
Copyright © 2006 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
SOFTVIS 2006, Brighton, United Kingdom, September 04–05, 2006.
© 2006 ACM 1-59593-464-2/06/0009 $5.00

Novel Algorithm Explanation Techniques
for Improving Algorithm Teaching

Andreas Kerren∗
Computer Science Department

University of Kaiserslautern
Kaiserslautern, Germany

Tomasz Müldner†

Jodrey School of Computer Science
Acadia University

Wolfville, Nova Scotia, Canada

Elhadi Shakshuki‡

Jodrey School of Computer Science
Acadia University

Wolfville, Nova Scotia, Canada

1 Introduction
The analysis and the understanding of algorithms is a very impor-
tant task for teaching and learning algorithms. We advocate a strat-
egy, according to which one first tries to understand the fundamen-
tal nature of an algorithm, and then—after reaching a higher level of
awareness—chooses the most appropriate programming language
to implement it. To facilitate the process of understanding of algo-
rithms, their visualization, in particular animation, is considered to
be the best approach. Traditional Algorithm Animation (AA) sys-
tems usually aim for teaching algorithms in higher education, see
for example the chapter introduction of Kerren and Stasko [2002] or
the earlier anthology on software visualization [Stasko et al. 1998].

Evaluations of systems designed to achieve this aim using vari-
ous visualization and animation techniques have shown that such
systems have not achieved many expectations of their develop-
ers [Hundhausen et al. 2002]. One reason for this failure is the
lack of stimulating learning environments which support the learn-
ing process by providing features such as multiple levels of abstrac-
tion, support for hypermedia, and learner-adapted visualizations.
Furthermore, runtime interpretation requires specific input data and
cannot consider all possible inputs and often suffers from the lack
of focus on relevant data, see Braune and Wilhelm [2000]. Most
existing algorithm animation systems do not address the issue of
representing algorithm invariants, implementing algorithms in spe-
cific programming languages, paying attention to their structure, or
finding their time complexity. Adapting facilities for the learner be-
haviour are not supported, nor is the additional use of media beyond
graphics and animation.

2 The SHALEX System
In this poster paper, we describe a system that includes a hyperme-
dia environment providing links between various kinds of multime-
dia. Our system, called Structured Hypermedia Algorithm Explana-
tion [SHALEX 2006], aims to address most of the aforementioned
problems. It provides several novel features, such as reflection of
the high-level structure of an algorithm and support for program-
ming the algorithm in any procedural programming language. By
defining the structure of an algorithm as a digraph of abstractions,
algorithms may be studied top-down, bottom-up, or using a mix of
the two. It is also possible to support several levels of abstractions
which help the learner to understand basic properties of the algo-
rithms as well as to recognize good implementation strategies.

∗e-mail: kerren@acm.org
†e-mail: Tomasz.Muldner@acadiau.ca
‡e-mail: Elhadi.Shakshuki@acadiau.ca

A major weakness of many existing systems is that they do not
adapt to the learner’s behaviour. Therefore, a good student may be
bored while a novice student may be overwhelmed. SHALEX in-
cludes a learner model to provide spatial and temporal links, and
to support evaluations and adaptations. In this context, the system’s
users can play one of the following four roles: learners, who study
algorithms; authors, who are responsible for tasks such as creating
algorithm explanations, or assigning evaluations; administrators,
who are responsible for tasks such as maintaining user accounts;
algorithm administrators, who are responsible for tasks such as
group management of users assigned to study specific algorithms or
management of algorithm explanations. SHALEX supports many
algorithms; explanations of which are created by various authors.
To support this, we designed a taxonomy of explanations which
has a tree-like structure. Non-leaf nodes of the taxonomy represent
concepts, such as ”Iterative Algorithms” (the root represents all al-
gorithms). Leaves represent explanations of specific algorithms,
created by specific authors.

Structured Hypermedia and Abstraction Levels In our
approach, operations are provided in a textual form, but there is
also a hyperlinked visual description used to help the learner un-
derstand basic properties of an algorithm, for example algorithm
invariants. Each operation is either implemented in an abstraction
at the lower level, or it is a primitive operation. This is a gener-
alization of micro/macro-level animations used in HalVis [Hansen
et al. 2002] which will allow the novel mode of studying unavail-
able in any other visualization system: an algorithm may be studied
top-down, bottom-up, or using a mix of the two.

We define the algorithm structure as a hierarchical Abstract Algo-
rithm Model (AAM) which is an acyclic digraph with nodes rep-
resenting abstractions and edges representing operation dependen-
cies. Each abstraction is designed to focus on a single operation
used directly or indirectly in the algorithm, i.e., it explains a sin-
gle operation op and consists of a textual and a visual representa-
tion. The textual representation includes, among other things, an
Abstract Data Type (ADT) that gives a high-level view of generic
data structures and operations. As an example, let’s assume that
f is an operation. The abstraction that explains f, abst(f) is a pair
(ADT, repr(f)), where ADT consists of data types and primitive
operations. repr(f) contains visual representations, additional text,
and concrete implementations (see below). There is a directed edge
from abst(f) to abst(g) if g is one of the primitive operations from
the ADT abst(f). Thus, a successor abstraction provides a partial
implementation of the operation from the predecessor abstraction.
An AAM of an algorithm f is a graph rooted at abst(f).

To build an algorithm explanation, we construct an AAM with a
sufficient number of levels so that the learner is able to understand
how and why the algorithm works. Let’s consider the Insertion Sort
algorithm as an example. This algorithm can be implemented using
operations from two ADTs: the Insertion ADT provides generic
operations, such as insert and the primitive operation swap; the
Insert ADT provides only primitive operations. The AAM for this
algorithm is shown in Figure 1. Further examples are provided in
[Müldner and Shakshuki 2004; Müldner et al. 2005].

175

ADTADT

RepresentationsRepresentations
abst(insertion)abst(insertion)

ADTADT

RepresentationsRepresentations
abst(insert)abst(insert) abst(swap)abst(swap)

insert(…) {…}
swap(…) {…}
…

insert(…) {…}
swap(…) {…}
…root

primitive operation

Figure 1: An AAM for Insertion Sort

Important Features Associated visualizations may be used by
the learner to help him or her understand the basic properties of this
abstraction. It is possible to embed any web-viewable animations
built by AA systems, such as Ganimal [Diehl and Kerren 2002] or
JSamba [2006], as well as other formats, for example Macrome-
dia Flash visualizations, animated GIFs, sound files, etc. SHALEX
provides easy language transfer by an intermediate representation
of all AAM’s primitive operations, called an Abstract Implemen-
tation Model (AIM). To implement the algorithm in a specific pro-
gramming language, the learner has to map to the selected language
all primitive operations that do not have implementations in the
AAM. The representations in AIM are generic: they use high-level
concepts that can be mapped to many procedural programming lan-
guages. Explanation of algorithm complexity is one of the most
difficult goals of algorithm visualization, because it requires math-
ematical proofs that are hard to visualize. The current version of
SHALEX includes three kinds of tools designed to help the learner
to derive the complexity of the algorithm being studied.

Learner and Author Models SHALEX is an interactive sys-
tem that allows the learner to select one of the available algorithms
to study. It uses a learner model to record learner activities. These
interactions are vital to support active learning [Hundhausen et al.
2002]. SHALEX helps the learner not only to understand what the
algorithm is doing but also how the algorithm works; as well why
the algorithm works (algorithm correctness).

In addition, it uses an author model to record decisions made by an
author. For example, the author may decide to prepare, for a sin-
gle algorithm, various lessons with different evaluations, and var-
ious AAM trees providing more or fewer abstractions. Authors’
responsibilities include selecting tools to keep track of the learner
performance. SHALEX provides several tools, such as measuring
the time spent on studying specific issues and comparing this time
with author-specifies soft and hard deadlines, or keeping track of
user activities, such as selecting menu items etc. The author then
selects a specific tracking tool and then decides on the adaptivity of
the system. Additionally, our system has built-in features that help
to evaluate the effectiveness of studying algorithms using this sys-
tem. To compare the effectiveness of two different lessons for the
same algorithm, the administrator may create two disjoint groups
of students, and assign a different lesson to each group.

Authoring The process of creating an algorithm explanation is
supported by various tools, such as a library of existing lessons,
and descriptions of ADTs. The author may fetch an existing item
and adjust to her or his needs. A novel and essential feature of
SHALEX is that it allows the author or the algorithm administra-
tor to assign different modes of learning an algorithm: top-down,
bottom-up, and learner-selected. In top-down learning, the learner
studies the textual and optionally visual representation of the source
node of the AAM at first. Then, the learner studies all successor
nodes and so on. The bottom-up learning approach is performed
in an opposite direction, i.e., starting from leaves of the AAM. The
learner-selected mode needs a more careful description. For any

operation op that appears in the operation currently focused on, the
learner may select op and request one of the following: help, taking
a test, or explanation of this operation. In the first case, SHALEX
provides a context-sensitive help. In the second case, the learner
may be given a test, and if the test is passed, the learner model
will be updated. The author may specify that in order to complete
studying the algorithm, the learner has to complete all tests, using
evaluations available in the author model.

3 Conclusion and Future Work
This poster paper briefly presented our proposed system for ex-
plaining algorithms, which is based on structured hypermedia ap-
proach. It has been shown that the system has some fundamen-
tal advantages, including availability of studying an algorithm top-
down, bottom-up, or using a mix of the two; support for under-
standing invariants; building a learner model to provide spatial and
temporal links. The first versions of algorithm visualizations were
implemented using Macromedia Flash. For the next version, we
are considering using HTML pages to display more complex and
interactive visualizations. In order to make our system usable, we
are also planning on performing evaluations in class with students
from computer science at various universities.

References

BRAUNE, B., AND WILHELM, R. 2000. Focusing in Algorithm
Animation. IEEE Transactions on Visualization and Computer
Graphics 6, 1, 1–7.

DIEHL, S., AND KERREN, A. 2002. Reification of Program Points
for Visual Execution. In Proceedings of the First IEEE Interna-
tional Workshop on Visualizing Software for Understanding and
Analysis (VisSoft ’02), IEEE Computing Society Press, Paris,
Frankreich, IEEE, 100–109.

HANSEN, S. R., NARAYANAN, N. H., AND HEGARTY, M.
2002. Designing Educationally Effective Algorithm Visualiza-
tions: Embedding Analogies and Animations in Hypermedia.
Journal of Visual Languages and Computing 13, 3, 291–317.

HUNDHAUSEN, C., DOUGLAS, S., AND STASKO, J. 2002. A
Meta-Study of Algorithm Visualization Effectiveness. Journal
of Visual Languages and Computing 13, 3, 259–290.

JSAMBA, 2006. Project Homepage.
http://www-static.cc.gatech.edu/gvu/
softviz/algoanim/jsamba/.

KERREN, A., AND STASKO, J. T. 2002. Algorithm Animation –
Chapter Introduction. In Software Visualization, S. Diehl, Ed.,
vol. 2269 of LNCS State-of-the-Art Survey. Springer, 1–15.

MÜLDNER, T., AND SHAKSHUKI, E. 2004. On Visualization and
Implementation of Algorithms. In Proceedings of the 5th Inter-
national Conference on Information Technology Based Higher
Education and Training (ITHET ’04), IEEE Computer Society
Press, Istanbul, Turkey, IEEE, 138–143.

MÜLDNER, T., SHAKSHUKI, E., KERREN, A., SHEN, Z., AND
BAI, X. 2005. Using Structured Hypermedia to Explain Algo-
rithms. In Proceedings of the 3rd IADIS International Confer-
ence e-Society ’05, IADIS, 499–503.

SHALEX, 2006. Project Homepage.
http://cs.acadiau.ca/˜solid/ae.htm.

STASKO, J. T., DOMINGUE, J., BROWN, M. H., AND PRICE,
B. A. 1998. Software Visualization. MIT Press.

176

