
Levels of Exploration

Stephan Diehl and Andreas Kerren
University of Saarland, FR 6.2 Informatik,
PO Box 15 11 50, D-66041 Saarbriicken

{dieM, kerren}@cs.uni-sb.de

Abstract

Visualization of computational models is at the heart
of educational software for computer science and re-
lated fields. In this paper we look at how generation of
such visualizations and the visualization of the genera-
tion process itself increase exploration. Four approaches
of increased exploration in formal language theory and
compiler design are introduced and for each approach
we discuss an educational system which implements it.

1 Introduction

In computer science and in particular in compiler de-
sign the theory and algorithms are very abstract and
usually complex. Therefore visualizations are appropri-
ate for computer science instruction. Although compiler
design is often considered a practical field within com-
puter science, most of its techniques are based on work
in theoretical computer science, e.g. formal languages,
automata theory and formal semantics. In recent years
we have developed several educational software systems
for topics in compiler design and theoretical computer
science. These systems have in common that they teach
computational models by animating computations of in-
stances of these models with example inputs. But they
differ in the level of exploration.

Table 1 not only reflects the increased flexibility of the
software developed, but also the chronological develop-
ment of software by group, as well as the order of pre-
sentation in this paper. Higher levels of exploration de-
mand more prerequisites and self-control by the learner.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
'To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or s fee.
SIGCSE 2001 2/01 Charlotte, NC, USA
© 2001 A C M ISBN 1 - 5 8 1 1 3 - 3 2 9 - 4 / 0 1 1 0 0 0 2 . . . $ 5 . 0 0

Thus, in the educational software the learner should
start with static examples and as the learner advances
the level of exploration should be increased. Exercises
and textual hints in the educational software should
guide the learner, to make sure he/she doesn't miss the
important issues.

A p p r o a c h I n p u t [C o m p u t a t -
] ional M o d e l

Static fixed fixed
Interactive user fixed
First-order user user

. generative
Second-order user user

_ generative.

G e n e r a t o r

none
n o n e
yes

y e s
visualized

Table 1: Levels of exploration

2 Static Approach

In the static approach the execution of an instance off
a computational model is animated for a given, fixed
input.

The educational software "Animation of Lexical Anal-
ysis" [1] has been developed with the authoring system
Asymetrix Multimedia ToolBook 3.0 and runs on Win-
dows 3.x/95/98/NT4. The software offers on the one
hand an interactive introduction to the problems of lex-
ical analysis, in which the most important definitions
and algorithms are presented in graphically appealing
form. Animations show how finite automata are cre-
ated from regular expressions, as well as, how finite au-
tomata work. Currently there is only a German version
of the software.

First several animations show the fundamental compo-
nents of a scanner and the cooperation between parser
and scanner. Then symbols and symbol classes are ex-
plained. It is shown, how input symbols, lexical sym-
bols, symbol classes and their internal representation
are connected. Next an overview about formal lan-
guages and an introduction to regular languages and
regular expressions are given.

60

Figure 1: Equivalence of transition diagram and NFA

Then transition diagrams, non-deterministic (NFA) and
deterministic (DFA) finite automata are described.
There are animated examples for each of these that can
be controlled by the user. The equivalence between reg-
ular expressions and NFA's is explained with an fixed
animated example (see Figure 1). The user can follow
the parallel processing of a transition diagram and an
NFA with the same input string.

This sofftw~e follows the static approach, because the
user cannot enter own input strings. There are only an-
imations of fixed input examples, which were designed
by the developer of the educational software. The user
can start animations, stop them or initiate a backtrack-
ing. But if he/she is curious to know what happens for
a different input string, there is no way to find out.

3 Interactive Approach

In the interactive approach an instance of a computa-
tional model is animated]or an example entered by the
user/qearner.

An example for this approach is our application "An-
imation of Semantical Analysis" [6]. It illustrates and
animates the basic tasks of semantical analysis by tex-
tual and graphical examples. It covers basic knowledge,
like the concepts of scoping and visibility, checking of
context conditions (identification of identifiers, checking
of type consistency), overloading of identifiers and poly-
morphism. The corresponding algorithms for analysis
can be examined with own examples. As the system
described in the previous section this system was imp
plemented using Multimedia ToolBook. The dynamical
component, that allows users to enter their own exam-
ples, was developed in C using the application program-
ming interface (API) of the windows system. First our
educational software presents and describes the defini-

Figure 2: Visualization of the checking the context con-
ditions

tions of semantical analysis step by step. Afterwards
these are made clear on the basis of animated exam-
ples. Both happens completely interactive, i.e. the
users can navigate through a graphical environment by
mouse-click. They can select and deepen topics, which
they are interested in. For these topics they can read
explanatory text and look at animations. Finally the
users have the possibility to enter examples, and to run
the presented algorithms graphically on the dynamically
drawn abstract syntax trees of these examples. Exam-
ples can be input programs, expressions or specifications
for operator overloading.

The screendump in Figure 2 shows a visualization of
checking the context conditions of an example program,
that was entered by the user. The resulting syntax tree
is automatically drawn and displayed in the applica-
tion window. The user has influence on the tree lay-
out, he/she can change the distances of sibling nodes,
neighbouring nodes and parents/child nodes. Further
there is the possibility to zoom and rotate the tree.
These features help to place the tree in the window
optimally. Thus it is possible to change the tree lay-
out in such a way that the tree fits completely into the
window. This increases the clarity with the animation.
All other graph items, as for instance small information
windows at the individual nodes, additional edges etc.,
are adapted directly to the new layout.

The abstract syntax tree is almost completely displayed.
Also the type attributes of some nodes axe shown. They
are calculated on the basis of the types of the built-in
operators, which are used in the example program and
shown in an auxiliary window (bottom left). In this
software the computational model is semantical analysis
of a program and the instances are checking of context
conditions, overloading resolution and type inference for

61

a language with parametric polymorphism. Although
the user can enter examples he/she can only select one
of the three given semantical analysis methods, which
are then animated for the entered examples.

4 First-Order Generative Approach

In the first-order generative approach the user enters
the specification of an instance of a given computational
model. Then an interactive visualization o f this instance
is generated and the user can enter an example input a s

in the interactive approach.

As an example of the first-order generative approach we
describe GANIMAM, our web-based generator for in-
teractive animations of abstract machines [3]. Figure 3
shows a snapshot of such an animation. Abstract ma-
chines provide intermediate target languages for com-
pilation. First the compiler generates code for the ab-
stract machine, then this code can be interpreted or
further compiled into real machine code. By dividing
compilation into two stages, abstract machines increase
portability and maintainability of compilers. The in-
structions of an abstract machine are tailored to spe-
cific operations required to implement operations of a
source language or even better for languages of the same
language paradigm.

The user can enter a specification of an abstract ma-
chine, which is then sent to the server. A CGI script on
the server generates Java code and using a Java Com-
piler it translates this code into class files. In combi-
nation with the GANIMAM base package classes these
class files form an interactive Java applet. This applet
can be loaded over the internet and the user can enter
machine programs, modify the layout of the different
parts of the visualized abstract machines and control
the animation of the execution of his abstract machine
programs. The automatic layout groups the different
memories around the accumulator (the chip in the mid-
die). Source code and stacks are placed to the right,
stacks to the left, local variables above and registers be-
low the accumulator. Associated with the accumulator
is an accumulator window, which shows the expressions
which are currently evaluated and the definitions of the
instructions or functions which are currently executed.
Double clicking with the right mouse button at an in-
struction in the source code window, loads its definition
into the accumulator window. Double clicking with the
left mouse button at an instruction sets the value of
the program counter to the address of that instruction,
i.e. the execution of the abstract machine program is
continued at that address. Clicking at a cell of a stack,
heap or register opens a window. In this window the
user can change the value and type of that cell. For
registers only the value can be changed.

Figure 3: Screenshot of an animated abstract machine

Annotations only help to visualize principles which we
know upfront. GANIMAM can also be used to detect
new principles by experimenting with specifications and
abstract machine programs. Such an experimental ap-
proach can be used as part of an explorative educational
software. It enables students to formulate hypotheses
and validate or invalidate them by changing specifica-
tions or abstract machine programs. This way he/she
can learn much about the computational model, here
abstract machines, but not about their generation pro-
cess. The generation process is treated as a black box.

5 Second-Order Generative Approach

A s in the first-order generative approach the user enters
a specification of an instance of a given computational
model. But in the second-order generative approach in
addition to visualizing the computation also the genera-
tion process is shown as an interactive visualization.

Instead of visualizing the generation process for a cer-
tain computational model, we are currently developing
a general framework to implement generators and their
visualizations. Our framework combines several results
of current research on algorithm animation and software
visualization. As a first test case for our framework we
use the implementation and visualization of a lexical
analyzer generator.

Generators in compiler design usually generate tables,
which control the implementation of the compiler phase
together with a fixed driver. We can use this feature
to generate visualizations of the generators and the
compiler phases generated by them. In order to reach
this goal, we develop a visualization control language
GANILA, in which the generators and the drivers can
be described. Then a GANILA compiler produces im-
plementations of the generator and the driver from these
specifications. In GANILA there is also the possibility
to connect program points with hypermedia documents.
Information, which is available at run-time at this pro-
gram point, can be transferred to the document. In lit-

62

crate programming a connected static document is pro-
duced by the documentations of the program points. In
contrast in our system the documentation of a program
point can be displayed, whenever the program point is
reached during the animation.

$11cci~v.~ioa of" i
....... ~ . ~

tqxccl pgt of

Figure 4: Generation of animated generators and com-
piler phases

From the extended specifications the GANILA compiler
generates animations of the generator and of the gen-
erated compiler phase, see Figure 4. In addition to an-
notating the specification of the compiler phase, as de-
scribed in the first approach, we annotate the generator
and driver programs by marking program points with
'interesting events' and we define views on their data
structures, i.e. among other things the generated table.
For each view we determine, how it handles each event.

C (:

Figure 5: Intermediate and final NFAs for the RE (alb)*.

The screendump in Figure 5 shows how the generation
process of an lexical analyzer is visualized. In this exam-
ple, it shows how the conversion of a regular expression
(alb)* into an appropriate nondeterministic finite state
automaton (R E ~ N F A) is animated.

The generator has been integrated in an applet for visu-
alizing generation and computation of finite automata,
which is used in our electronic textbook on the theory
of finite automata (see Figure 6). The GaniFA applet
visualizes and animates the following algorithms:

.: • ~ : . .

.i

Figure 6: Screendump of the Electronic Textbook.

• Generation of a non-deterministic finite automaton
(NFA) from a regular expression (RE) [11].

• Removal of c-transitions of a NFA [8, 11].

• Transformation of a deterministic finite automaton
(DFA) from a NFA without c-transitions [8, 11].

• Minimization of a deterministic finite automaton
(minDFA) [5].

• For each of the above automata generated above, the
applet can visualize the computation of the automa-
ton on an input word.

GaniFA is customizable through a large set of parame-
ters. In particular, it is possible to visualize only some
of the algorithms and to pass a finite automaton or a
regular expression as well as an input word to the ap-
plet.

6 Exploration and Learner Control

Many authors argue that learning software, in which
the computer appears as corrector, is discouraging and
not very successful The existing studies for this are
however partially contradictory [9]. From an educa-
tional perspective there are a large number of theoreti-
cal models, empirical studies and instructional projects,
which come to contradictory conclusions. On the one
hand Paris and Newman argue in [7], that "in tradi-
tional instruction, the teacher is predominantly active
and the students are passive. This imbalance should be
reversed. Self-generated, self-organized, self-controlled
and self-evaluated learning (in contrast to learning that
is directed by others and controUed by the teacher) is
perceived as an important, if not the essential, prereq-
uisite for understanding, insight and discovery". On the

53

other hand Brown and Van Lehn [2] maintain the state-
ment, that "self-organized learning and forms of low
teacher-controlled instruction may lead to substantial
conceptual deficits in students' knowledge". An answer
to the question, what the better instruction model is,
was given by Weinert and Helmke [10]: "An old piece
of educational wisdom is that no single method of in-
struction is the best for all students and for all learning
goals, and that even very effective instructional proce-
dures can have deficits with respect of single criteria".

Our approach offers a way for explorative, self-
controlled learning. The learner can focus on certain
aspects in the generated, interactive animation and see
what effects small modifications in the specification
have. With the help of such observations he formulates
hypotheses and checks these empirically. In the interac-
tive approach such checkable hypotheses are restricted
to the instance of the computational model. In the first-
order generative approach also hypotheses about the
computational model and in the second-order genera-
tive approach about the generation process itself can be
checked.

More precisely, in our learning software the learner de-
scribes processes by specifications as exercise. In con-
ventionai learning software such responses, i.e. answers
of an exercise, are checked for correctness, if this is pos-
sible at all. Possible errors are indicated to the learner,
and he/she is requested to revise his response. In com-
puter science, many properties of computational models
can not be checked because of the halting problem. As
a consequence we need alternative ways to provide feed-
back for the learner.

In our approach an interactive animation is produced
from the response (specification) of the leaxner. Then
the learner can test it on the basis of his/her own ex-
amples. In this way he can detect errors. There is no
anonymous, all-knowing authority, which shows his er-
rors.

Such a visual experimental approach is not meant to
replace, but to enhance classical teaching of theoreti-
cal contents. The acceptance and effectiveness of such
explorative learning software must be proven in prac-
tice, i.e. in instruction. In cooperation with cognitive
psychologists we have done some and are currently de-
veloping new experiments for such evaluations.

7 Conclusion

In this paper we discussed how generation of visualiza-
tions can be used in educational software for computer
science and related fields. For each approach we pre-
sented an implementation of an educational software
system. All software can be downloaded or tested on
our project homepage [4]. We have finished the devel-

opment of the first three systems and these systems are
publically available. The fourth system is under devel-
opment, but there is a functional prototype implemen-
tation on our web page. It has been implemented using
a powerful framework for interactive, web-based algo-
rithm animations. We plan to use it not only to teach
finite automata theory but also more complex genera-
tion processes in compiler design.

References

El] Braune, B., Diehl, S., KezTen, A., and Wilhelm, R.
Ammation of the Generation and Computation of
Finite Automata for Learning Software. In Pro-
ceedings of Workshop on Implementing Automata
(Potsdam, 1999).

[2] Brown, J. S., and Lehn, K. V. Towards a genera-
tive theory of "bugs". In Addition and subtraction:
Developmental perspectives, T. Romberg, T. Car-
penter, and J. Moses, Eds. Hillsdale, N J: Lawrence
Erlbaum Asssociates Inc., 1982.

[3] Diehl, S., and Kunze, T. Visualizing Principles of
Abstract Machines by Generating Interactive Ani-
mations. Future Generation Computer Systems 16,
7 (2000).

[4] Ganimai. Project homepage, http://www.cs.uni-
sb.de/GANIMAL, 2000.

[5] IIopcroft, J., and Ullman, J. Introduction to
Automata Theory, Languages and Computation.
Addison-Wesley, 1979.

[6] Kerren, A. Animation of the semantical analysis.
In Proceedings of 8. GI-Faehtagung lnformatik und
Schule INFOS99 (in German) (1999), Informatik
aktuell, Springer.

[7] Paris, S. G., and Newman, R. S. Developmental
aspects of self-regulated learning. Educational Psy-
chologist 25 (1990) .

[8] Robin, M., and Scott, D. Finite automata and their
decision problems. IBM J. Res. Dev 3/2 (1959).

[9] Sehulmeister, R. Foundations of Hypermedial
Learning Systems (in German). Addison Wesley,
Bonn, 1996.

Weinert, F. E., and Helmke, A. Learning from
wise mother nature or big brother instructor: The
wrong choice as seen from an educational perspec-
tive. Educational Psychologist 30 (1995).

[11] Wilhelm, R., and Maurer, D. Compiler De-
sign: Theory, Construction, Generation. Addison-
Wesley, 1995.

[lOl

64

