional technological assistance. This is
arguably another example illustrating that a simple classification of collaborative
scenarios with respect to space and time, i.e., where and when collaboration takes
place, becomes increasingly insufficient, as discussed in Section 2.3. Even though
the student participants were physically co-located, they were not able to rely
on important collaborative information cues due to the nature of the involved
interface technologies. A main aspect of the developed collaborative system
was concerned with the exploratory investigation of how they would approach
their joint data analysis using the provided features. The results, based on log
file analysis, researcher observations, and conducted group interviews, can be
considered promising in various regards.
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First, the students appeared very engaged in the activity itself as well as in the
collaboration with their partners. In most cases, their verbal communication was
frequent and natural, using a fair amount of close collaboration in order to analyze
the data together using the two interfaces, each for their designated purpose. It
was particularly interesting to listen to their choice of words, commonly making
use of deictic terms and expressions, in combination with the referencing abilities
as provided through both interfaces, allowing them to synchronize their data
analysis contexts to establish a mutual understanding of where they are focusing
their spatial data analysis efforts. Generally, the collaboration between all the
students felt subjectively organic, and the system allowed them to approach the
task in a rather flexible manner choosing their own data analysis strategies, for
instance as illustrated in Figure 6.7. While some pairs approached the tasks
rather enthusiastically and actively (some of them even continued with minor
data exploration endeavors after the tasks were completed), a few appeared to
be rather shy and conservative at first. Arguably, this can be attributed to the
different personality traits of the students, individually as well as collectively,
particularly with respect to Churchill and Snowdon’s (1998) acknowledgment,
stating “(...) that cooperative and collaborative activities involve considerable negotiation,
and teams vary tremendously in their negotiation strategies as well as in their task
accomplishment process.”

Second, it was particularly interesting to investigate how the students would
make use of the provided collaborative features. The detailed display of the
VE user’s position, orientation, and selection in real-time in the non-immersive
desktop terminal enabled the outside student to be aware of the VE user’s context,
subjectively at all times, thus providing somewhat of a monitoring tool. Often the
non-immersed student verbally acknowledged their awareness of the VE user’s
data analysis context. This allowed the VE user, visually immersed, to focus on
the exploration of the virtual 3D space. However, the non-immersed student
often used the provided spatial referencing feature, guiding the attention of the
immersed student ad hoc to highlighted points of interest in the VE. Arguably, the
non-immersed student had more (visual) awareness of their immersed partner
than vice versa. In most of the cases, the VE user found something of interest and
simply stated (along the lines of) “look what I found” or “look where I am” and their
non-immersed partner was able to do so. These observations are in line with the
log file analysis, confirming the relatively less frequent use of the dedicated spatial
referencing feature by the immersed user (see Table 6.3). It appears that the
collaborative information cues integrated in the map view of the non-immersive
desktop terminal, which continuously provided updates about the immersed
user’s spatial data analysis context, were sufficient for the non-immersed interface
user to follow along. Contemplating this matter and the collaborative features
design, an interesting reflection can be made. While the non-immersed user was
constantly aware of their immersed partner’s context without the requirement



220 CHAPTER �. DATA ANALYSIS USING HYBRID ASYM. COLLAB.

for them to make dedicated spatial references by attaching a virtual pin to the
respective data entity (see Section 6.3.3.2), the immersed user was more reliant
on trusting the verbal acknowledgments of their non-immersed partner, stating
that they followed along. After all, an indication about the non-immersed user’s
spatial data context, as “visual confirmation” so to say, was not automatically
displayed in the immersive VE. Even though it did not prevent them from
collaborating during their joint data analysis, based solely on visual information
cues, the immersed student was arguably less aware of their non-immersive
partner than vice versa.

Third, all student pairs were able to complete the explorative data analysis
tasks and to make a variety of observations within the given scenario, as doc-
umented in Section 6.3.4.2. One of the two observing researchers, the domain
expert within linguistics, was satisfied with the participants’ answers, rating
them as reasonable and along the lines of what is expected of first-year students
in terms of complexity and critical thinking. Furthermore, it was pleasant to
observe that the students’ dialog with each other encouraged them to base some
of the assessments on meta information, such as their own contextual knowledge.
Generally, the interactions between the immersed and non-immersed students
seemed to facilitate experiences of shared discovery, which has great potential
for collaborative data analysis activities within educational contexts, such as
the presented linguistics and higher education context where students are more
and more frequently introduced to the large datasets that are produced in the
humanities scholarship today.

6.4 Collaboration in VE Iteration 3: 3D Radar Charts

The results of the first exploratory investigation in regard to the concept of hybrid
asymmetric collaboration, presented throughout Section 6.3, motivates to further
examine the subject of bridging interactive InfoVis and IA. After all, the results
of the conducted empirical evaluation validated the presented interaction and
collaboration between a pair of users where one was, so to speak, inside a VE,
while the other remained outside, each for their own dedicated data analysis role.
To move further in this direction within the scope of this thesis, a collaborative
data analysis scenario was designed that incorporates the latest immersive VE
iteration, i.e., applying the 3D Radar Chart data entity visualization and interaction
design as described in Section 5.5. In particular, the data analysis scenario is
centered around the Plant-Weather timelines (PWt) dataset, likewise introduced as
part of Section 5.5 and illustrated in Figure 5.18. The dataset features correlated
time-series data for various locations with respect to plant and weather data
variables, and each plant data variable is either positively or negatively correlated to
each of the two weather data variables. Using the PWt dataset, it is possible to
design a collaborative task with the objective to analyze the data and identify
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Figure 6.8: Conceptual system overview of the hybrid asymmetric collaboration
setup under utilization of the third VE iteration (see Section 5.5). Detailed
descriptions about the various system components are provided in Section 4.2.

these correlations by using the immersive and non-immersive interfaces as well as
their collaborative features. In contrast to the initial exploratory investigation, the
additional empirical efforts towards hybrid asymmetric collaboration, as presented
throughout the remainder of this section, differ in several major aspects:

• Both the immersive and the non-immersive interface focus on the analysis
of spatio-temporal data under utilization of appropriate visualization
approaches, i.e., the 3D radar chart data entity visualization design as
part of the immersive VE, and typical 2D data visualization techniques
such as described by Ward et al. (2015, Chapters 6 and 7), Munzner (2014,
Chapter 12), and Lundblad et al. (2010) as part of the non-immersive
desktop terminal.

• Several generalized design options were compiled with the objective to
guide the implementation of various spatio-temporal reference designs
as visual, nonverbal collaborative information cues for the user in the
immersive VE.

• The collaborative features to allow referencing across the interfaces are
integrated more seamlessly through continuous signaling without the need
to take dedicated actions to send discrete signals.

• A pair of collaborators utilizes the interfaces with the aim to complete a
confirmative analysis task, i.e., a directed search to extract insights from
the data (see Section 5.2).
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• In addition to usability, the empirical evaluation of the collaborators’ data
analysis activity examines aspects of user engagement and collaboration in
VEs (see Section 6.2), including a quantitative audio activity analysis of the
collaborator pairs.

• Instead of being physically co-located, the collaborators assume a dis-
tributed remote setup where they communicate verbally via respective
audio link, as illustrated as part of the overall collaborative system architec-
ture presented in Figure 6.8.

6.4.1 Spatio-Temporal Reference Design

Within the context of a collaborative data analysis setup that utilizes an immersive
VE centered around data visualization using the 3D radar chart design as
presented throughout Section 5.5, the question arises of how to implement visual
references. Visual references as nonverbal communication cues aim to assist the
immersed collaborator to focus their attention towards a point of reference as
indicated through the non-immersed collaborator. While the visual reference
design as part of the collaborative setup around the second VE iteration was
exploratory, utilizing a pillar approach to make spatial references in the VE (see
Section 6.3.2), it is intriguing to investigate visual reference designs in a more
structured manner, among others allowing for reflection on design considerations
for CIA experiences.

A promising direction to enable collaboration in VEs, and thus support various
collaborative information cues, is the use of avatars, i.e., a virtual representation
of the other user(s) in the VE, either co-located or connected remotely (Xia
et al., 2018; Steed and Schroeder, 2015). The visual design of such avatars has
been investigated in a multitude of studies, for instance to determine differences
between realistic and other types of avatar representations (Pakanen et al.,
2022; Sun et al., 2019), to explore effects of nonverbal expression using highly
expressive avatars (Wu et al., 2021), or to determine how avatar appearances
influence aspects of communication and interaction (Heidicker et al., 2017).
Collaboration and the use of avatars often imply that all users are utilizing
some type of immersive technology to track and share the contexts in the 3D
information space. However, such an approach is not always feasible for the
collaboration on the same data across different interface types, for instance when
using non-immersive display and interaction technologies that do not feature such
capabilities. Consequently, within the scope of the presented hybrid asymmetric
collaboration concept (see Section 6.1) and the design of collaborative information
cues across immersive and non-immersive interface types, rather than utilizing
an avatar-based approach, an abstract visual reference design is followed that is
centered around the manipulation of the interface through visual artifacts that
are similar to annotations, indicators, or alike.
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Thus, three generalized design options for the creation of visual references in
immersive data visualizations were defined (see Section 6.4.1.1). These design
options are partially informed by related work around the subject of collaborative
information cues in VEs, for instance as presented in Section 3.4.

Naturally, the reference design of collaborative information cues is inherently
dependent on the applied visualization, it’s purpose, and it’s scenario, such as
what type of data are displayed and using what technique. In other words,
the reference design is dependent on the complexity and composition of the
virtual 3D space. This is important in order to determine what to potentially
signal to, allowing for the application of a reference design option accordingly.
Within the presented scenario of spatio-temporal data analysis, the task type
definitions as described by Andrienko and Andrienko (2006, Chapter 3) can be
followed, differentiating between elementary and synoptic tasks. In particular,
elementary tasks are concerned with the reference to one individual data entity,
for instance, one location (spatial) or one point in time (temporal). Synoptic tasks
are concerned with the reference to multiple data entities, such as a group of
locations (spatial) or a range of multiple points in a time-series (temporal).

Under consideration of the 3D radar chart data entity visualization design
and the different task types, the overall VE composition, described in detail in
Section 5.5.1, can be summarized as follows. Individual 3D radar charts can
be uniquely identified by their geospatial location (country). Thus, in regard
to the spatial reference design, signaling to individual and multiple locations
should be possible. Each 3D radar chart features multiple time-series data
variables. Thus, it should be possible to refer to a single time event as well as
to a range of consecutive points in time. Time event and time range references
should be possible both across all time-series data variables as well as just for
individual data variables. Based on this understanding of the VE composition, it
is possible to design spatial and temporal references as collaborative information
cues. Their implementation is described in Sections 6.4.1.2 and 6.4.1.3, allowing
for subsequent empirical evaluation (see Section 6.4.4). Some of the presented
reference designs are also utilized as part of the overall presented collaborative
features design (see Section 6.4.3).

6.4.1.1 Design Options
To provide a reference that catches the user’s attention and thus guides them
towards an artifact, a signal is required that allows to be distinguished from the
conventional environment. Within the scope of this thesis, the focus is set on visual
sensory input, i.e., the manipulation of the immersive data visualization through
means that allow its user to visually perceive references by looking around.8 To
guide the creation of visual references as collaborative information cues, three

8Naturally, other sensory input, for instance from auditory or somatosensory interfaces, may be
used as collaborative information cues in VEs.
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design options were defined: Modify Artifact, Add Artifact, and Modify Environment.
These design options, as presented in Table 6.4, are held purposefully generic and
low-level to allow their utilization across many different contexts and scenarios.

Modify Artifact (MA) The MA design option follows the concept of temporarily
modifying the visual appearance of the referred artifact, aiming to distinguish it from
all others accordingly. It is important that such a modification enables the user to
detect the referred artifact, even if the process of the actual modification was not
observed, i.e., the transition from normal to referred visual appearance. This is
arguably particularly important within the context of VR experiences, as it cannot
be guaranteed that the referred artifact is within the immersed user’s field of view
at all times, thus the change in visual state might not be observed. Depending
on the complexity of the implemented modification to the (existing) artifact,
this option can be considered to be comparatively friendly in regard to required
computational resources, as it is likely that no new artifacts and geometry need
to be added to the scene. At the same time, the visual alteration of the referred
artifact should be carefully considered, as potential visual mapping and data
encoding may be lost through the modification of its original appearance.

Add Artifact (AA) The AA design option follows the concept of temporarily
adding a visual artifact in close proximity to the referred artifact, serving as a visual
annotation. Such an added artifact should strive to (1) enable clear identification
of the associated artifact it is intended to signal to, allowing the user in the VE to
effectively focus on the referred artifact, (2) be easily detectable and distinguishable
from all other artifacts in the scene, but at the same time (3) not obstruct or
occlude other important information in the scene. Using this option, the visual
appearance and integrity of the referred artifact is maintained in its original
state, thus not loosing any potentially applied visual mapping and data encoding,
which are likely to be relevant within analytical scenarios. Adding an artifact
to the scene, although temporary, requires some practical considerations. For
instance, depending on the added artifact’s complexity, such as its geometry, its
introduction to the scene will likely demand additional computational resources.
Thus, it is important to ensure that this is implemented in a way as to avoid
a noticeable impact in the immersive application’s performance. Furthermore,
based on the designer’s and developer’s assessments, temporarily adding (and
removing) an artifact should be possible implementation-wise in a comparatively
effortless and reasonable way.

Modify Environment (ME) The ME design option follows the concept of
temporarily modifying existing artifacts of the environment that are in close proximity
or can otherwise be directly associated with the referred artifact. As opposed
to the AA option, rather than introducing an additional artifact to the scene,
the ME option builds upon the utilization of existing elements or features in
the computer-generated environment to establish a visual reference. Naturally,
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Figure 6.9: Impressions of the three spatial reference designs implemented in
the third VE iteration, from the immersed user’s field of view, and presented as
elementary and synoptic task configurations.

this requires that the overall visualization and virtual scene are complex enough
to provide such modification opportunities to begin with. If this requirement
is met and the environment indeed provides artifacts or alike that allow for a
semantic inference to the referred artifact, their appearance may be modified in
order to act as a visual signal accordingly. Generally, this approach is likely to
have a comparatively low computational impact as it utilizes existing artifacts
and geometry that already exist. At the same time, the original visual integrity
of the referred artifact is maintained (as opposed to the MA design option).

6.4.1.2 Spatial Reference Design
For the purpose of referring to specific 3D radar chart instances in the VE,
three different spatial reference approaches were designed in accordance to
the presented design options (see Figure 6.9). First, the pillar design follows
the AA option, creating a semitransparent cylinder object with the 3D radar
chart at its center, surrounding it accordingly. The pillar’s height is scaled to
make it appear to “shine from the top down” in the VE, similar to a spotlight.
It is noteworthy that this design was also previously used in the exploratory
investigation of hybrid asymmetric collaboration within the context of the second
VE iteration (see Section 6.3.2) and as a bookmark in the first VE iteration (see
Section 5.3.2). Second, the location design follows the ME option, modifying the
color of the extruded country polygon on the virtual floor that each 3D radar chart
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is directly associated with. Third, the node design follows the MA option, visually
separating the referred 3D radar chart from all others by uniquely coloring all its
data variable axes.

6.4.1.3 Temporal Reference Design
For the purpose of referring to individual time events and time ranges of multiple
consecutive time events within a 3D radar chart, four different temporal reference
approaches were designed in accordance to the presented design options (see
Figure 6.10). First, the highlight design follows the MA option, visualizing a
colored mesh for the time event across all data variables as elementary task
reference, respectively coloring the time range segments in each data variable
axis as synoptic task reference. Second, the outline design follows the ME option,
creating a closed visual loop along the outside of all included time events. Third,
the pointer design follows the AA option and adds two artifacts to the visualization
as reference, i.e., each included time event is encapsulated by a small visual
sphere, further assisted through a juxtaposed 3D pointer model that directly
indicates the respective time event or time range. Fourth, a symbol design was
implemented, also based on the AA option and following a similar approach as
the pointer design. However, instead of a pointer, the virtual sphere is juxtaposed
with a symbol that can be interpreted by the user to infer further meaning. As a
first exploratory illustration, the decision was made to use a magnifying glass
symbol in a “let us investigate this [temporal reference]” analogy.

The complexity of the 3D radar chart data entity visualization design allows
for different temporal reference configurations. Making a reference across all
data variables is illustrated in Figure 6.10, whereas references in individual data
variables are presented in Figure 6.11. Additionally, different configurations of the
pointer and symbol designs are explored, as presented in Figures 6.12 and 6.13.
The placement of the pointer indicator could encode further analysis related
information, such as through a neutral, positive, or negative pointing direction,
for instance to provide a comparison to a prior data value or to indicate an
overall trend across the referred time range. Similarly, the application of different
symbols could indicate an additional collaborative information cue, for instance to
provide a reason why the collaborator is making a reference in the first place, such
as to investigate, because they found something they deem exciting, or because
they want to further talk about the referred data.

6.4.2 Non-Immersive Desktop Terminal

Within the presented context of the PWt dataset and in alignment with the
collaborative data analysis scenario, the non-immersive desktop terminal is
designed as an interactive InfoVis. Its main purpose is to enable its user to
explore the two weather data variables, i.e., sunlight and humidity, over time
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Figure 6.10: Impressions of the four temporal reference designs implemented in
the third VE iteration, from the immersed user’s field of view, and presented as
elementary and synoptic task configurations across all data variables.

Figure 6.11: Impressions of the four temporal reference designs implemented in
the third VE iteration, from the immersed user’s field of view, and presented
as elementary and synoptic task configurations for one individual data variable.
Note: Due to the nature of the highlight and outline designs with respect to
the 3D radar chart data entity visualization, implementations for a reference as
elementary task configuration for one individual data variable are not available.
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Figure 6.12: Impressions of the three different configurations for the temporal
pointer reference design implemented in the third VE iteration, from the immersed
user’s field of view, and presented as elementary and synoptic task configurations
across all data variables.

Figure 6.13: Impressions of the three different configurations for the temporal
symbol reference design implemented in the third VE iteration, from the immersed
user’s field of view, and presented as elementary and synoptic task configurations
across all data variables.
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(temporal) and in regard to the various different country locations (spatial).
The interface is held purposefully minimalistic but representative given the
dataset and analysis task, applying typical views and visualization techniques
for geospatial and time-series data, for instance as described by Ward et al.
(2015, Chapters 6 and 7). In fact, Lundblad et al. (2010) described an interface
for the interactive visualization of Swedish road weather data that features a
similar setup compared to the presented non-immersive desktop terminal. The
decision to hold it rather minimalistic is inherent from the intention to focus
on the integration of interactive views that are relevant within the data context
and will contain collaborative features. Figure 6.14 provides an overview of the
non-immersive desktop terminal’s view composition.

View Composition and Interaction Generally, the non-immersive desktop
terminal is operated through a normal desktop monitor using keyboard and
pointer (mouse) input, similar to the previous one that was used to explore
hashtags (see Section 6.3.1). The interface is composed of two main views. First,
a Map View is placed on the right part of the interface, displaying outlined all
countries across Europe, including an interactive circle at the center of each
country that enables the user to select it through a left-click interaction. Naturally,
as each of these circles represents an individual data entity, it is noteworthy that
their placements on the map are in line with placement of the individual 3D
radar charts in the VE (see Section 5.5.1). A selected data entity is indicated
through a colored outline in the map view. Once such a selection has been made,
the Weather View on the left part of the interface is updated. The weather view
itself is composed of two line graphs, one for the visualization of the sunlight
time-series data of the selected country, and one for humidity. Each line graph’s
horizontal axis encodes time, while the vertical axis encodes the respective data
variable value. Once the user hovers over a line graph, a vertical dashed Preview
Line is displayed, providing visual feedback in regard to the hovered time event.
The user may select the hovered time event via left-click. Additionally, the user
may also select a time range, i.e., a series of multiple consecutive time events. With
a single time event selected as a starting point and utilizing a combination of
holding the COMMAND-key and left-click, the user can select a second time
event as the respective end point, effectively establishing a time range. The
selected time range is indicated through a visual overlay in the interface. Time
event and range selections can be updated by simply applying new selections in
the interface, replacing the prior ones accordingly. Furthermore, these selections
are synchronized across the two line graphs of the weather view, i.e., a selection
made in the sunlight line graph will automatically display the same selection in
the humidity one, and vice versa.



�.�. COLLABORATION IN VE ITERATION �� �D RADAR CHARTS 231

Figure 6.14: An impression of the implemented Non-Immersive Desktop Terminal
to explore spatio-temporal weather data, and within the context of the hybrid
asymmetric collaboration setup with the third VE iteration. Right: Map View.
Top Left: Weather View - Sunlight, including hovered Preview Line and applied
Time Range Selection. Bottom Left: Weather View - Humidity, including the
synchronized Time Range Selection.

6.4.3 Collaborative Features Design

To facilitate the collaborators’ verbal communication to support the way they
discuss, interpret, and make meaning of data during their joint analysis activity,
independent of their interface type, various collaborative features are needed.
Naturally, the design of these features is informed by the previously obtained
insights and experiences described in Section 6.3.5. However, in comparison
to the collaborative information cues implemented in the prior interfaces (see
Section 6.3.2), there are a couple of key aspects that need to be addressed,
specifically in regard to the collaboration around the PWt dataset and under
utilization of the presented interfaces. Arguably most noticeable, while the prior
features focused on the support for spatial referencing, the new collaborative
feature set additionally requires means to establish temporal references, i.e.,
indicating a time event or time range at a specific data entity. Furthermore,
the spatial referencing strategy implemented in the prior interface featured
rather discrete signaling characteristics, i.e., each of the users had to take a
dedicated action (bookmark) to indicate a location for the respective collaborator.
At times, this subjectively led to some minor waiting times and interruptions
when one user was waiting for the referencing action of the other. To address
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this matter, the new collaborative features are implemented utilizing a more
continuous signaling strategy, aiming to make the collaborators aware of all
their respective interactions without the need to send dedicated signals. To
summarize, the presented collaborative features across the immersive VE and
the non-immersive desktop terminal are designed to support the users’ hybrid
asymmetric collaboration with the following main aspects in mind:

• Common Ground and Awareness: Facilitate the users’ mutual understanding
of their in-situ spatial and temporal contexts during their joint data analysis
activity.

• Reference and Deixis: Support for the transmission and reception of spatial
and temporal references as nonverbal communication cues in each of the
collaborators’ respective interfaces during their joint data analysis activity.

• Continuous Signals: Integration of the collaborative features in a seamless
and ubiquitous manner, aiming to add collaborative information cues to
the respective interfaces without unnecessarily increasing the complexity
of their operability.

Collaborative Information Cues: VE to Desktop Terminal The following
collaborative information cues from the immersive VE are displayed in the non-
immersive desktop terminal (see Figure 6.15 right), addressing REQ 16 and REQ 17 in
Table 4.1. Following the same design as implemented in the previous collaborative
features, the map view displays in real-time the position, orientation, and field of
view of the immersed user, enabling the non-immersed collaborator to have an
understanding of their immersed partner’s location in space. The data entity that
the user in the VE is potentially actively interacting with (details-on-demand) is
outlined in the map view as well, providing an indication about the immersed
user’s status accordingly. If both collaborators have selected the same data entity,
the weather view features a vertical dashed line that represents the VE user’s
current time event selection, i.e., the position of the time slice in the 3D radar chart.
Similarly, if the VE user applied a time range selection, an overlay in both of the
line graphs is visualized in the weather view. All interface elements representing
information cues of the VE user are color-coded differently to easily discern them
from the desktop terminal user.

Collaborative Information Cues: Desktop Terminal to VE The following
collaborative information cues from the non-immersive desktop terminal are displayed
in the immersive VE (see Figure 6.15 left), addressing REQ 16 and REQ 17 in
Table 4.1. Location selections made in the map view will temporarily highlight
the corresponding country, extruded in 3D on the floor in the VE, following the
location spatial reference design as presented in Section 6.4.1.2. It is noteworthy
that if the VE user is already interacting with data entity at the selected location,
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Figure 6.15: Impressions of the implemented collaborative features design across
the two interfaces, and within the context of the hybrid asymmetric collaboration
setup with the third VE iteration. Left: Immersive VE, with visual references as
signaled from the non-immersed user. Right: Non-Immersive Desktop Terminal,
with visual references as signaled from the immersed user. Top: Spatial reference
(location). Middle: Temporal reference (time event). Bottom: Temporal reference
(time range). Note: Left and right interface views are synchronized, illustrating
both interfaces at the same point in time during the collaborative analysis activity.
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the spatial reference will be omitted. Time event and range selections made in
any of the two line graphs in the weather view will be represented as virtual
annotations in the corresponding 3D radar chart following the symbol temporal
reference design as presented in Section 6.4.1.3, aiming to catch the VE user’s
attention and indicating that the non-immersed user is currently investigating this
temporal context.

6.4.4 Evaluation 1: User Preferences of Reference Designs

In order to gain insights about the various spatial and temporal reference designs
as documented throughout Section 6.4.1, an empirical evaluation was set up with
the objective to subjectively assess user preferences in general. The different
reference designs are intended to function as visual, nonverbal collaborative
information cues that support the immersed user in their ability to focus their
attention towards a point of reference as indicated by a non-immersed collaborator.
Thus, this evaluation is concerned with the assessment of the different reference
designs in regard to the immersed user’s subjective response, in particular with
respect to aesthetics, legibility, and general user preference. The gathered insights
should allow for respective reflections on the reference designs, and thus provide
impulses that can guide the design of similar collaborative information cues in
the future.

6.4.4.1 Physical Study Space
All study sessions, planned as one-on-one sessions involving the participant and
the researcher, were conducted at the VRxAR Labs research group lab at Linnæus
University. As the researcher would systematically present the different reference
designs to the participant for assessment, no additional “real” collaborator was
needed. Therefore, the overall physical study space was organized similarly as
initially described in Section 5.3.3.1. For the immersion in the VE, the participant
was utilizing a HTC Vive HMD and a Leap Motion Controller attached in
front of it to enable 3D gestural input. Furthermore, as this evaluation was
conducted during the COVID-19 pandemic, some additional practical measures
were implemented as described in Section 1.4.

6.4.4.2 VE Setup
The VE was set up in accordance to the overall presented collaborative data
analysis scenario, utilizing the 3D radar chart data entity visualization design and
the PWt dataset as described in the introduction to Section 6.4. While the Leap
Motion Controller was active and as such tracking and displaying the immersed
user’s hands in the VE for their general reference, no additional interactive
features were provided during this evaluation. Overall, a total of 39 3D radar
charts were placed across the different European countries. Each 3D radar chart



�.�. COLLABORATION IN VE ITERATION �� �D RADAR CHARTS 235

Figure 6.16: Impressions of third VE iteration, set up for the evaluation of the
user preferences in regard to the various spatio-temporal reference designs, and
within the context of the hybrid asymmetric collaboration setup. Top Left: The
immersed user’s field of view, looking at the 3D radar chart in close proximity
(within their safe interaction area). Top Right: The immersed user’s field of view,
looking at faraway 3D radar charts. Bottom: The VE composition, from an angled
top down view to provide an overall impression.

featured five data variable axes, each comprised of a time-series with 150 events.
The immersed user was placed in Central Europe, able to move freely within the
calibrated two-by-two meter area, and make observations. There was one 3D
radar chart placed within their safe interaction area in the VE, all others were
beyond their reach. Figure 6.16 provides an overview of the set up VE.

More specifically, each 3D radar chart in the VE featured a total height, i.e.,
vertical length, corresponding to 100 cm. All 3D radar charts were placed to
float 40 cm above the virtual floor, thus reaching an effective height at 140 cm.
The 3D radar chart used to display all temporal reference configurations was
placed directly at the center of the immersed user’s calibrated two-by-two meter
area, enabling them to move freely around to investigate that 3D radar chart



236 CHAPTER �. DATA ANALYSIS USING HYBRID ASYM. COLLAB.

from all sides if so desired. The distance between the center of the immersed
user’s safe interaction area and the spatial reference for the elementary task (see
Section 6.4.4.3) was approximately 848 cm in the virtual space. Furthermore,
the distances between the center of the immersed user’s area and the spatial
references for the synoptic tasks (see Section 6.4.4.3) were approximately 573, 645,
848, and 1024 cm. These distances resulted from the properties of the underlying
PWt dataset used within the study, as introduced in Section 5.5.

6.4.4.3 Task
To assess aesthetics, legibility, and general user preference for the different
reference designs, presets for all the configurations were prepared, asking each
participant to rate them by speaking aloud, enabling the researcher to document
their ratings accordingly via pen and paper. In particular, assessments were
inquired for all the elementary and synoptic spatial and temporal references
as illustrated in Figures 6.9, 6.10, and 6.11. Additionally, user assessments for
the temporal pointer and symbol reference designs in general were inquired,
i.e., one combined rating for each, as illustrated in Figures 6.12 and 6.13. The
reference presets were configured to make the same reference, i.e., referring to the
same location/locations (spatial) or time event/range (temporal). The inquired
assessments from each participant were collected in random order throughout
two stages. First, they were presented with the individual reference presets and
tasked to rate their perceived aesthetics and legibility on a 7-point Likert scale as
follows:

• Aesthetics: On a scale from 1 (aesthetically unpleasing) to 7 (aesthetically
pleasing), how would you rate this design of [ spatial / temporal ] referencing?

• Legibility: One a scale from 1 (not at all) to 7 (very well), how clearly can you
determine what is [ spatially / temporally ] referenced?

Second, once they provided numerical assessments for all the presented
reference designs, a general user preference for one over the other in a series of
pair-wise comparisons was inquired. In particular, for each logical category, i.e.,
spatial elementary, spatial synoptic, temporal elementary, and so on, all possible
pair permutations were created, and the participant was asked for each:

• General User Preference: Out of these two [ spatial / temporal ] reference designs,
which one do you prefer?

6.4.4.4 Measures
A pre-task questionnaire was administered with the objective to obtain some
overall demographic information about the participant sample, in particular with
respect to their educational/professional background and their self-assessed
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prior experiences with VR technologies. The empirical evaluation of the different
reference designs is centered around the subjective assessment with respect to
three measures, i.e., aesthetics, legibility, and general user preference, as previously
introduced in Section 6.4.4.3. Within the scope of this evaluation and the
presented context, aesthetics is defined as how much one appreciates the visual
design and appeal of a reference design, and whether or not one finds it is
pleasing and beautiful to look at. Legibility is defined as how well one can
understand, determine, and detect what is highlighted, and how clear it is
what to focus on. Collecting quantitative ratings for these two measures for
each reference design should allow for respective comparison. Additionally, the
third metric is concerned with the user’s general preference based on pair-wise
comparisons, indicating which one of two reference designs the user would rather
work with if they were to use such an immersive data analysis environment
with collaborative features frequently. The results of these pair-wise comparisons
allow for respective tallying,9 providing an overall preference indication as well
as functioning as a potential tie breaker between two designs in the case of equal
aesthetics and legibility ratings.

6.4.4.5 Study Procedure
Each study session, aimed to take approximately 45 minutes in duration, followed
the same procedure of three stages:

1. Introduction (10 min);

2. Warm-up (5 min in the VE);

3. Task 1: Aesthetics and Legibility Ratings (15 min in the VE);

4. Task 2: Pair-wise Preference Comparison (15 min in the VE).

During the introduction, each participant was welcomed and asked to complete
an informed user consent and pre-task questionnaire. Afterwards, the researcher
presented the overall context and scenario of the immersive VE in regard to its
analytical and collaborative aspects, ensuring that each participant understood
the 3D radar chart data entity visualization design as well as the composition
of the VE. Participants were then provided with a brief warm-up, allowing them
to familiarize themselves wearing the HMD and with the VE. Once they felt
comfortable, they proceeded to the task stages. First, based on random order, a
participant’s aesthetics and legibility ratings for the different spatial and temporal
reference designs were inquired via Think Aloud technique. Second, based
on random order, each participant provided distinct answers for each pair-wise
preference comparison, selecting one reference design over another. The researcher

9The pair-wise preference comparison is inspired by the prior experiences of utilizing the
Task Load Index (TLX), in particular its weighing process, as described in Section 2.5.1.
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noted all ratings and preferences on a predefined task answer sheet. Throughout
both task stages, the participants were allowed to provide additional remarks as
desired that were also noted by the researcher. Finally, they were thanked for
their participation and sent off.

6.4.5 Results of Evaluation 1

6.4.5.1 Participants
For the described user preference evaluation, a total of = = 12 participants
from a mixture of different academic backgrounds (5 Computer and Information
Science, 5 Linguistics and Language Studies, 2 Forestry and Wood Technology) were
recruited. Eight participants reported to have just a little prior experience with
VR technologies, three average, and one a lot. During the warm-up phase in the
VE, none of the twelve participants reported to have any visual perception issues,
neither in regard to the 3D radar chart data entity visualization design and the
applied color coding of the various data variable axes nor with respect to the VE
composition in general.

6.4.5.2 User Assessments and Remarks
Figure 6.17 presents the results of the participants’ ratings for the aesthetics and
legibility measures as defined in Section 6.4.4.4. The results of the pair-wise
user preference comparison, combined with the rating medians, are presented in
Figure 6.18.

Some participants provided additional remarks for the different spatial and
temporal reference designs. For instance, participants stated that they can envision
usefulness and relevance for both temporal pointer and symbol reference designs
in a real-world scenario (see Figures 6.12 and 6.13). According to them, the pointer
design subjectively represented more precision and urgency, while the symbol
one was easier to recognize and featured better clarity. One participant stated
that the pointer design makes more sense during synchronous collaboration (as
the users are likely talking to each other), while the symbol design may be better
suited for asynchronous collaboration (encoding an additional semantic meaning).
It was also noted that a visual connection to the 3D radar chart’s center, i.e., its
time axis presenting the origin, is missing and would be preferred in the synoptic
reference designs (pointer and symbol), as included in the outline design for an
individual dimension reference (see Figure 6.11). Some participants were unsure
whether the pointer for the synoptic referencing task was referring to the entire
time range or to one specific time event within it. One participant expected the
pillar design to be multiple small ones as opposed to one large one when making
a spatial synoptic reference (see Figure 6.9). Another one stated that it might
increase the legibility of the spatial location reference design by additionally
slightly extruding the respective 3D country model on the virtual floor. Similar as
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Figure 6.17: Results of the aesthetics and legibility ratings for the implemented
spatial and temporal reference designs based on the = = 12 participants’ subjective
assessments.
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(see Figure 6.17). Plot created by Aris Alissandrakis.
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in the investigation reported by Peter et al. (2018), participants made suggestions
for some hybrid designs, combining two of the presented designs into one, such
as pillar+node, location+node, highlight+pointer, outline+symbol without the
visual spheres, and pointer without the pointer using just the visual spheres –
similar to the marker design presented by Welsford-Ackroyd et al. (2020).

6.4.6 Evaluation 2: Collaborative Confirmative Analysis

Within the scope of this thesis, a final empirical evaluation was designed with
the objective to further investigate the overall hybrid asymmetric collaboration
concept as introduced in Section 6.1. The overall technological setup, aligned with
the presented conceptual system overview (see Figure 6.8), is composed of the
third VE iteration, a non-immersive desktop terminal, and various collaborative
features, as described throughout Sections 5.5, 6.4.2, and 6.4.3. Compared to
the initial collaboration evaluation within the context of the second VE iteration
(see Section 6.3), the design of this final evaluation differs in various major
aspects as outlined in the introduction of Section 6.4. Arguably most noticeable
besides utilizing the third VE iteration and the PWt dataset, it is centered
around a confirmative analysis task (directed search with some hypotheses
given; see Section 5.2) that demands collaborative analytical reasoning and data
interpretation in regard to both spatial and temporal contexts. To evaluate the
developed collaborative data analysis system, pairs of participants were recruited,
alternating the roles of one person being immersed in the VE, and the other using
the non-immersive desktop terminal (within-subject design). As the PWt dataset
and its overall approachable and easy to understand scenario was utilized, there
were no specific domain knowledge or other expert requirements, allowing for
an inclusive participant recruitment.

6.4.6.1 Physical Study Space
As with all other empirical evaluations, this study too was conducted at the
VRxAR Labs research group lab at Linnæus University, featuring an overall
similar physical study space compared to the initial collaboration evaluation (see
Section 6.3.3.1). The immersive interface was based on a HTC Vive HMD with
a Leap Motion Controller, and the non-immersive interface utilized a desktop
computer with a 27-inch monitor as well as keyboard and pointer (mouse) input.
However, there were a few key differences as follows. Instead of two researchers,
one was responsible for the study conduction, including its moderation and
data collection. Furthermore, instead of the participant pair being co-located
in the same room, a distributed remote setup was applied. In particular, the
setup for the immersed VE user remained unchanged in the research group lab,
while the non-immersed user’s workstation was set up in a dedicated separate
office room, where they were seated alone and free of distractions. A remote
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audio link utilizing the Zoom Cloud Meetings10 teleconferencing software was
installed on both the researcher’s and the non-immersed user’s workstations,
allowing for verbal communication between the two physical locations (REQ 18
in Table 4.1). The researcher remained generally at their workstation during the
evaluation, while the participants changed the locations once as part of iterating
their assigned user roles across the task completion stages. The conduction of
this evaluation during the COVID-19 pandemic required the implementation of
some additional practical measures as described in Section 1.4.

6.4.6.2 Interfaces Setup
Within the scope of this evaluation, the immersive VE was generally set up as
introduced and described throughout Section 5.5, utilizing the 3D radar chart
data entity visualization design to display the PWt dataset. More specifically,
the VE setup featured an overall identical setup as described in Section 5.5.5.2,
documenting the VE setup for the empirical evaluation of the uniform 3D gestural
design, with two exceptions. First, all implemented interactive features were
available except the Zoom (in/out) feature, which was deemed expendable within
the context of the presented collaborative analysis task. And second, the VE
was extended to include all the designed collaborative features in accordance
to the descriptions in Section 6.4.3. It is noteworthy that the choice of the
applied reference designs, i.e., the location design as spatial reference and the
symbol design as temporal reference, was informed by the results of the user
preference evaluation (see Section 6.4.5).11 The non-immersive desktop terminal
was available as described in Section 6.4.2, including all its collaborative features.

6.4.6.3 Task
Under consideration of the hybrid asymmetric collaboration concept, the pair of
participants used different interfaces (hybrid) that additionally affected which part
of the PWt dataset they had access to, thus determining their role (asymmetric).
The non-immersive desktop terminal provided access only to the weather data
variables, while the immersive VE provided access only to the plant data. Thus,
the pair assumed the roles of weather and plant expert respectively. Their
individual roles would iterate as they switched interfaces for the second task.

Generally, for one confirmative analysis task, the pair was asked to collabo-
ratively explore the presented weather and plant data in space and time, and
to use the provided tools to make assessments that describe the relationship
between each plant and the two weather variables (sunlight and humidity). More

10Zoom Video Communications, Inc. Official Website. Retrieved June 1, 2022, from https:
//zoom.us

11For the reference design as part of this evaluation, a uniform design strategy was followed (instead
of applying a mixture of visually different designs). Both the location and the symbol reference design
received positive feedback in the respective user preference evaluation.

https://zoom.us
https://zoom.us
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specifically, they were tasked to determine the type of correlation between each
weather and plant data variable, and indicate how confident they were with their
assessments. The non-immersed user was additionally tasked to write down
their joint answers on a prepared physical task answer sheet (see Appendix D).

The PWt dataset, and more specifically the correlated-timelines project as
described in Section 5.5, was utilized to generate not one but two datasets, i.e.,
one featuring fruits and one featuring vegetables as plant data variables. Naturally,
the respective correlations between the fruits/vegetables and the two weather
data variables differed in each of the two datasets.12 Utilizing these datasets,
the pair could be asked twice to conduct an overall identical data analysis task,
allowing each user to operate each interface type once, without any potential
insights transfer in regard to the data between the tasks. Although the overall
data scenario was easy to understand and relate to, i.e., climate and flora at
different locations across Europe and how the weather conditions affect the
plant growth, any previous knowledge of geography and agriculture had to
be dismissed. Therefore the study was presented with a “science fictional”
description to the participants that had to suspend their disbelief and pretend
that they were exploring a parallel universe in the far future instead of working
with real observations that followed known phenomena (see Appendix D).

6.4.6.4 Measures
A pre-task questionnaire was applied to inspect some general demographic
information about the participant sample, i.e., their educational/professional
background as well as their self-assessed prior experiences with VR technologies.
A mixture of task performance and subjective methods was applied to collect
quantitative and qualitative data that enable the subsequent assessment of various
relevant aspects within the presented hybrid asymmetric collaboration context.
More specifically, system logs of all the participants’ interactions with their
respective interfaces during the task stages were collected. This should allow
for analysis in regard to various concerns, for instance to identify when the
collaborators were actively investigating the data in the same spatial location, or
in regard to when each collaborator moved from location to location, to name just
two examples. Furthermore, based on the designed confirmative analysis task
as described in Section 6.4.6.3, the pair’s ability to collaboratively identify the
potential correlations between the plant and the weather data variables can be
assessed. For each task, this results in a total of ten correlation answers, i.e., five
plant data variables ⇥ two weather data variables, each indicating either a negative,
positive, or no correlation. While the option to answer no correlation was provided,
a correlation was always defined as part of the generated datasets across both the
fruits and the vegetables scenario. Each of the ten correlation answers included
an associated confidence (low, medium, high, or do not know), describing the pair’s

12Both datasets are included in the correlated-timelines project repository (see Appendix D).
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reported confidence for their respective answers. The researcher kept notes based
on observations made during the pair’s task completion.

To make assessments about the usability of each interface as part of the
collaborative system, the SUS questionnaire was administered. Additionally, the
User Engagement Scale - Short Form (UES-SF) questionnaire was utilized to
obtain insights about the collaborators’ general engagement with their respective
interface. Both questionnaires are described in Section 2.5.1. Assessing system
usability and user engagement within the scope of the presented collaborative
task allows to obtain further insights into the implemented data analysis interfaces
and their collaborative features. While both interfaces are using fundamentally
different display and interaction technologies, it is important to potentially
identify factors that might impact the pair’s collaboration. The results of both
questionnaires may indirectly contain some assessments in regard to the pair’s
collaboration, i.e., through the implemented collaborative features as part of
the interfaces. However, it is arguably beneficial to inquire some more focused
and structured feedback with respect to important collaboration aspects. For
this purpose, the self-constructed STCQ was administered (see Appendix D), as
introduced and described in detail in Section 6.2.

Finally, as the participants were located in two physically separated locations
during the task stages, means of verbal communication were required – besides
the nonverbal communication features as part of the provided system, i.e., the
spatio-temporal referencing. As described in Section 6.4.6.1, the Zoom Cloud
Meetings teleconferencing software was utilized for that purpose. In addition
to allowing the participants to talk to each other via an audio call, it also
provided the opportunity to record their conversation for each task stage. In
fact, Zoom conveniently allows the recording of separate audio streams for each
call participant. Thus, at the end of each task stage, three audio files (one of the
combined audio, and one from each user) were obtained. Using the Audacity13

audio editor software and its Sound Finder tool, it is possible to obtain timestamps
that describe when sound was detected14 in each participant’s audio file, and
therefore roughly when they were (individually) speaking. Summing up the time
intervals provides an estimation of each participant’s speaking amount, and it
was also possible to calculate when and how much participants were overlapping
(talking at the same time). These timestamps were further synchronized with the
system log timestamps, by knowing when the audio recording of each session
started (and ended). This can allow the correspondence of verbal communication
activity and system events (including nonverbal communication cues).15

13Audacity. Official Website. Retrieved June 1, 2022, from https://www.audacityteam.org
14Based on a decibel (dB) threshold and minimum duration of silence between sounds. The default

settings of 26 dB and 1 second were applied.
15An analysis of the audio activity with respect to when a participant pair shared the same spatial

context is published as Supplementary Material of the article by Reski et al. (2022), available at: https:
//www.frontiersin.org/articles/10.3389/frvir.2021.743445/full#supplementary-material

https://www.audacityteam.org
https://www.frontiersin.org/articles/10.3389/frvir.2021.743445/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frvir.2021.743445/full#supplementary-material
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6.4.6.5 Study Procedure
Based on the overall study setup (physical study space, interfaces setup, task,
and measures), each study session followed the same procedure of four stages
with an overall anticipated duration of approximately 120 minutes:

1. Introduction (10 min);

2. Collaboration 1 (45 min):

(a) Warm-up 1 (5 min in the VE),
(b) Task on PWt fruits dataset (30 min in the VE),
(c) Questionnaires (10 min);

3. Preparatory Break (5 min);

4. Collaboration 2 (45 min):

(a) Warm-up (5 min in the VE),
(b) Task on PWt vegetables dataset (30 min in the VE),
(c) Questionnaires (5 min).

In the introduction, the participants were first welcomed and then asked
to complete an informed user consent in regard to their participation, and
subsequently complete the pre-task questionnaire. The researcher in their role
as moderator then provided an overview about the two interfaces and their
collaborative features, as well as about the data context and the task for their
upcoming joint data analysis, i.e., the first and second task stages.

The initial choice of which participant assumed which role and interface was
random. For the two task stages, the participants were encouraged to analyze the
data and complete their task at their own pace. However, for practical purposes,
the pair was given a duration of approximately 30 minutes to aim for and to have
a frame of reference in regard to their task completion progress. Whether the pair
required more or less time, was up to them. For the first task, each participant of
the pair assumed their role and respective interface. Using a special warm-up
dataset, different from each of the two task scenario datasets, the participants
were provided with the opportunity to warm-up and become familiar with their
interfaces and the collaborative features. Once the pair felt comfortable, the
researcher loaded the task scenario dataset and issued the start for the pair’s
task completion by initiating the audio recording. During the tasks, the pair
could only talk to each other, while the researcher refrained from making any
comments to the pair, only writing down noteworthy observations. Once the
pair considered themselves to be done with their task by speaking aloud “We are
done with the data exploration” (or equivalent), the researcher stopped the audio
recording. The participants were then asked to complete the three questionnaires,
i.e., in order, the SUS, the UES-SF, and finally the STCQ.
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After a short preparatory break in which the researcher made several arrange-
ments, including sanitizing the technical equipment and re-initializing all software
components, the participants switched their assumed roles and interfaces, and
the second task stage started by following the same procedure as the first one
(warm-up, task, questionnaires). Finally, the pair was thanked for their partic-
ipation and sent off. If they inquired about their task performance, they were
informed after the study completion.

6.4.7 Results of Evaluation 2

6.4.7.1 Participants

A total of five collaborator pairs were recruited, resulting in a total of = = 10
participants. The two participants of each pair knew each other prior to the
study.16 Two pairs reported a background in Information Visualization and Visual
Analytics. One pair reported a Computer Science background, and another pair
one in Applied Linguistics. The participants of the remaining pair stated a
mixed background, i.e., Linguistics and Psychology respectively. Furthermore,
with respect to the verbal communication between the participants during their
task completion, it is noteworthy that the study was conducted in English
language which all participants were fluent in, although none of them were native
English speakers. Only one participant with a background in Computer Science
considered having a lot of prior experiences with VR technologies, while all others
reported a few. None of the participants reported any visual perception issues
in regard to the applied color coding throughout both interfaces. Figure 6.19
provides some impressions of several participants during their collaborative task
completion, immersed and interacting in the VE.

6.4.7.2 Task Assessment

All collaborator pairs were able to complete the two tasks based on the PWt fruits
and vegetables datasets, providing an estimation for each of the ten correlations
in each task scenario, i.e., five for the sunlight–plants data variable pairs, and
five for humidity–plants. Their answers are presented in Table 6.5. Overall, they
were on average 84% correct and 10% incorrect by estimating that there was
no correlation at all (but not being wrong by estimating the opposite correlation,
which only happened for 6%). Their reported confidence for any wrong or no
correlation answers was medium or low, and only the participants of the pair p4
stated a high confidence (for their two mistakes).

16Among other considerations and even though the participants were physically distributed in
different locations as described in Section 6.4.6.1, this type of recruitment was part of the implemented
safety precautions due to the COVID-19 pandemic at the time of the study.
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Figure 6.19: Immersed participants during their collaborative task completion
in the third VE iteration, and within the context of the hybrid asymmetric
collaboration setup, wearing a HMD and interacting in the VE using 3D gestural
input to perform various features (see Section 5.5.2 as part of Chapter 5).

6.4.7.3 Questionnaires

System Usability Scale and User Engagement Scale The reported system
usability and user engagement scores for both interfaces, i.e., the immersive
VE and the non-immersive desktop terminal, are presented in Figure 6.20. The
scores for both measures are very positive, ranging between good and even best
imaginable for the SUS, and having median values at or above four (out of five)
for all the factors of the UES-SF. There were three instances where the scores for
the two interfaces noticeably differed, i.e., (1) focused attention (UES-SF), (2) SUS,
and (3) perceived usability (UES-SF).

First, the immersive interface’s focused attention was rated higher than the
non-immersive one, which is encouraging given its anticipated IA character-
istics. However, a Wilcoxon signed rank test with continuity correction was
conducted to compare the focused attention score medians for the immersive
and non-immersive interfaces; + = 27, ? = .23, there was no significant differ-
ence of medians.

Second, the non-immersive interface’s usability score (SUS) was rated higher
than the immersive one. A paired t-test was conducted to compare the SUS
score means for the immersive (" = 79.75,(⇡ = 7.31) and non-immersive (" =
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Pair Task Correct Answers Wrong Answers No Correlation

p1 fruits 8 2 0
p1 vegetables 6 2 2
p2 fruits 9 0 1
p2 vegetables 7 0 3
p3 fruits 10 0 0
p3 vegetables 8 1 1
p4 fruits 9 0 1
p4 vegetables 9 1 0
p5 fruits 9 0 1
p5 vegetables 9 0 1

mean 84% 6% 10%

Table 6.5: The participant pairs’ answers across the two task scenarios
(fruits/vegetables). Out of ten required answers for each scenario, the number
of correct answers (according to the correlation model of the respective task’s
dataset), the number of wrong answers (positive when negative correlation was
the correct answer, and vice versa), and the number of times the pair assessed
that there was no correlation (there was always a correlation according to the
model). Two chi-squared tests were performed to determine whether there was
a difference between the answer frequencies (correct or wrong/no correlation
combined) and either the task scenarios (fruits/vegetables) or the weather variable
(sunlight/humidity). In both cases there was none: -2(1,# = 100) = 1.86, ? = .17
and -

2(1,# = 100) = 0, ? = 1, respectively.

91.5,(⇡ = 8.1) interfaces; C(9) = �3.38, ? = .008, the means were significantly
different. Upon closer examination of the received answers for the individual SUS
items, it appears that the difference was due to an item on whether support from
a technical person would be required to use the system.17 Requiring technical
assistance was not an issue during any of the study sessions. However, all but
one of the participants declared minimal prior experiences with VR technologies.
This can be an expression of lack of confidence from the participants’ part.

Third, the non-immersive interface’s perceived usability was rated higher
than the immersive one. A Wilcoxon signed rank test with continuity correction
was conducted to compare the perceived usability (UES-SF) score medians for
the immersive and non-immersive interfaces; + = 5.5, ? = .027, there was no
significant difference of medians. Upon closer examination of the received
answers for the individual perceived usability (UES-SF) items, it appears that this
was mostly due to an item about frustration,18 which seems understandable given

17SUS Item 4: “I think that I would need the support of a technical person to be able to use this application.”
(Brooke, 1996)

18UES-SF Item PU-S.1: “I felt frustrated while using this Application X.” (O’Brien et al., 2018)
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Figure 6.20: Left: Results of the UES-SF for both interfaces, presented according
to the different engagement dimensions and the overall user engagement. The
median for all individual factor scores (incl. overall engagement) for both interfaces
is well above average. Right: Results of the SUS for both interfaces, presented
including the original numerical scale and the supplemental adjective ratings
(see Section 2.5.1). The mean value for both interfaces is well above the acceptable
threshold.

the relatively higher complexity of the immersive interface and its 3D gestural
input modality.

Spatio-Temporal Collaboration Questionnaire The reported collaboration
assessments based on the STCQ from the perspectives of the immersive and non-
immersive interface users are presented in Figure 6.21. The results presentation
and respective discussion are based primarily on the median values and, where
significant, the interquartile range.

The participants reported that there were a few individual efforts (TSIA.1),
and a lot of group efforts (TSIA.2). Furthermore, the non-immersed user also had
the impression that they took more of a leading role compared to their immersed
partner (TSIA.3).

The participants reported constant verbal communication (NC.1), and often
nonverbal communication (NC.2). The participants also reported that they were
almost constantly in dialog (NC.3) and that they sometimes negotiated (NC.4).
Similar to the responses as to who took more often a leading role (TSIA.3), the
non-immersed users considered that they initiated these negotiations more often
than their immersed partners. However, this was done equally on median (NC.5).
Noteworthy for the context of the NC items, all paired medians were the same.
Wilcoxon signed rank tests were conducted to determine whether the median
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values were the same for the immersive and non-immersive interface users, for
all NC items; in all cases there was no significant difference (? = 1 for NC1, NC2
and NC3; ? = .42 for NC4 and ? = .018 for NC5).

The participants strongly agreed that the collaborative system allowed them
to focus on the same subject as their partner (SC.1), and also to establish dialog
(SC.2). While the participants disagreed that the collaborative features of the
system distracted them from their individual efforts, the interquartile range for
the immersed users was wider (SC.3).

The participants reported to have been always aware of their partner’s activities
during group efforts and a lot during individual efforts (AO.1 and AO.4). Their
awareness of their partner during individual efforts was a little lower than during
group efforts, as expected. The participants were always aware of their partners’
location during both group and individual efforts, except for the immersed users
during individual efforts (AO.2 and AO.5). The participants were always aware
of their partner’s temporal context during group efforts (AO3), and a lot during
individual efforts with quite wide interquartile range for both users (AO.6).

6.4.7.4 Logging and Audio Analysis
Based on the collected log file data and the recorded audio files (see Section 6.4.6.4),
the pairs’ collaboration can be assessed in various aspects. Table 6.6 presents
the session duration for each task scenario in minutes, the number of unique
locations the participants visited (both, together, and independently), how long
they were at the same location at the same time, how long the speaking time
was for the immersive and non-immersive interface users, and how long their
speaking time overlapped.

One noticeable outlier regarding session duration was the second session
by the fourth pair. However, the short duration had no impact on their task
performance (see Table 6.5) and was not due to the participants being in a
hurry to complete their session. Overall, there was no significant difference of
session duration means comparing the fruits (" = 30,(⇡ = 7) and vegetables
(" = 26,(⇡ = 11) scenarios; paired t-test, C(4) = 0.65, ? = .55. A paired t-test was
conducted to compare the normalized amounts that the participants were at the
same place for the fruits (" = 88%,(⇡ = 7%) and vegetables (" = 87%,(⇡ = 8%)
scenarios; C(4) = 0.18, ? = .86, indicating that the means were not significantly
different. A paired t-test was conducted to compare the immersed and non-
immersed users speaking time means; C(9) = �1.80, ? = .11, indicating that the
means were not significantly different. However, every participant that changed
role from using the non-immersive to the immersive interface spoke less, and every
participant that changed role from using the immersive to the non-immersive
interface spoke more or about the same, as illustrated in Figure 6.22.

Similar to the log file analysis conducted as part of the previous collaborative
evaluation (see Section 6.3.4.4), pathway visualizations were created to visualize
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the pairs’ spatial data analysis contexts over time as they moved between the
different locations. Figure 6.23 illustrates two representative examples, indicating
their overall close collaboration throughout the data analysis activities.

6.4.7.5 Observations

Data Exploration and Task Solving Strategy Throughout all ten task sessions,
the collaborators appeared to be very engaged and motivated to solve the given
task as best as possible by identifying the appropriate correlations. They would
come up with a hypothesis for a plant–weather correlation based on their joint
observations in one location (data entity), and then move on to confirm this by
investigating the same data variables in one or several other locations before
confirming or rejecting their initial hypothesis. This behavior was observed
in nine of the ten sessions. Only one pair (p1, fruits scenario) deducted all
correlations based on their observations from a single location. Furthermore,
most sessions followed a rather systematic approach, guided through the answer
sheet the non-immersed user was in charge of, seemingly providing somewhat
of a starting point for their investigation. However, as the collaborators were
focusing on one plant–weather correlation, they were also often able to make
interesting observations relevant for other correlations along the way, effectively
diverting from the structure of the answer sheet and collecting their insights
rather organically as their investigation proceeded. Particularly towards the end
of their task session, they would together refer back to the answer sheet to identify
which plant–weather correlations remained unexplored. None of the participant
pairs appeared hectic, stressed, or otherwise pressured for time in their task
sessions. Three of the five pairs approached the task completion noticeably
objective-oriented, considering what would be the best or most effective way
to solve the task using the provided interfaces. The other two pairs appeared
to be more freely and openly analyzing the data and making observations. At
times, the choice of what location to explore next seemed to be influenced by
the collaborators’ prior knowledge or relation to a specific country, providing
another point of reference for their ongoing investigation.

Collaboration In six sessions, the collaborators appeared to be equally guiding
and directing the task completion, going back and forth based on their respective
observations. The non-immersed user seemed to be somewhat in a more leading
role during the remaining four sessions, providing more directions in regard
to what and where to explore next. Generally throughout all the sessions, the
collaborators were able to communicate in a seemingly organic manner with
each other, using various deictic and reference-related terms (see Section 2.3) to
support their contextual information exchange. The implemented collaborative
features in both interfaces appeared to further facilitate their natural interaction,
resulting in comments such as, “You see, the point [in time] you selected is actually
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Figure 6.22: A comparison of how much each participant spoke during the
collaborative data analysis activity (see Table 6.6), from the interface of their
first task (either VE or Desktop Terminal) to their second task, for each pair.
Top: Speaking time in minutes. Bottom: Speaking amount normalized by task
duration. A pattern can be observed that the participants spoke less when
immersed in the VE, compared to when using the Desktop Terminal.

Figure 6.23: Examples of different data exploration strategies based on a par-
ticipant pairs’ travel and selection interactions using their respective interfaces,
compiled as pathway visualizations over time (VE in red; Desktop Terminal in
blue). Left: The participant pair collaborated closely, examining the same spatial
contexts for most parts of their joint data analysis activity. Right: The participant
pair collaborated closely in the beginning of their joint data analysis activity,
while making some more individual efforts later on to find “interesting” locations
to verify their task assessments. Note: An overview of all pathway visualizations
is presented in Appendix C.



�.�. COLLABORATION IN VE ITERATION �� �D RADAR CHARTS 255

interesting for me too, because (...).” In at least four sessions, the collaborators were
observed laughing at various occasions, appearing to overall enjoy themselves
during their joint data analysis activity. At times, the collaborators also made
inquires to one another, requesting observations about the data explored by their
partner. Among others, such inquires included:

• “Could you please highlight < G >?”

• “Can you do one more [ highlight ]?”

• “How does the < ?;0=C 38<4=B8>= > look?”

• “How does the period I marked now look like [ for you ]?”

• “Let’s try something different: Can you see where a peak for < ?;0=C 38<4=B8>= >
is in < ;>20C8>= >?”

• “Can you check < ⌘4A4 / C⌘8B / C⌘4B4 30HB >?”

• “Can you describe the trend for the entire time?”

• “Can you suggest one more location [ from looking around ]?”

• “It’s so great that you can tell me where < ;>20C8>= > is, because I am terrible at
geography.”

System Features Interaction The majority of interactions of all participants
in the immersive VE, wearing the HMD and utilizing the 3D gestural input,
appeared natural and fluent. One minor usability issue with the implemented 3D
gestural input was noticed, potentially resulting in an unintended travel interaction
when instead they anticipated to display details-on-demand by touching a 3D
radar chart’s Mode Toggle widget. A reflection on such unintentional gestural
commands is also presented in Section 5.5.9.2. Nevertheless, in the rare cases that
this occurred, the immersed user was able to quickly recover from this, traveling
back to their desired location in order to continue the investigation, while letting
their partner know that they “accidentally traveled someplace else.” In line with
the prior described inquires, the non-immersed user often created temporal
references in their interface, upon which the immersed user was able to describe
their data variables at that point in time, or that time range respectively. In seven
sessions, the immersed user performed various times what can be best described
as live annotation, i.e., they would grab the time slice in the 3D radar chart, move
it slowly in time, and describe how the time-series of a plant data variable is
evolving as the position of the time slice updates – naturally, their non-immersed
partner was able to follow along based on the collaborative information cues
implemented in their interface (see Figure 6.15 middle). These live annotations
would result in descriptions such as for example, “It is fairly low here, now it
rises, more, and more, now it is at its peak, and now it goes down again.” Similarly,
at times they would also grab the time slice or make a time range selection
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and move it quickly back and forth to signal a specific period to their partner,
while commenting on observations along the way (see Figure 6.15 middle and
bottom). Furthermore, the immersed users were also able to detect patterns in
the data, allowing them to make deductions accordingly. For instance, one VE
user expressed “If we find out what happens with < ?;0=C 38<4=B8>= � >, we also
know happens with < ?;0=C 38<4=B8>= ⌫ >, because it is exactly the inverse.”

Reference and Deixis Terminology Even though numerical value information
of the different data variables were available in both interfaces, the collaborators
largely appeared to ignore these throughout the majority of the task sessions.
Instead, they used various descriptors in order to explain to each other their
observations of the time-series data as presented in their respective interfaces. A
selection of such descriptors, as noticed by the observer, include (in alphabetical
order): bump/bumpy, curvy, down, high, inverse/opposite, low, (local) minimum, (local)
maximum, mountain, peak, period, slope, spikes, top, uniform, up, valley. Furthermore,
general deictic terms for both spatial and temporal references included: here, from
here to there, this [point in time/location], these [time range], earlier, later.

6.4.8 Discussion

To enable collaboration in an immersive VE, special features are required that
facilitate the collaborators’ mutual understanding during their joint data analysis
activity. For instance, the ability to make references to an artifact in the CVE
allows the collaborators to synchronize their in-situ contexts and to establish
common ground for the subsequent data analysis and interpretation. The
use of an avatar as 3D virtual representation of a collaborator’s partner in the
CVE may provide important expressive information cues that facilitate mutual
understanding, similar to how co-located humans interact in the real world.
However, an avatar-based approach is not always feasible, for instance when the
collaborators are utilizing heterogeneous display and interaction technologies. It
may be the case that one of the collaborators is using an interface that is based on
non-immersive technologies that simply do not feature any 3D tracking or other
technologies that allow the respective implementation of their avatar for their
partner. Particularly in a hybrid asymmetric collaboration setup that endorses
the concept of utilizing immersive and non-immersive interfaces for collaborative
analytical meaning making and data interpretation, as described in Section 6.1,
alternative approaches for the implementation of collaborative information cues
are needed.

Utilizing as a foundation an immersive data analysis environment that is
based on the 3D radar chart data entity visualization design and respective VE
composition as described in Section 5.5, various questions arise, for instance
how to enable the immersed user to detect referred artifacts in the VE that
originated as signals from a non-immersed collaborator, or how to reflect the
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data analysis context of the immersed user in the respective interface of the non-
immersed partner. To investigate such matters more closely, two dedicated
empirical evaluations have been conducted within the scope of this thesis.
First, an exploratory empirical evaluation was conducted, investigating various
visual designs as spatial and temporal data references in the immersive VE that
were guided by three generalized design options. The subjective assessments
as reported by various immersed participants aid the identification of user
preferences and allow for respective design reflections. And second, based on
a representative confirmative data analysis task, various collaborative aspects
in regard to the interplay between immersed and non-immersed analyst were
empirically evaluated, building on the outcome of the initial efforts in that
direction as discussed in Section 6.3.5. Respective reflections on system design and
collaboration provide further insights towards anticipated multimodal analysis
workflows.

6.4.8.1 User Preferences of Reference Designs

Spatial References Out of the three implemented spatial reference designs,
the location design was favored the most by the participants, universally across
elementary and synoptic task configurations. Their perceived aesthetics and
legibility ratings were higher compared to the node and pillar designs. The
implementation of the location design was possible due to the composition of
the VE, in particular due to the availability of the individual extruded country
polygons on the virtual floor. Using the features of the VE seemed to have
been appreciated by the participants, allowing an identification of either one or
multiple referred data entities. At the same time, this design maintained the
original visual composition of the data entity, which was very much favored by
the participants under consideration of the presented CIA context. Interestingly,
the user preference in favor of the implemented location design is somewhat in
contrast to the results reported by Lacoche et al. (2017), where their safe navigation
floor approach rated worse compared to the others. The actual design was visually
similar in both cases, but the signal’s intent differed: While the purpose of the
presented location design was to actively guide the user to the highlighted area,
theirs was instead to avoid it (Lacoche et al., 2017).

Comparing the node and pillar designs, it is interesting to see the disparity in
regard to their assessments across the elementary and synoptic task configurations.
The pillar design was rated better for referring to one data entity, likely because
it allowed the participants to quickly and easily identify the referred data entity
(legibility), while it took them subjectively a bit longer to identify the node
design. However, the synoptic design of using one large pillar to highlight a
group of data entities did not scale appropriately, as it was not clear to them
what data entities are referred to exactly. Maybe such a design would be better
suited if one was to make a reference to an otherwise not specified large spatial
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area, instead of a group of identifiable data entities in the VE. These results are
quite interesting, as they indicate a favor for different designs based on the task
configuration. Arguably from a user interface perspective, one would normally
strive to apply a uniform design strategy, implementing the same designs for the
same, or similar, tasks. Within the context of the presented scenario, the question
comes to mind, whether or not one should implement the same design across
both tasks, thus following a rather coherent approach, or instead implement
different designs, each in better support for their given task. Clearly, this requires
careful consideration from the application’s interface designer, weighing pros
and cons for either design given a purpose and task at hand. Arguably, in the
presented data analysis context, legibility and user preferences independent of
the design are more important, allowing analysts to be as precise as possible in
their referencing and subsequent collaboration. Consequently, if environmental
features were not available for the implementation of the location design, instead
a mixture of pillar for elementary referencing and node for synoptic referencing
should be applied. The pillar design is conceptually similar to the light beam
technique as presented by Peter et al. (2018), who reported mixed results from
their evaluation, describing that sometimes the participants would consider the
light beam being part of the VE instead of being a dedicated signal. The realistic
design of the light beam seemed to have conflicted with the realistic setting of
their VE, which prevented participants from clearly identifying the signal through
the VR-Guide (Peter et al., 2018). On the other hand, the pillar design, as initially
experimentally applied within the first collaborative data analysis setup, worked
reasonably well for the elementary spatial referencing of data entities that were
represented as stacked cuboids (see Section 6.3.2). Compared to the realistic
VE composition as presented by Peter et al. (2018), the immersive data analysis
environment featured a rather abstract visual composition, in that case arguably
making it easier for the immersed user to clearly distinguish the pillar design
from the other artifacts in the VE.

Temporal References There was no distinct temporal reference design that was
favored across elementary and synoptic tasks within the 3D radar chart scenario.
For time event (elementary) referencing, the participants generally preferred the
highlight design. Interestingly, while it scored better aesthetics ratings, its median
for legibility is the worst compared to the three other designs. The pointer design
is a close runner-up in regard to user preference, scoring generally better legibility
ratings. It seems that the participants liked the analogy of literally “pointing to
a point in time” – even though a rather abstract design was used instead of a
realistic one (Sugiura et al., 2018).

Similar to the results presented by Peter et al. (2018), some trends were
identified towards the participants’ favor of the outline design compared to all
others for the synoptic task configuration, both across all data dimensions and for
an individual one. This is particularly interesting and also somewhat odd, as the
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outline design received the lowest user preference for the elementary task, even
though it scored comparatively good in regard to aesthetics and legibility ratings.
These results reveal a similar preference disparity as for the spatial node and
pillar designs, requiring careful consideration in favor for or against a visually
uniform interface design.

Two designs based on the AA option were implemented using different
indicator types, namely pointer and symbol. The symbol design was rated
slightly better when directly compared to the pointer one. However, the results
indicate trends towards a rather equal preference of both designs when examining
the bigger picture. A participant’s comment in regard to using the pointer design
during synchronous collaboration, while encoding additional meaning in the
symbol indicator during asynchronous collaboration, in a more annotation-like
manner, was particularly interesting, encouraging some further investigation. No
major advantages or disadvantages for one over the other were identified, making
both potentially valid designs depending on reference task and purpose.

Based on the received assessments and within the presented scenario, one can
argue as follows. The outline design appears to be a favored reference design for
making time range references (synoptic), especially under consideration of the
comparatively good aesthetics and legibility ratings. However, an implementation
as temporal reference for an elementary task configuration of an individual data
variable was not possible using the outline design (neither for the highlight one).
Given the preference for the pointer design over the symbol one for the elementary
task, one can see its application respectively, thus again recommending a mixture
of different design approaches across elementary and synoptic tasks for making
temporal references.

6.4.8.2 Collaborative Confirmative Analysis

Usability All reported usability scores for both interfaces are above the good
margin, indicating that the collaborators were generally able to operate their
respective interfaces for their intended purpose. Given the overall purposefully
minimalistic but representative design of the non-immersive desktop terminal
as an interactive InfoVis, the comparatively high usability scores (median above
excellent) are not that surprising, as it relied on rather established visualization
techniques, i.e., line graphs and a map from a bird’s-eye view (Ward et al., 2015,
Chapters 6 and 7; Munzner, 2014, Chapter 12; Lundblad et al., 2010).

The received positive usability feedback for the immersive VE is overall in
alignment with the results of the prior empirical evaluation, dedicated to the
investigation of the implemented 3D gestural interface design (see Section 5.5.6).
In fact, comparing the usability scores (see Figures 5.35 and 6.20), the feedback
received within the scope of the collaborative scenario was better compared
to the conducted single user experiment. It is noteworthy to acknowledge
some underlying differences in this comparison though, i.e., (1) the collaborative
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scenario allowed the users to interact in the VE to their own accord, while the
single user experiment featured a more rigid structure and task protocol, and
(2) the zoom (in/out) feature was not available in the collaborative scenario,
which could be improved based on the feedback received in the single user
experiment. Nevertheless, the slightly better usability feedback for the VE in the
collaborative scenario is encouraging, as it arguably presented a more realistic
scenario where the immersed user utilized the various provided features freely
to their own desire to explore and analyze the data.

Generally, all participants were able to quickly pick up and learn the various
aspects of the immersive interface during their brief warm-up stage. They
understood the concept of the 3D radar chart data entity visualization design
and the various collaborative information cues, became comfortable with wearing
the HMD, and utilized the 3D gestural input to interact in the VE. This is in
line with the general anticipation of utilizing immersive technologies for their
natural interaction techniques (Skarbez et al., 2019; Büschel et al., 2018). After
all, enabling users to simply pick up the technology and start using it for data
analysis purposes in an intuitive manner without extensive training allows them
to focus on the subject matter at hand.

The self-reported usability scores coincide also with the observations, con-
firming the VE user’s ability to operate the immersive interface in a natural
and fluent manner. In fact, the majority of the participants made reflections
at the very end of the study, i.e., after the completion of their second task,
positively highlighting the “smoothness” of their experience in the VE and that
they overall could have easily spent even more time with their joint data analysis
activity. Considering these comments in regard to the measured session duration
(" = 28,(⇡ = 9.1) and within the presented confirmative analysis scenario and
task, this can arguably be considered a step towards the direction of moving
beyond comparatively brief “just a few minutes”-VR experiences. This is also
important keeping in mind the complexity inherent of collaboration in general
(see Section 2.3), i.e., interpretation of data, information exchange, as well as
discussion and negotiation take time (Heer and Agrawala, 2008; Andriessen, 2003).
Following this line of thought and with respect to such multi-user interplay, one
can potentially anticipate longer exposure times in CVEs within CIA scenarios
compared to single user experiences.

Among others, the above good usability scores for both interfaces are important
within the scope of the conducted empirical evaluation for two reasons in
particular. First, it validates that the interfaces could be operated as intended and
without any major usability flaws. Consequently, a potential negative impact on
the pairs’ overall collaboration due to an “unusable” interface can be excluded.
And second, it also indirectly validates the usability of the designed and integrated
collaborative features as part of each respective interface. The visual information
cues (see Section 6.4.3) were easy to recognize and provided important contextual



�.�. COLLABORATION IN VE ITERATION �� �D RADAR CHARTS 261

spatial and temporal references about their respective partner’s activity, as also
emphasized by Cruz et al. (2015). Additionally, these references were integrated in
a rather seamless manner, allowing for the automatic transmission of information
as the users naturally interacted with their interfaces. As opposed to introducing
additional dedicated actions in regard to what information to share and when,
such as discussed as part of the initial collaborative evaluation in Section 6.3.5 or
as used by Welsford-Ackroyd et al. (2020) and Peter et al. (2018), this seemed to
have allowed the collaborators to naturally interact with each other, seamlessly
picking up and referring to their partner’s context without noticeable action
delays, i.e., without the need to wait for a specific collaborative signal.

User Engagement The median user engagement scores for both interfaces are
at or above 4, indicating an overall high user engagement with the provided
collaborative system during the confirmative analysis task. This corroborates the
observer’s impressions of the collaborators being motivated and eager to use their
interfaces to analyze the data and to find the correct answers, noticeably enjoying
themselves and their collaboration during their task. These results align well
with the often stated argument that immersive technologies have the potential to
provide engaging experiences that encourage data interaction and interpretation
(Ens et al., 2021; Dwyer et al., 2018; Hackathorn and Margolis, 2016).

Furthermore, the results allow for a discussion in regard to the individual user
engagement factors. The immersive interface users reported a higher focused
attention compared to the users who operated the non-immersive desktop
terminal. There are arguably a couple of potential reasons for this. Primarily,
the characteristics of the applied display and interaction technologies have to be
taken into account. Perceiving a VE through a HMD and allowing for natural
hand interaction, i.e., a comparatively high level of immersion, may have required
the immersed user to be generally somewhat more attentive, as there are many
visual stimuli to process – both in regard to the data visualization in the VE
itself as well as due to the integrated visual information cues triggered through
their non-immersed partner. Additionally, it also needs to be considered that
while the non-immersed user explored two data variables (weather data) per
location, the immersed user was presented with five data variables (plant data)
per location (see Section 6.4.6.3). Nevertheless, the general high focused attention
across both interfaces can be attributed to the overall close collaboration between
the users, for instance the pairs investigating the same respective locations for the
majority of the task duration (see were at the same location column in Table 6.6),
collaboratively interpreting and discussing the time-series data of a specific data
entity. In regard to the slightly lower focused attention score reported by the
non-immersive interface users, another aspect comes to mind, i.e., the note taking
and completion of the pen-and-paper task answer sheet (see Section 6.4.6.3).
During the task, they were in charge of keeping track and filling out the provided
plant–weather answer matrix, which arguably may have affected their attention



262 CHAPTER �. DATA ANALYSIS USING HYBRID ASYM. COLLAB.

to the interface as they were required to temporarily switch their focus to the
physical task answer sheet.

The reported perceived usability scores for the two interfaces were in line
with the reported SUS scores, as discussed in the prior thematic paragraph.

Aspects in regard to the aesthetic appeal were rated similarly positive across
both interfaces as well. At this stage of the collaborative system, the focus in the
immersive and the non-immersive interface was on the essential parts that allow
the users to explore and analyze data, trying to avoid unnecessary information
or distracting elements in general. The received aesthetic appeal scores are
satisfactory, overall indicating that the participants enjoyed the chosen graphical
elements and visual design for each of the interfaces accordingly.

The positive reward scores, reported with medians above 4.5 for both interfaces,
are especially interesting and encouraging. The collaborators were observed
being particularly motivated to solve the given task correctly, often verifying their
observations of the time-series data across multiple different locations to ensure
that their answer was correct. A reoccurring expression across the different task
sessions was along the lines of “I am sure we got it [right], but let’s just check one
more [location].” The investigative nature of the confirmative data analysis task
provided the pairs with a clear purpose for this activity, which is also important
in regard to moving beyond initial novelty reactions (Snowdon et al., 2001). At the
same time, it was completely up to them to organize their task solving approach,
resulting in interesting data analysis strategies. The freedom of task approach,
combined with the fact that they had to work together, using different types
of display and interaction technologies, but still being able to have a notion
of what their partner was up to, supported through the collaborative features
integrated in the interfaces, likely contributed to these positive reward scores.
The participants appeared genuinely excited that “it [the collaborative system] really
worked” and “we [the collaborators] are able to see each other,” thus successfully
enabling them to be mutually aware of each other (Heer and Agrawala, 2008;
Benford et al., 1994; Benford and Fahlén, 1993). The positive reward scores for
both interfaces within the presented collaborative context indicate arguably also a
comparatively equal user contribution. Of course each interface served their own
purpose, but they were engaging for both collaborators alike, motivating them to
partake in and equally contribute to the data analysis activity – as anticipated (see
Section 6.1). It is also important to consider two more factors within the context
of the reward scores, i.e., the overall high rated usability, and the absence of an
explicit time limitation. The users’ ability to use the interfaces as intended in a
scenario where they were not pressured for time, informally confirmed by some
of the participants’ expressions that they could have spent even more time with
the developed system, likely also contributed beneficently to these reward scores.

System Design Reflections Overall, both the immersive and the non-immersive
interface were assessed positively in regard to usability and user engagement. It is
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important to highlight again that the reported scores are not meant to be compared
in a “X is better than Y” manner, nor can they (due to the asymmetric role setup),
as the interfaces serve different purposes. Instead, with the primary objective
to investigate collaborative aspects when integrating and combining immersive
and non-immersive interfaces into the same data analysis workflow, it is arguably
crucial to have an understanding and assessment of the applied tools that are likely
to impact the collaboration. After all, the empirical evaluation of collaborative
immersive systems is complex, as highlighted throughout Section 2.5 and by Ens
et al. (2021), Skarbez et al. (2019), and Billinghurst et al. (2018). Having received
a similar assessment by the participants, one can assume that the two interfaces
are appropriately balanced in regard to their purpose and operability within
the scope of the presented context as well as with respect to their anticipated
hybrid asymmetric collaboration. This assumption serves as a good foundation
for the assessment of various collaborative aspects, particularly when using
heterogeneous device types and an asymmetric user role setup.

System Logs, Audio Analysis, Observations, and Task Assessment The
analysis of the system logs as presented in Table 6.6 reveals that the collaborators
spent the majority of their time investigating the time-series data at the respective
same location, i.e., the same spatial data entity (min 75.0%, max 97.7%). This also
becomes apparent when examining the audio analysis and pathway visualizations
as illustrated in Section 6.4.7.4. Consequently, one can infer that the collaborators
found themselves in a state of rather close collaboration for the majority of the
session duration, i.e., directly interacting with each other in the same spatial data
context, making efforts as a group to solve the task by investigating the respective
time-series data.

They communicated about their observations and findings both verbally, i.e.,
by talking to each other to explain, discuss, and negotiate, and nonverbally, i.e.,
by making spatial and temporal references to point and highlight data for their
partner using the provided collaborative features. Collaboration relies inherently
on complex personal and social processes (Billinghurst et al., 2018; Heer and
Agrawala, 2008), therefore every human user has slightly different ways and
approaches of interacting with one another. This is well reflected in the results
of the audio analysis in regard to the speaking time during the task sessions
(see Table 6.6 and Figure 6.22). For instance, some pairs (pair p2, fruits scenario,
24.4 min: 8.1% and 24.8%) communicated verbally less compared to others with
much higher speaking time rates (pair p3, fruits task, 22.4 min: 20.8% and 69.1%).
There were also some instances when the collaborators made some more individual
efforts. These usually occurred when a pair set out to find a new data entity
(location) to explore, either in regard to yet completely unexplored plant–weather
correlations, or in order to verify and confirm previously made deductions (see
Figure 6.23 right).
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At times, both collaborators explored parts of the data independently in
order to find a location that contained interesting data, or in the words of the
participants, time-series data visualizations that are “curvy or bumpy” and feature
“peaks, spikes, slopes, or valleys.” An interesting case is pair p4 within the vegetables
task, whose verbal activity was much lower during these phases compared to the
ones when they analyzed the same location. However, during similar individual
spatial exploration phases of other pairs, their overall verbal activity did not
seem to change that much compared to the remainder of their joint data analysis,
indicating that they generally kept talking to each other independent of whether
they were making individual or group efforts.

In general, all pairs were able to collaboratively complete the tasks of identify-
ing the various data variable correlations (ten in total per task and subsequent
dataset) in a satisfactory manner (see Section 6.4.7.2). Given the hybrid asym-
metric collaboration setup, there was no knowledge carryover anticipated from
the fruits to the vegetables task in regard to the respective interface’s operation.
A carryover of data insights was also not possible as both tasks featured dif-
ferent datasets. There is the possibility for the pair’s task solving approach in
the vegetables task to be somewhat influenced and informed by their applied
strategy in the prior fruits task. However, there was no significant impact on their
task performance (see Section 6.4.7.2). Given these circumstances as well as the
prior described influences of the personal and social processes on collaboration
(Billinghurst et al., 2018; Heer and Agrawala, 2008), it is unlikely that there was a
noticeable knowledge carryover between the two tasks.

STCQ: Transitions between Shared and Individual Activities In addition
to the discussion of the pairs’ collaboration based on the previously described
system logs, audio analysis, observations, and task assessment, the participants
also provided self-reported assessments as collected through the administered
STCQ (see Figure 6.21). The pairs’ own reporting in regard to the occurrence
of individual and group efforts is in line with the observations and system log
analysis. They considered having made a lot of shared group efforts, while only
a few individual efforts during the task solving activity. Furthermore, the pairs
had the impression that the non-immersed collaborator was in somewhat of a
leading or directing role compared to the immersed one. While the VE users
reported a median of more other, some me, the median for the non-immersed
users lies between both equally and more me, some other. Based on the researcher
observations, it is likely that the task answer sheet responsibility caused the
non-immersed user to assume the role of being the task director at times. Even
though assuming such a “leading” role just temporarily, it arguably cannot be
considered to be the same as dedicated guiding roles, for instance as discussed
by Welsford-Ackroyd et al. (2020) or Peter et al. (2018), but instead an overall
rather balanced interplay between the collaborators for their own purposes that
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is conceptually similar to the scenarios described by Lee et al. (2020), Sugiura
et al. (2018), and Gugenheimer et al. (2017).

STCQ: Negotiation and Communication In regard to the pairs’ verbal com-
munication frequency, both interface users reported that they talked pretty much
constantly, in line with the observer’s subjective impressions. The pairs stated that
they often utilized the nonverbal communication features, i.e., the provided col-
laborative synchronous features. Furthermore, the pairs considered dialog taking
place for the majority of their verbal communication. Negotiation was reported
taking place only sometimes if at all, rather similarly initiated by both interface
users. All the above is interesting for a couple of reasons. First, the medians
from both interface users across these five items are equal, overall indicating that
the collaborators had a rather similar impression about their negotiation and
communication independent of the interface type. Second, considering the higher
share of dialog compared to the lower amount of negotiations, it seems that the
collaborators were rather successful in their verbal and nonverbal communication,
being overall able to follow their joint data descriptions and interpretations,
without much need for additional negotiation. And third, the reported amounts
of verbal and nonverbal communication, most of the time categorized as dialog,
further indicate a close collaboration between the two interface users. It was also
interesting to observe pairs establishing their individual reference terminologies,
including common and reoccurring expressions as well as more unique ones.

STCQ: Sharing Context The results indicate that the implemented collaborative
features allowed the users to focus on the same subject as their partner, and
to establish a dialog accordingly, which is a foundational aspect for successful
collaboration (Cruz et al., 2015; Heer and Agrawala, 2008; Snowdon et al., 2001).
Overall, the collaborators disagreed that these features distracted them from their
individual efforts, however with a slightly bigger range of provided impressions.
Generally, all the results in this category are favorable within the context of the
presented hybrid asymmetric collaboration setup and task. The ability to focus on
the same subject and to establish dialog are crucial for any kind of collaboration
(Dix, 1994). With both interface users confirming that they were able to do so,
the overall design of the collaborative features across both the immersive and
the non-immersive interface can be considered validated within the presented
context, of course assuming that a verbal communication channel is available
(see Figure 6.8). These results are also relevant within the context of physically
distributed collaboration environments (Skarbez et al., 2019), as it enables analysts
to work together remotely, independent of their distance to each other.

Furthermore, while the collaborators did not assess the implemented collabo-
ration features as distractions during their individual efforts, it is important to
consider the amount of reported individual efforts that took place, i.e., only a few.
On the one hand, the collaborators assessment is a promising trend in regard to
the provided features design, allowing them to focus ad hoc on their partner’s



266 CHAPTER �. DATA ANALYSIS USING HYBRID ASYM. COLLAB.

context without interfering with their own individual efforts. On the other, some
further investigations using tasks that involve more individual efforts throughout
the collaborative task are necessary to confirm or reject this trend.

Finally, it was also interesting to observe that some pairs came up inde-
pendently from each other with similar ways of utilizing the implemented
collaborative features, such as the live annotation interaction behavior.

STCQ: Awareness of Others Both interface users reported high awareness
about their respective partner’s activity in general, their location in space (spatial
data context), and their time reference (temporal data context). These assessments
allow again some reflections and discussion on the designed collaborative features
that aimed to facilitate their awareness of one another.

First, the assessments for joint awareness were reported slightly higher during
group efforts, which is desired as this is arguably the situation when it is more
important to know about the collaborator’s activity. Nevertheless, the awareness
was still rated fairly high even during the few individual efforts, and seemingly
in a non-distracting manner as discussed before.

And second, the awareness of their partner was slightly higher perceived
through the non-immersed user, with everyone agreeing that they were always
aware of the immersed user’s activities in the VE. Reflecting on the characteristics
of the implemented visual information cues across both interfaces, one aspect
becomes apparent in regard to seemingly different update frequencies. The
location and time reference updates from the immersive interface appear much
more continuous in the non-immersive interface, i.e., the position and orientation
of the immersed user are constantly updating (following the positive insights as
obtained in the initial collaboration evaluation; see Section 6.3.5), and even new
time event and time range selections appear much more in motion and fluent
due to the characteristics of the designed time event and time range selection
features as part of the interaction with a 3D radar chart (see Section 5.5.2).
These arguably provide smooth visual transitions from one state to another,
naturally updating the non-immersive interface accordingly. The other way
around, collaborative information cues from the non-immersed user update more
discrete and “event”-like in the immersive VE, i.e., new selections appear when
they are done (through respective pointer and keyboard events; see Section 6.4.2),
providing comparatively fewer visual transition cues. This may be a good starting
point for further investigations into this matter.

Still, based on the implemented collaborative information cues across both
interfaces, it appears that each user was able to follow and have an understanding
of their partner’s current investigation, closely coupled with the reported sharing
context results. As described in Section 2.3, considering the general importance
of mutual awareness for the design of collaborative systems (Cruz et al., 2015;
Snowdon et al., 2001; Benford et al., 1994), not least as an important foundation
to establish communication that results in the subsequent interpretation and
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discussion of the data (Andriessen, 2003), the received awareness assessments can
be interpreted positively. The designed visual approaches for supporting spatial
and temporal references worked well and as intended in both the immersive
and the non-immersive interface, allowing the collaborator pairs to point and
highlight data to their partner accordingly. The results also align well with
the insights reported by Nguyen and Duval (2014), stating that comparatively
simple awareness cues can often be sufficient to provide the collaborator with an
understanding of the shared workspace.

Collaboration Reflections Throughout all task sessions, the collaborators were
able to work closely as a group for the majority of their joint data analysis activity
in order to solve the given confirmative analysis task in a satisfying manner (see
Table 6.5). Considering that they had to provide ten answers (including ten
complementary confidence indications), they were overall quite busy during an
average half-hour for data exploration, observing, interpreting, and discussing
their findings. They frequently and extensively communicated verbally through
dialog that was further facilitated through the various spatial and temporal
referencing features of their interfaces. The setup allowed them to closely analyze
and interpret the spatial and temporal contexts of the data, making important
observations and deductions along the way. One pair in particular highlighted
the “detective work”-like nature of the task and their collaboration, reflecting on
the great interplay between the two interfaces, and rating the experience in a
very positive manner. The participants’ overall excitement and the natural way
of interacting with each other were reoccurring themes throughout the different
task sessions, likely positively contributing to their self-reported collaboration
assessments. This can be further underlined through a selection of noteworthy
participant comments after their task completion:

• “Oh, this was really fun and worked really well.”

• “Oh wow, did we take that long? It was so much fun.”

• “It was a lot of fun actually.”

• “This was so cool.”

• “It worked really well.”

• “I was really able to see you!”

Comments such as particularly the last one are quite interesting given that
there were no avatar-based representations of the users in neither of the interfaces,
for instance as utilized by Nguyen et al. (2019), Heidicker et al. (2017), or Benford
et al. (1994), but just the provided visual references. It appears that the participants
made themselves the mental association between the visual references and their
partner. Similar observations within the context of remote collaboration around
interactive tabletop systems, also including rather abstract and minimal visual
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representations for the collaborator’s input, were made by Kim et al. (2010),
reporting that users in their study “(...) felt as though the remote participants were
in the room itself.” It would be interesting in the future to investigate effects on
collaboration and empathy when there is no virtual user avatar, but instead other
more abstract means of user representation, identifying requirements and use
cases where one approach is potentially preferable over another. For instance, a
CIA system presented by Nguyen et al. (2019) used a virtual avatar representation
for a collaborator in a VE that utilized a similar VR approach. How could an
alternative approach without such an avatar look like, and what would the
difference be in the (perceived) collaboration?

The expressed appreciation for the collaborative system and the rewarding
experience through the participants is much in line with the visions for such
hybrid analysis environments, combining different types of technologies, as
motivated throughout Section 6.1. All in all, using different types of display and
interaction technologies and facilitated through various collaborative features,
all pairs within the presented empirical evaluation were able to successfully
collaborate with each other in a rather balanced shared workspace manner, as
opposed to more common remote expert scenarios in similar technological setups
(Ens et al., 2019).
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The goal of this thesis was to thoroughly investigate the application of
immersive display and interaction technologies, in particular utilizing head-
mounted display (HMD) devices and interaction through 3D gestural input, to
design and develop data analysis tools that are based on a Virtual Reality (VR)
approach. Within the overall context of Immersive Analytics (IA) and a focus on
spatio-temporal data, the two core themes explored throughout this thesis have
been interaction and collaboration from a user-centered perspective. Chapter 4 set
the stage by presenting a conceptual and technological system architecture that
served as the foundation for the subsequent design and development of various
data analysis interfaces and their infrastructure. While Chapter 5 investigated the
immersive interaction with spatio-temporal data, Chapter 6 explored possibilities
to enable cross-platform collaboration using immersive and non-immersive
interfaces. In particular, three major Virtual Environment (VE) iterations were
developed, two of which were even extended through support for synchronous
collaborative data analysis with a non-immersed partner. Conducted at various
stages throughout the thesis, a total of six dedicated evaluations as well as one
case study, with several hands-on experiments and demonstrations, were used
to obtain empirical insights for all the developed data analysis environments.
The results of these empirical efforts have been discussed and reflected upon,
also under consideration of important foundational concepts and relevant related
work, as presented in Chapters 2 and 3.

As a synthesis of the presented interdisciplinary research efforts and the
obtained empirical insights, various design guidelines can be derived. These design
guidelines aim to contribute to the research community by providing helpful
directives for the design and development of data analysis interfaces that utilize
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Figure 7.1: The ten derived design guidelines (DG 1-10) are aligned and mapped
to the respective thematic modules of the presented interdisciplinary thesis design
space (see Section 2.6).

immersive display and interaction technologies – within the contexts of IA and
Collaborative Immersive Analytics (CIA) in general, and the presented thesis
design space in particular (see Section 2.6).

A total of ten design guidelines have been derived. Figure 7.1 illustrates their
alignment and mapping to the thesis design space. Section 7.1 begins with the
presentation of the first six guidelines, centered around the immersive interaction
with spatio-temporal data. The remaining four guidelines, focused on various
aspects of collaboration, are described in Section 7.2.

7.1 Interaction Design Guidelines

Design Guideline 1

Consider providing supporting artifacts that facilitate orientation
and interpretation of the spatial data context.

Under consideration of the three-dimensional (3D) VE, the visual representation
of an individual data item, i.e., the data entity, has to be placed “somewhere”
to allow subsequent interpretation and interaction. For instance, with a focus
on spatio-temporal data, data entities in the VE may be placed in accordance to
geolocation coordinates. Naturally, other position mapping approaches may be
applied based on dataset and scenario. Independent of the applied mapping,
it can be beneficial to not just visualize data entities in an empty VE space,
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but additionally provide artifacts that support the user’s contextual spatial
understanding. These artifacts can provide a frame of reference that facilitates the
interpretation of the visualized data, enabling the user to establish an association
between data entity and the supporting artifact, and thus assist with the data
entity’s identification in the spatial context. Additionally, supporting artifacts can
provide important information cues that facilitate the immersed user’s ability
to orient themself in the VE, and in turn their ability to navigate and travel in
the 3D space – to identify not yet visited areas as well as to find their way back
to previously visited ones. This is arguably of particular importance when the
user explores the data in a more overview-like manner, i.e., looking and moving
around in the VE with the objective to identify “interesting” data entities that
are worth of further investigation. Ideally, the implemented supporting artifacts
should ensure unambiguous identification. To provide an example, assuming
data entities are positioned based on their geolocation coordinates, the VE could
feature additional visualizations of relevant geographical areas, rendered as
extruded surfaces on the virtual floor. With individual data entities placed
directly on top of these surfaces, one could easily associate their spatial context,
even before displaying further details-on-demand. The user’s awareness of their
own in-situ spatial context is not just important for their own data analysis,
but also relevant during collaboration, allowing the establishment of a shared
vocabulary for spatial referencing.

Design Guideline 2

Consider the visual mapping for the integration of the temporal
data variables into each data entity.

When creating the design for a data entity, i.e., a data item’s visual representation
in the VE, carefully consider the integration of temporal data variables through
appropriate visual mapping in accordance to the dataset and the scenario. A
good starting point is the identification of the amount of temporal data variables
for each data item as well as their value range. Consider whether to visually
map a single time event onto a data entity, or a larger time range that consists of
multiple time events. Encoding a time series of consecutive time events in the
visual representation of a data item should enable the user to identify trends over
time, allowing them to easily spot “interesting” events that are worth of further
inspection. When encoding a time series, consider the amount of visualized time
events. Maybe there are instances in the data analysis activity when it is sufficient
to display just a limited time range as a subset of the entire time series, allowing
the user to focus on a specific period.
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Design Guideline 3

Design for hand interaction.

3D gestural input, commonly referred to as hand interaction, can provide intuitive
mechanisms for the interaction with data in the immersive 3D space. Within the
context of immersive data analysis, easy to understand interactions can facilitate
data discovery through active user engagement, encouraging the exploration
of the VE’s content. For the design and implementation of interactive features
as data analysis tasks, consider the utilization of established 3D interaction
techniques. Hand-based grasping can allow the immersed user to interact
with visible graphical artifacts in the VE, while gestural commands enable the
performance of invisible operations. Furthermore, consider the use of real-world
analogies for the design of the 3D gestural interface. For instance, looking and
pointing at a specific data entity can be easily associated with the mental thought
of “I want to go there”, and used as a respective travel feature in the VE.

Design Guideline 4

Design with hand posture complexity in mind; utilize simple uni-
manual techniques for frequent tasks, and more complex bimanual
techniques for less frequent ones.

Similar to physical comfort considerations that should be kept in mind when
designing a 3D gestural interface, consider also the overall complexity of hand
postures, for what data analysis task they will be formed, and estimate their
frequency accordingly. Consider the utilization of comparatively simple uni-
manual (one-handed) techniques for tasks and interactions that are commonly
expected. For less frequent tasks, consider the implementation of more complex
bimanual (two-handed) techniques. Furthermore, consider also other properties
inherent of a data analysis task within the overall context of the anticipated
interaction in the VE, for instance error recoverability. Take into account the
implications of performing comparatively “drastic” tasks, such as resetting the
visual configuration of a data entity, and consider guarding such interactions
from unintentional performance by assigning them to complex and unique hand
posture configurations that are presumably not formed by accident.

Design Guideline 5

Limit available interactions based on the user’s in-situ context.

The design of interactive features for immersive 3D VEs is a complex endeavor in
general. Based on the VE’s purpose, it is likely that different types of interactions
need to be provided. This is of particular relevance within the context of
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immersive data analysis environments that require support for various analysis
tasks, and thus demand a rich set of interactions to facilitate the data analysis
activities in the VE. To assist the design of a growing interactive feature set that
is made available to the user, their in-situ contextual interaction should be taken
into account. More specifically, consider whether or not all features need to
be at the user’s disposal at all times during the data analysis activity. Some
features may only be relevant under certain circumstances, for instance during
details-on-demand investigation of a data entity or with an applied selection.
Based on the user’s in-situ interaction context, consider temporarily enabling or
disabling some features. Consider the implementation of such a feature logic,
aiming to assist the system’s ability to interpret the user’s input, their intention,
and anticipated interaction. Among others, this may assist with the prevention
of unintentional commands, particularly in immersive environments that utilize
a 3D gestural interface with a rich feature set where some hand postures and
gestures are similar – in their design, how users form them, and based on the
system’s input interpretation.

Design Guideline 6

Consider workflow integration with non-immersive tools.

While the user is immersed in the VE, i.e., wearing the HMD and interacting
in their safe interaction area using the 3D gestural interface, their ability to
multitask and to switch ad hoc their mode of operation is arguably limited.
During more traditional data analysis activities that utilize non-immersive display
and interaction technologies, the user is typically able to easily switch between
different contexts, for instance taking notes on a physical medium or even iterating
between multiple applications on their device. This enables them to be versatile
with their overall data analysis workflow, utilizing and quickly switching between
different tools. Due to the characteristics of immersive display and interaction
technologies, particularly with respect to HMD devices, such an alternation
between different tools is rather cumbersome. Consequently, the role of the
immersive VE within the context of the overarching data analysis workflow
should be taken into account. Consider the mechanisms and tools that usually
assist the user outside the VE, and how to potentially integrate them as part of
the activity inside the VE. Consider how to “export” insights and discoveries
obtained from the immersive analysis for later revisit and potential use as input
parameters to other data analysis tools.
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7.2 Collaboration Design Guidelines

Design Guideline 7

Facilitate collaboration by enabling multimodal communication
using a mixture of verbal and nonverbal tools.

During synchronous collaboration with other users in the context of a joint data
analysis activity, verbal communication can be an essential tool that allows for
the discussion of data discoveries, the sharing of knowledge and perspectives
based on the collaborators’ expertise, and the coordination of their group efforts.
Thus, consider providing the support for verbal communication independent of a
user’s interface type and their physical location. In addition to their ability to talk
with each other, nonverbal tools can also provide important information cues that
facilitate the collaboration. Consider the implementation of nonverbal information
cues, particularly visual ones, directly integrated as part of the visualization, as
they can facilitate aspects of data guidance and identification by supporting the
user to detect respective visual differences. For instance, important aspects of the
visualized data in the interface may be temporarily highlighted, thus standing
out from other parts in the immersive visualization, aiming to catch the user’s
attention. In practice, rather than using verbal and nonverbal communication
cues in isolation, they are often applied in a multimodal manner. The ability to
make references is typically accomplished through a nonverbal pointing action
and accompanied by a verbal expression. This allows collaborators to focus on
the same data artifact, and in turn enables them to establish a common ground
during their joint data analysis activity. Consequently, consider providing both
verbal and nonverbal tools in order to support collaboration through the design
and implementation of powerful multimodal features.

Design Guideline 8

Consider the design of the nonverbal collaborative information cues;
modify or add artifacts to a data entity, or modify its environment.

The purpose of nonverbal collaborative information cues is typically to catch
the user’s attention in order to guide them to an artifact in the virtual space
that is of interest. Several aspects should be taken into consideration when
designing such nonverbal information cues. The overall composition of the
VE is of relevance, providing opportunities or limitations for the design of
nonverbal information cues. Does the VE feature rather abstract or more realistic
graphical artifacts? Is the VE rich of graphical features or rather minimalistic?
The determination of such properties is a good starting point for the subsequent
design of nonverbal information cues. Similarly, this also applies to the overall
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data entity visualization design, i.e., the composition of the visual representation
of a data item in the VE. Its complexity may allow or limit the possibilities
for the design and implementation of subsequent nonverbal information cues.
With respect to a data entity, consider whether to modify its visual appearance,
add additional artifacts to it, or modify environmental features in the VE that
can be easily associated with the data entity respectively. Consider also the
overall characteristics of nonverbal collaborative information cues as well as the
implications from the interaction in the immersive VE. Collaborative information
cues are typically just temporary. While the immersed user can explore the entire
virtual 3D space (360° field of regard), it is not guaranteed that the performed
information cue appears in their field of view – it might as well appear behind
them. Hence, consider designing information cues to be distinct and recognizable,
even if the immersed user does not observe them when they first appear.

Design Guideline 9

Consider the update frequency of the nonverbal collaborative infor-
mation cues; utilize continuous updates to allow for fluent collabo-
ration, and on demand updates for focused ad hoc group efforts.

When collaborating synchronously with other users across different types of
interfaces, consider how often collaborative state updates from one interface to
the other are transmitted. Start by considering what information is valuable
to the respective collaborator for sharing and display in their interface. Then,
consider when and when not to share the information with the collaborator.
Finally, consider how and how often the information about a user’s state should
be shared with the collaborator. Anticipated collaboration styles can be a useful
indicator to determine the update frequency of such nonverbal collaborative
information cues. For instance, consider continuous updates (automatically and
frequently) to allow a more fluent interplay between collaborators during close
collaboration. Similarly, consider the utilization of less frequent on demand
updates for focused ad hoc group efforts among otherwise mostly individual
efforts (when the information about a collaborator’s state are not always necessary).
Consider the benefits and drawbacks of the applied update frequency of the
nonverbal collaborative information cues within the context of the anticipated
individual and group efforts – one does not want to distract a user during their
more independent work.
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Design Guideline 10

Consider the classification of the collaborative data analysis experi-
ence; take into account data context, scenario, tasks, technologies,
and user roles.

When setting out to design and implement a collaborative data analysis experience,
the various aspects of the anticipated collaboration should be unambiguously
classified by utilizing established terminologies, frameworks, instruments, ques-
tionnaires, and so forth. Consider the context as well as the type of data. Carefully
consider also the data analysis scenario and as such the purpose of the collabo-
ration to begin with. Think critically about the overall data analysis workflow.
What tools and interfaces are desired, what types of tasks do they aim to support,
and how do they contribute to the collaborative data analysis? Consider the
display and interaction technologies utilized across potentially multiple different
data analysis interfaces, their implications on the collaborative activity, and how
to support a smooth interplay between them. Furthermore, do not neglect the
roles of the involved users. What is their knowledge and expertise, and how
are they expected to partake in and contribute to the joint data analysis. With
many different aspects, purposes, objectives, and requirements to consider, the
classification can facilitate a critical design process.
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The conduction of various empirical research efforts allowed for the inves-
tigation of interaction and collaboration within the overall context of Immersive
Analytics (IA). In response to the thesis’ research goal (see Section 1.2), the ob-
tained insights and experiences allowed for discussion and respective reflections.
Ultimately, these led to the synthesis of ten design guidelines, as presented
throughout Chapter 7, aiming to provide useful considerations and to facilitate
the development of immersive data analysis environments. This chapter begins
with Section 8.1, providing a conclusive summary of the research presented
throughout this thesis by revisiting the three defined research objectives that
allowed to reach the posed research goal. Some impulses and directions for
future work are presented in Section 8.2, effectively concluding this thesis.

8.1 Conclusions

This thesis set out to investigate interaction and collaboration within the context of
IA, an applied and interdisciplinary research area that aims to utilize immersive
human-computer interfaces to create engaging virtual spaces that facilitate data
exploration, analytical reasoning, and collaborative decision making. To narrow
down the scope of this investigation, a focus was set on data analysis environments
that implement a Virtual Reality (VR) approach through head-mounted display
(HMD) devices and 3D gestural input as means for intuitive interaction in
three-dimensional (3D) Virtual Environments (VEs). Next to the focus on the
described technological approach, the data analysis scope was set to focus on
spatio-temporal data, a data type that is relevant for the measurement and
observation of various real-world phenomena. To facilitate the overall research
goal of contributing to the research community with empirical insights and
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the proposal of design guidelines within the presented context, three research
objectives were defined and addressed accordingly throughout the thesis.

Research Objective 1

Design and implementation of a system that allows for multivariate
data analysis using immersive display and interaction technologies.

Modular System Architecture Immersive data analysis environments can be
complex systems that involve various different components, both conceptually
as well as technologically. This becomes even more apparent the moment that
collaborative components are introduced, noticeably increasing the system’s
complexity, and thus requiring for conceptual considerations and technologi-
cal infrastructure. To address this matter, and to create a foundation for the
subsequent implementation of various immersive data analysis tools, a general
system architecture has been described throughout Chapter 4. The definition of
several essential requirements did not only facilitate the system’s design overall,
but also indirectly assists with the formal description of its various components
and capabilities. The architecture is purposefully designed to be modular and
approachable, allowing for adaptation and respective extension through other
researchers and practitioners by outlining major buildings blocks, providing
impulses and considerations for the design of similar systems in the future.
Within the scope of this thesis, the presented system architecture was applied
to implement three major VE iterations (see Chapter 5), including two collabo-
rative system setups that focused on combining immersive and non-immersive
interfaces (see Chapter 6). The successful implementation of these data analysis
environments, including the presentation of several complementary use cases that
demonstrated the developed VE iterations in alternative data contexts, allowed
for subsequent empirical evaluations with human participants. In turn, this
indirectly confirms the validity of the described system architecture within the
presented context.

Research Objective 2

Investigation of 3D UI design approaches to support immersive
interaction with spatio-temporal data.

Virtual Environment Iterations and Task Terminology To investigate the
interaction with spatio-temporal data in immersive VEs with a focus on 3D
gestural input, i.e., hand interaction, three major VE iterations were developed
and presented in Chapter 5. At their core, these VEs were centered around
different data entity visualization designs, i.e., the visual representation of data
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item in the virtual space. Different visual mapping strategies were applied
in order to encode respective spatio-temporal data dimensions in these data
entities. Next to the design, development, and empirical evaluation of the three
VE iterations, Chapter 5 also contributes with the presentation of the adopted
terminology for data analysis tasks and their adaptation towards the context of
IA and the interaction with spatio-temporal data in VEs.

Interaction Using Spheres The initial VE utilized a Sphere design (spatial
geolocation encoding, no temporal encoding), and implemented a first set of
exploratory interaction features that were mapped onto three different input
modalities, i.e., gamepad, 3D gestural input, and physical, tracked controller. The
experiences and insights obtained from a comparative evaluation of these input
modalities validated not just the technological feasibility for such an immersive
data exploration environment, but also the users’ ability to make use of it and
solve related tasks. Furthermore, the evaluation also confirmed the suitability of
hand interaction within the presented context.

Interaction Using Stacked Cuboids The second VE extended the initial concept
by implementing a Stacked Cuboid design (spatial geolocation encoding, temporal
time event encoding), and was investigated within the context of a real-world
dataset related to multilingualism on social media within the Nordic region.
The designed 3D gestural interface focused on providing features that allow
for intuitive interaction across both the spatial and the temporal data context,
applying a mixture of hand-based grasping, gestural command, and graphical
menu interaction techniques for essential analysis tasks. The obtained empirical
feedback based on a case study with linguists, who could hands-on operate
the developed VE within the scope of various lab experiments and public
demonstrations, provided valuable impulses and considerations for the further
development of such immersive data analysis environments – not just in regard to
engaging interaction in VEs, but also with respect to reflections on real-world data
analysis workflows in practice. Besides highlighting the importance of system
capabilities that allow for note taking and insights export for later use in other
data analysis tools, the experiences with the linguists also encouraged the further
exploration of collaborative aspects (as covered within the scope of the third
research objective).

Interaction Using 3D Radar Charts To further advance the immersive inter-
action with spatio-temporal data, a third and final VE iteration was developed,
centered around a 3D Radar Chart design (spatial geolocation encoding, temporal
time series encoding). The empirical efforts within the scope of this VE iteration
include (1) the validation of the overall data entity visualization design, (2) the
exploration of a proof-of-concept prototype to allow virtual note taking, and
(3) the investigation of an extended feature set to support a variety of data analysis
tasks using 3D gestural input. The obtained insights allow for critical reflections
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with respect to hand-based grasping, gestural commands, and unintentional
commands, providing considerations for the design and implementation of future
3D gestural interfaces for immersive data analysis tools.

Research Objective 3

Extension of the immersive data analysis system to support collabo-
ration using heterogeneous interfaces and user roles.

Hybrid Asymmetric Collaboration The investigation of Collaborative Immer-
sive Analytics (CIA) within the scope of this thesis was driven by the motivation
of bridging immersive and non-immersive data analysis interfaces. For this
purpose, various aspects of cross-platform collaboration have been critically
examined, resulting in the proposal of Hybrid Asymmetric Collaboration – a concept
that aims to distinctly differentiate between heterogeneous technologies and user
roles in collaborative data analysis contexts. This concept has been empirically
investigated in several evaluations throughout Chapter 6, thematically aligned
with the second and third VE iterations.

Collaboration Using Stacked Cuboids The collaborative setup within the
scope of the second VE iteration and the sociolinguistic data context was used to
obtain first practical experiences, investigating means that would allow the two
collaborators, one immersed inside the VE and one outside using a non-immersive
desktop interface, to be aware of each other, to establish a common ground,
and to make visual references to synchronously explore the spatial data context
together. For this purpose, a first set of nonverbal collaborative information cues
was implemented across their interfaces, enabling the subsequent transfer of user
signals. Based on an evaluation with pairs of linguistics students, who conducted
an explorative analysis task, empirical feedback was obtained, among others,
with respect to (1) their ability make joint data interpretations and assessments,
(2) their data exploration strategies, (3) the deictic terminology they adopted, as
well as (4) the collaborative system’s usability.

Collaboration Using 3D Radar Charts and Spatio-Temporal Collaboration
Questionnaire The insights and constructive feedback obtained from the
first evaluation encouraged further iteration to improve on the collaboration
design within the scope of the third VE iteration. The collaborative setup and
confirmative analysis task required pairs of users to analyze a spatio-temporal
dataset not just in regard to the spatial context, but also the temporal one. To
further explore the design of nonverbal information cues that can be utilized as
visual references in a Collaborative Virtual Environment (CVE), several spatial and
temporal reference designs were evaluated. Their visual appearance was informed
through the definition of three generalized design options that aim to facilitate
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the conceptual design of similar collaborative information cues on a general level.
The evaluation results of the implemented visual references, comparing their
aesthetics and legibility as well as general user preference, indicate that different
reference designs may be preferable based on their task. The actual evaluation of
the collaborative interplay between an immersed and a non-immersed user was,
by comparison to the first collaborative investigation in the prior VE iteration,
more thorough, additionally exploring aspects of user engagement as well as
utilizing the self-constructed Spatio-Temporal Collaboration Questionnaire (STCQ).
The questionnaire in particular allowed the participant pairs to self-assess their
own collaboration in a more structured and formal manner. Generally, the
obtained empirical feedback indicates that the iterated collaborative features
across their interfaces enabled the participant pairs to closely and organically
collaborate, allowing them to equally contribute to their joint data analysis activity,
and resulting in an engaged and rewarding experience for both collaborators. The
results of this evaluation, in combination with the discussion and reflections, are
encouraging for the design and development of future data analysis environments
that utilize heterogeneous display and interaction technologies and distinct user
roles to allow synchronous cross-platform collaboration.

8.2 Future Work

Based on the research presented throughout this thesis, several directions for
future work are conceivable.

One starting point could be the further investigation of the presented de-
sign space (see Section 2.6). The design space reflects on the interdisciplinary
characteristics of the presented empirical work through its modular composition.
Thus, either similar investigations could be conducted by adopting the design
space as is, or through adaptation of individual modules that would create an
alternative design space. For instance, while maintaining the overall theme of IA
and interaction with spatio-temporal data, an immersive approach other than VR
could be applied to investigate similar data interaction aspects using different
types of immersive display and interaction technologies – thus adapting the
respective left part of the design space accordingly. With similar rapid advances
in regard to Augmented Reality technologies in recent years, an arguably obvious
alternative would be to explore the interaction with spatio-temporal data using
such an approach instead of VR. Due to the capabilities of modern cross-platform
engines, developed artifacts may even be transferred into a new visualization
and interaction modality, such as illustrated in Figure 8.1, presenting a running
prototype of the implemented 3D radar chart visualization in augmented reality.
Similarly, alternative collaboration setups with respect to both technology and
user role are conceivable, exploring other dimensions in alignment with Milgram
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Figure 8.1: An impression of a prototype, illustrating the developed 3D Radar
Chart design (see Section 5.5) under utilization of an Augmented Reality approach
instead of a VR one. The prototype utilizes a marker-based tracking approach
to align the visualization in 3D and in real-time with a physical marker that is
placed in the real-world environment. Some of the interactive features were even
mapped to a keyboard as input modality, for instance to enable interaction with
the 3D radar chart’s time slice to select new time events.

et al.’s (1995) Reality-Virtuality Continuum, for instance as recently surveyed by
Fröhler et al. (2022).

The thesis’ focus on spatio-temporal data was chosen due to the relevance of
measuring and observing various real-world phenomena across many different
contexts. Naturally, besides the data contexts presented throughout this thesis
(elections, social media, forestry, weather and climate), many other datasets and
analysis scenarios exist that invite to be explored through immersive display and
interaction technologies.

The implemented logging system as part of the overall system architecture
was useful within the scope of the conducted empirical evaluations, among
others, for the retrospective visualization of a user’s spatial data exploration
over time (see Appendix C). Rather than using a non-immersive medium for
the visualization of a user’s immersive data analysis, it could be intriguing to
display such information directly in the immersive VE itself, for instance similar
as described by Büschel et al. (2021). This could arguably also be useful for other
types of collaboration, such as asynchronous collaboration, where an analyst
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traces back the prior interactions of a peer to make similar observations and
interpretations.

Throughout the various empirical evaluations presented in this thesis, the
anticipated duration that a user would spent immersed in the VE was between 15
to 35 minutes, which naturally varied from participant to participant. However,
under assumption of being immersed in the VE for a longer duration, it would
then arguably also make sense to explicitly investigate aspects about the 3D
gestural interface’s comfort and physical fatigue. Furthermore, even though the
participants throughout the evaluations were generally able to quickly learn the
operation of the interface through hand interaction, usually within a 5 minutes
warm-up, it would also be intriguing to investigate more specifically aspects of
learnability – a topic that is according to Rempel et al. (2014) often disregarded
and underexplored.

Some opportunities to combine abstract data visualization with graphically
more realistic virtual environments have been discussed as part of the presented
urban climate data use case (see Section 5.5.8), further exploring the concept of
immersive situated analytics (Bressa et al., 2022; Thomas et al., 2018). Similar to
the previously suggested retrospective visualization of user interaction data in
immersive environments, a similar conceptual approach could be applied within
the context of situated visualizations, aiming to address not just explorative and
confirmative data analysis tasks, but also facilitate the presentation of analysis
results, i.e., the analyst’s third task category (see Section 5.2) – a topic that was not
further explored within the scope of this thesis. An immersive presentation of
data analysis observations and interpretations, similar to a “guided tour”, could
align well with concepts such as immersive visual data stories (Isenberg et al.,
2018), aiming to integrate narrative components in the results presentation. In
combination with intuitive immersive interaction, these could potentially facilitate
the approachable dissemination of data observations, even to data novices.

As part of the third VE iteration, a proof-of-concept feature to allow virtual
note taking was explored. Note taking is a fundamental part of analysis workflows
(Willett and Isenberg, 2015), but unfortunately another topic that is not yet very
thoroughly explored within the context of IA (Fonnet and Prié, 2021). Under
the umbrella of the presented User Session Data Transfer building block of the
system architecture and the implemented virtual note taking (see Sections 4.2.3
and 5.5.3.2), this is another opportunity that is worth of further investigation in
the future. Potentially, such note taking could be useful not just for the analyst
themself who is creating the note, but also for other collaborators when utilized
as virtual annotation directly in the immersive space.

The assessment of collaborative work within the context of CIA has, among
others, also been deemed a major topic with respect to the current IA research
agenda (Ens et al., 2021). The construction and application of the STCQ (see
Section 6.2) facilitated the evaluation of a user pair’s collaboration as subjective
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self-assessments. As its individual items are held purposefully generic, it would
be intriguing to re-use and potentially further adapt the questionnaire for similar
collaboration evaluations in the future.

Naturally, the presented empirical results, discussion, and reflections should
be interpreted within the thesis’ overall motivation, scope, goal, objectives, and
design space in mind (see Chapter 1 and Section 2.6). Further investigations
based on the described and documented empirical evaluations may provide
additional useful insights and impulses for the interaction and collaboration
around spatio-temporal data in immersive VEs.



Appendix A

Online Media

Videos Video demonstrations were recorded to present the various developed
interfaces and their functionalities at various stages throughout this thesis. The
following collection provides brief descriptions and links to some of these videos
in thematically chronological order.

• VE Iteration 1 – System Demonstration
Demonstration of the implemented Sphere design, enabling a user to explore
open data in an immersive VE (see Section 5.3). Note that the system even
included an early collaboration prototype (that at that stage is not further
discussed within the scope of this thesis).
https://vimeo.com/230053828

• VE Iteration 1 – Input Technology Comparison
Demonstration of the implemented Sphere design as three pre-recorded in-
struction videos, each dedicated to demonstrate one input modality, and shown
to the participants as part of the respective evaluation (see Section 5.3.3).
Gamepad: https://vrxar.lnu.se/odxvr/gamepad.mp4
3D Gestural Input: https://vrxar.lnu.se/odxvr/vbmc.mp4
Physical, Tracked Controller: https://vrxar.lnu.se/odxvr/rsvr.mp4

• VE Iteration 2 – Work-In-Progress Prototype
Demonstration of the implemented Stacked Cuboid design at an early stage,
implementing the physical, tracked controller input modality, and utilized to
demonstrate the system to linguists in May 2018 (see Section 5.4.3).
https://vimeo.com/270379265

• VE Iteration 2 – Linguistics
Demonstration of the implemented Stacked Cuboid design within the overall
linguistics case study (see Section 5.4.3).
https://varieng.helsinki.fi/series/volumes/20/alissandrakis_et_a

l/2019-VARIENG_odxvrxnts-video.mp4

• VE Iteration 2 – Swedish Election
Demonstration of the implemented proof-of-concept prototype that illustrates
the Stacked Cuboid design in the Swedish Election use case (see Section 5.4.4).
https://vimeo.com/317958351
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• Virtual Environment Demo Reel – Spring 2017 to Spring 2019
A demo reel presenting various Virtual Environment prototypes that were
developed throughout the time from spring 2017 to spring 2019. This was a
complementary video shown at the thesis author’s progression seminar on
September 18, 2019.
https://vimeo.com/361004428

• VE Iteration 3 – Visualization Design Validation
Demonstration of the implemented 3D Radar Chart design in the initial
iteration as used to validate its overall visualization design concept and first
set of interactive features (see Section 5.5.3).
https://vimeo.com/393378221

• VE Iteration 3 – Uniform 3D Gestural Interface Design
Demonstration of the implemented 3D Radar Chart design in the second
iteration as used to evaluate its 3D gestural interface and extended data
analysis feature set (see Section 5.5.5).
https://vrxar.lnu.se/tdrc/tdrc-v2.mp4

• Collaboration in VE Iteration 2 – Collaborative Explorative Analysis
Demonstration of the implemented collaborative system, within the context of
exploring multilingualism in tweets and hashtags on Twitter, and shown to
the participants as part of evaluating their collaborative explorative analysis
(see Section 6.3.3).
https://vimeo.com/451482987

• Collaboration in VE Iteration 3 – Collaborative Confirmative Analysis
Demonstration of the implemented collaborative system, within the context of
exploring the Plant-Weather timelines dataset, illustrating all system features
that were available to the participant pairs for the evaluation of their collabora-
tive confirmative analysis (see Section 6.4.6).
https://vimeo.com/623459537

• 3D Radar Chart Using Augmented Reality
Demonstration of an implemented proof-of-concept prototype that illustrates
the 3D Radar Chart design using an Augmented Reality approach instead of a
Virtual Reality one (see Section 8.2).
https://vrxar.lnu.se/tdrc/ar-demo.mp4

https://vimeo.com/361004428
https://vimeo.com/393378221
https://vrxar.lnu.se/tdrc/tdrc-v2.mp4
https://vimeo.com/451482987
https://vimeo.com/623459537
https://vrxar.lnu.se/tdrc/ar-demo.mp4
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360° Interactive, Annotated Web Viewer For additional illustration of the
developed immersive interfaces using a non-immersive 2D display medium,
in-engine 360° screenshots were taken and then displayed using a panoramic web
viewer. This allows viewers to get a representative impression of the interface
from the immersed user’s field of view, even without a head-mounted display.
Some of these views feature annotations that can be hovered with the pointer
(mouse) to display additional information. The following collection provides
brief descriptions and links to some of these panoramic views in thematically
chronological order.

• VE Iteration 2 – Linguistics
Demonstration of the implemented Stacked Cuboid design within the overall
linguistics case study (see Section 5.4.3).
https://vrxar.lnu.se/apps/2019-VARIENG-odxvrxnts-360/

• VE Iteration 3 – Visualization Design Validation
Demonstration of the implemented 3D Radar Chart design in the initial
iteration as used to validate its overall visualization design concept and first
set of interactive features (see Section 5.5.3).
https://vrxar.lnu.se/apps/2020-nordichi-3drc/

• VE Iteration 3 – Uniform 3D Gestural Interface Design
Demonstration of the implemented 3D Radar Chart design in the second
iteration as used to evaluate its 3D gestural interface and extended data
analysis feature set (see Section 5.5.5).
https://vrxar.lnu.se/apps/radartimeui_v2-360/

• Collaboration in VE Iteration 2 – Collaborative Explorative Analysis
Demonstration of the implemented collaborative system, within the context of
exploring multilingualism in tweets and hashtags on Twitter, and as used by
the immersed participant for the evaluation of their collaborative explorative
analysis (see Section 6.3.3).
https://vrxar.lnu.se/apps/2020-nordichi-hcia/

• Collaboration in VE Iteration 3 – User Preferences of Reference Designs
Demonstration of all the implemented spatio-temporal reference designs as
collaborative information cues, within the context of the 3D Radar Chart design,
and shown in the Virtual Environment to the participants as part of evaluating
the user preferences of these reference designs (see Section 6.4.4). Note that
the reference design descriptors slightly differ from their presentation in the
thesis, for instance using sAe to indicate spatial reference variant A (pillar) as
elementary task configuration, and so on.
https://vrxar.lnu.se/apps/tdrc-ref-360/

https://vrxar.lnu.se/apps/2019-VARIENG-odxvrxnts-360/
https://vrxar.lnu.se/apps/2020-nordichi-3drc/
https://vrxar.lnu.se/apps/radartimeui_v2-360/
https://vrxar.lnu.se/apps/2020-nordichi-hcia/
https://vrxar.lnu.se/apps/tdrc-ref-360/
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Interactive Pathway Visualization Web Viewer The implemented logging
system as part of the developed immersive data analysis environments allowed,
among others, for the retrospective visualization of a user’s spatial data explo-
ration over time. Static impressions of these pathway visualizations are presented
in Appendix C. Additionally, the pathway visualizations of the two collaborative
evaluations presented in Chapter 6 can also be viewed online, interactive, in 3D.

• Collaboration in VE Iteration 2 – Collaborative Explorative Analysis
The pathway visualizations of the linguist pairs, illustrating their spatial data
exploration as part of evaluating their collaborative explorative analysis (see
Section 6.3.3).
https://vrxar.lnu.se/apps/2020-nordichi-hcia/pathwayvis/

• Collaboration in VE Iteration 3 – Collaborative Confirmative Analysis
The pathway visualizations of the participant pairs, illustrating their spatial
data exploration as part of evaluating their collaborative confirmative analysis
(see Section 6.4.6).
https://vrxar.lnu.se/apps/2021-frivr/

https://vrxar.lnu.se/apps/2020-nordichi-hcia/pathwayvis/
https://vrxar.lnu.se/apps/2021-frivr/
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Software Modules

Open Source Statement Various software modules have been developed over
time to practically facilitate the implementation of the interfaces and systems
presented throughout this thesis. Some of these modules, those deemed useful
and relevant, are freely available on the Internet as open source for other
researchers, practitioners, students, and so on, to use and adapt. The following
collection provides brief descriptions and links to these modules.

• Unity – PolyExtruder
This module provides the functionality to create custom meshes (polygons) in
Unity based on a collection of vertices directly at runtime. These 2D meshes
are created along the x- and z-dimensions in the 3D space. The meshes can be
extruded into 3D prisms along the y-dimension in the 3D space. Among others,
this module was utilized to render the various geographic features on the floor
in the developed Virtual Environments, for instance the Nordic countries (see
Section 5.4.1), the municipalities of Sweden (see Section 5.4.4), the European
countries (see Section 5.5.1), the counties of Sweden (see Section 5.5.7), and the
districts of the city of Norrköping (see Section 5.5.8).
https://github.com/nicoversity/unity_polyextruder

• Unity – rworldmap import
This module illustrates a workflow of exporting vector data that represent the
Earth’s countries from the R package rworldmap,1 generate respective C# classes
that can be used in Unity, and finally visualize the exported vector data in Unity
as extruded polygons (using the prior listed Unity – PolyExtruder module).
This workflow has been utilized to visualize the Nordic (see Section 5.4.1) and
European countries (see Section 5.5.1) in the developed Virtual Environments.
https://github.com/nicoversity/unity_rworldmap

• Unity – Log2CSV
This module provides the functionality to easily integrate a simple logging
system in a Unity application, and has been used as part of the immersive
Virtual Environment’s architecture (see Section 4.2.2) throughout all iterations

1Andy South. rworldmap: Mapping Global Data. Retrieved June 1, 2022, from https://cran.r
-project.org/web/packages/rworldmap/
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presented in this thesis.
https://github.com/nicoversity/unity_log2csv

• Unity – 3D Radar Chart
This module provides the initial implementation of the 3D Radar Chart design
(see Section 5.5.3) as a data-agnostic and interactive data visualization for
utilization in Unity.
https://github.com/nicoversity/unity_3dradarchart

• Unity – MediaUpload
This module provides a simple workflow that illustrates (1) the capture of
media data within a Unity application, and (2) the upload of the media data as
binary data via HTTP to a Node.js server. The module was used to implement
the proof-of-concept virtual note taking feature as part of the third Virtual
Environment iteration (see Section 5.5.3.2).
https://github.com/nicoversity/unity_mediaupload

• Unity – Connect via WebSocket server to JavaScript client
This module provides a simple and minimalistic template to illustrate commu-
nication and data transfer between a Unity client application and a JavaScript
web client application via WebSocket connection implemented as a Node.js
server. The module was used to implement the Collaboration Infrastructure
(see Section 4.2.4) as part of the third Virtual Environment iteration (see Sec-
tion 6.4).
https://github.com/nicoversity/unity_wss_js

https://github.com/nicoversity/unity_log2csv
https://github.com/nicoversity/unity_3dradarchart
https://github.com/nicoversity/unity_mediaupload
https://github.com/nicoversity/unity_wss_js
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Pathway Visualizations
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Figure C.1: Pathway visualizations, representing a user’s spatial data exploration
over time, based on the data collected within the comparative input technology
evaluation (see Section 5.3.4.4).
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Figure C.2: Pathway visualizations, representing a participant pair’s spatial
data exploration over time, based on the data collected within the collaborative
explorative analysis evaluation (see Section 6.3.4.4). Visualizations created by Aris
Alissandrakis. Note: A link to an interactive 3D online viewer of these pathway
visualizations is listed in Appendix A.
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fruits vegetables

p1
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Figure C.3: Pathway visualizations, representing a participant pair’s spatial
data exploration over time, based on the data collected within the collaborative
confirmative analysis evaluation (see Section 6.4.7.4). Note: A link to an interactive
3D online viewer of these pathway visualizations is listed in Appendix A.





Appendix D

Study Material

Collaboration in VE Iteration 3 – Collaborative Confirmative Analysis With
respect to the conducted evaluation of investigating a participant pair’s collabo-
ration during a confirmative analysis task within the overall context of Hybrid
Asymmetric Collaboration (see Section 6.4.6), the following collection provides some
supplementary material that was utilized in the evaluation.

• Spatio-Temporal Collaboration Questionnaire (STCQ)
An online repository that contains overall information about the self-constructed
STCQ (see Section 6.2), including instructions on how to administer it, a
generalized PDF template for re-use as is, as well as the respective LATEX source
files to facilitate remix and further adaptation.
https://github.com/nicoversity/stcq

• correlated-timelines by Aris Alissandrakis
An online repository that contains the Plant-Weather timelines (PWt) dataset
as utilized throughout Sections 5.5 and 6.4, including a detailed description on
how the dataset was generated.
https://github.com/arisalissandrakis/correlated-timelines

• Figures D.1 and D.2 exhibit the prepared Spatio-Temporal Collaboration Ques-
tionnaire (STCQ) that was administered to each collaborator.

• Figure D.3 exhibits the “science fictional” task scenario that was presented to
the participant pairs within the scope of the evaluation (see Section 6.4.6.3).

• Figure D.4 exhibits the prepared physical task answer sheet for the fruits
scenario (see Section 6.4.6.3).

• Figure D.4 exhibits the prepared physical task answer sheet for the vegetables
scenario (see Section 6.4.6.3).

• Individual visualizations that present a pair’s verbal activity (based on the
conducted audio analysis) in combination with their shared spatial context
(based on the logging data) are included in the supplementary material of the
publication by Reski et al. (2022), available at: https://www.frontiersin.or
g/articles/10.3389/frvir.2021.743445/full#supplementary-material.
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Synchronous Asymmetric Interaction within the Context of

Collaborative Immersive Analytics

Questionnaire: Collaboration

Instructions: For each of the following dimensions [TSIA, NC, SC, AO], read carefully its definition, and for the
questions / statements, mark one box that best describes your reactions to the tested application today.

Application Session
⇤ Virtual Reality Application.
⇤ Desktop Application.

Date/Time:
Task: ⇤ Fruits ⇤ Vegetables

[TSIA] Transitions between Shared and Individual Activities: The interplay between individual and group
efforts, including the ability to switch between these, within the scope of collaborative work.

TSIA.1 How many of your efforts during this task would you con-
sider to have been individual efforts?

TSIA.2 How many of your efforts during this task would you con-
sider to have been group efforts?

TSIA.3 According to your impression, who was more in a leading /
directing role during the group efforts?

[NC] Negotiation and Communication: Verbal conversation (i.e., talk) facilitated through the ability of utilizing
nonverbal information cues in order to discuss and interpret any task-related aspects of the activity (e.g., findings in
the data, roles and structure of task approach, and so on).

NC.1 According to your impression, how often did you commu-
nicate verbally to your partner?

NC.2 According to your impression, how often did you commu-
nicate nonverbally to your partner?

NC.3 How often would you consider did dialog take place?

NC.4 How often would you consider did negotiation take place?

NC.5 Who would you say mostly initiated the negotiations?

Please continue on the next page.

1

Figure D.1: The first page (of two) of the prepared Spatio-Temporal Collaboration
Questionnaire (STCQ) that was administered to each collaborator within the
scope of the collaborative confirmative analysis evaluation (see Section 6.4.6.4).
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[SC] Sharing Context: Characteristics and features of the shared space that facilitate and support focused and
unfocused collaborative work, leading to shared understandings.

SC.1 The collaborative features of the system allowed me to focus
on the same subject as my partner.

SC.2 The collaborative features of the system allowed me to es-
tablish a dialog with my partner.

SC.3 The collaborative features of the system distracted me from
my individual efforts.

[AO] Awareness of Others: The ability to understand your partner’s activity during times of (1) focused collabo-
ration and active communication (i.e., group efforts), as well as (2) more independent and individual work.

AO.1 During your group efforts, how much were you aware of
your partner’s activities?

AO.2 During your group efforts, how much were you aware of
your partner’s location in space?

AO.3 During your group efforts, how much were you aware of
your partner’s time reference (time point / interval)?

AO.4 During your individual efforts, how much were you aware
of your partner’s activities?

AO.5 During your individual efforts, how much were you aware
of your partner’s location in space?

AO.6 During your individual efforts, how much were you aware
of your partner’s time reference (time point / interval)?

2

Figure D.2: The second page (of two) of the prepared Spatio-Temporal Collabora-
tion Questionnaire (STCQ) that was administered to each collaborator within the
scope of the collaborative confirmative analysis evaluation (see Section 6.4.6.4).
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1

•
•

•

•

•

•

Disclaimer: The presented scenario and task are fictional, and have been
exclusively created for the study you are participating in.

Scenario: It is the year 2X42. A series of scientific and technological advances
made it possible to travel through the quantum realm. The exploration of many
different variants of our dear Mother Earth followed in the years after. You are a
two-person science team responsible for one such expedition. While one of you
specializes on the collection and analysis of weather data, such as for instance
sunlight and humidity levels, the other is an expert in the study and observation of
plants, such as different types of fruits and vegetables.

After a joint excursion through the quantum realm during which you collected 150
days worth of data from different locations all over, what appears to be, the
European landmass, you are now back in your research lab. Using the (non-
immersive) weather terminal as well as the (immersive) plant exploration
environment, you are ready to together take a closer look and make sense of your
collected data.

Task: Your superintendent asked you for a report on the collected data.
Collaboratively explore the collected weather and plant data in space and time, and
use the provided tools to make assessments that describe the relationship
between each plant and the two weather variables (sunlight and humidity). In
short, based on your observations, determine the type of correlation between each
weather and plant data, and additionally indicate how confident you are with those
assessments. To support your conclusions, you should better write down
noteworthy observations along the way.

Further Information:

A correlation refers to the relationship between two variables.
A positive correlation indicates that when one variable is increasing, the other
variable is increasing as well. Or, when one variable is decreasing, the other
variable is decreasing as well.
A negative correlation indicates that when one variable is increasing, the other
variable is decreasing (and vice versa).
No correlation would indicate that when one variable is increasing, the other
might be increasing, decreasing, or remain unchanged with equal probability.
If you cannot determine the type of correlation based on your observations,
please indicate so.
You can assume that the location does not affect the correlations. A relationship
between a weather variable and a plant would be the same across the planet,

no matter the specific geographic location.

Figure D.3: The “science fictional” task scenario that was presented to the
participant pairs within the scope of the collaborative confirmative analysis
evaluation (see Section 6.4.6.3).
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Synchronous Asymmetric Interaction within the context of Collaborative Immersive Analytics

Session - Date / Time: _____________________

Correlation: Based on your joint data exploration, please make assessments that describe the relationship
between fruit and sunlight, as well as fruit and humidity.

Confidence: How sure / confident are you with your correlation assessment?

Fruit

Sunlight Humidity

Correlation Confidence Correlation Confidence

Apples
▢ Positive
▢ None
▢ Negative

▢ Do not know
▢ Low
▢ Medium
▢ High

▢ Positive
▢ None
▢ Negative

▢ Do not know
▢ Low
▢ Medium
▢ High

Oranges
▢ Positive
▢ None
▢ Negative

▢ Do not know
▢ Low
▢ Medium
▢ High

▢ Positive
▢ None
▢ Negative

▢ Do not know
▢ Low
▢ Medium
▢ High

Bananas
▢ Positive
▢ None
▢ Negative

▢ Do not know
▢ Low
▢ Medium
▢ High

▢ Positive
▢ None
▢ Negative

▢ Do not know
▢ Low
▢ Medium
▢ High

Berries
▢ Positive
▢ None
▢ Negative

▢ Do not know
▢ Low
▢ Medium
▢ High

▢ Positive
▢ None
▢ Negative

▢ Do not know
▢ Low
▢ Medium
▢ High

Grapes
▢ Positive
▢ None
▢ Negative

▢ Do not know
▢ Low
▢ Medium
▢ High

▢ Positive
▢ None
▢ Negative

▢ Do not know
▢ Low
▢ Medium
▢ High

Note: Once both of you agree that you have finished your joint data exploration, please say aloud
“We are done with the data exploration.”

Figure D.4: The prepared physical task answer sheet for the fruits scenario
that the non-immersed collaborator was in charge of within the scope of the
collaborative confirmative analysis evaluation (see Section 6.4.6.3).
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Synchronous Asymmetric Interaction within the context of Collaborative Immersive Analytics

Session - Date / Time: _____________________

Correlation: Based on your joint data exploration, please make assessments that describe the relationship
between vegetable and sunlight, as well as vegetable and humidity.

Confidence: How sure / confident are you with your correlation assessment?

Vegetable

Sunlight Humidity

Correlation Confidence Correlation Confidence

Tomatoes
▢ Positive
▢ None
▢ Negative

▢ Do not know
▢ Low
▢ Medium
▢ High

▢ Positive
▢ None
▢ Negative

▢ Do not know
▢ Low
▢ Medium
▢ High

Carrots
▢ Positive
▢ None
▢ Negative

▢ Do not know
▢ Low
▢ Medium
▢ High

▢ Positive
▢ None
▢ Negative

▢ Do not know
▢ Low
▢ Medium
▢ High

Potatoes
▢ Positive
▢ None
▢ Negative

▢ Do not know
▢ Low
▢ Medium
▢ High

▢ Positive
▢ None
▢ Negative

▢ Do not know
▢ Low
▢ Medium
▢ High

Cabbages
▢ Positive
▢ None
▢ Negative

▢ Do not know
▢ Low
▢ Medium
▢ High

▢ Positive
▢ None
▢ Negative

▢ Do not know
▢ Low
▢ Medium
▢ High

Lettuces
▢ Positive
▢ None
▢ Negative

▢ Do not know
▢ Low
▢ Medium
▢ High

▢ Positive
▢ None
▢ Negative

▢ Do not know
▢ Low
▢ Medium
▢ High

Note: Once both of you agree that you have finished your joint data exploration, please say aloud
“We are done with the data exploration.”

Figure D.5: The prepared physical task answer sheet for the vegetables scenario
that the non-immersed collaborator was in charge of within the scope of the
collaborative confirmative analysis evaluation (see Section 6.4.6.3).
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