
Efficient Dynamic Time Warping
for Big Data Streams

Rafael M. Martins
Dept. of Computer Science and Media Technology

Linnaeus University
Växjö, SE

rafael.martins@lnu.se

Andreas Kerren
Dept. of Computer Science and Media Technology

Linnaeus University
Växjö, SE

andreas.kerren@lnu.se

Abstract—Many common data analysis and machine learning
algorithms for time series, such as classification, clustering,
or dimensionality reduction, require a distance measurement
between pairs of time series in order to determine their similarity.
A variety of measures can be found in the literature, each with
their own strengths and weaknesses, but the Dynamic Time
Warping (DTW) distance measure has occupied an important
place since its early applications for the analysis and recognition
of spoken word. The main disadvantage of the DTW algorithm
is, however, its quadratic time and space complexity, which limits
its practical use to relatively small time series. This issue is
even more problematic when dealing with streaming time series
that are continuously updated, since the analysis must be re-
executed regularly and with strict running time constraints. In
this paper, we describe enhancements to the DTW algorithm
that allow it to be used efficiently in a streaming scenario by
supporting an append operation for new time steps with a linear
complexity when an exact, error-free DTW is needed, and even
better performance when either a Sakoe-Chiba band is used, or
when a sliding window is the desired range for the data. Our
experiments with one synthetic and four natural data sets have
shown that it outperforms other DTW implementations and the
potential errors are, in general, much lower than another state-
of-the-art approximated DTW technique.

Index Terms—time series, dynamic time warping, streaming

I. INTRODUCTION

A time series is a dynamic sequence of (potentially multidi-
mensional) elements that changes with time, i.e., the value of
each step of a time series is an observation obtained chrono-
logically. Time series usually consist of large and complex data
sequences, and the interest for them arises from their presence
in various domains of knowledge in science, engineering,
business, healthcare, to name just a few [1]–[4].

Many common data analysis and machine learning algo-
rithms for time series, such as classification [1], clustering [4],
or dimensionality reduction [5], require a distance measure-
ment between pairs of time series in order to determine their
similarity. A variety of measures can be found in the literature,
from the common Euclidean distance to the more sophisticated
so-called elastic similarity measures [6], [7], each with their
own strengths and weaknesses in terms of performance and
speed, which dictate in which application scenarios they may
be successfully applied [8].

Since its early applications on the analysis and recognition
of spoken word [9], the Dynamic Time Warping (DTW)

distance measure has become an important tool for time series
analysts and has been a constant subject of important research
in the area [10]. Its need comes from the limitations of other
distance measures when it comes to matching natural time
series that are inherently similar in shape, i.e., represent the
same underlying phenomenon, but differ in both total length
and the length of their composing patterns. For example,
consider the problem of comparing the audio recordings of
two different persons speaking the same list of words. While
the two time series will have similarities, each person has
their own speech pace and rhythm, different letters or syllables
might be highlighted, and different accents will add complex,
non-linear disparities. The use of DTW compensates for these
differences by searching for the best non-linear matching for
a pair of time series before computing the distance between
them. It has been demonstrated that DTW significantly im-
proves the results of different learning techniques for time
series [2], [3].

The main disadvantage of the DTW algorithm is, however,
its time and space complexity of O(N2), which limits its
practical use to the analysis of time series that contain, at
most, a few thousand time steps [11]. This issue is even
more problematic when dealing with time series that are
continuously updated, since the entire data set is not available
at the beginning of the process, and the analysis must be re-
executed regularly and with strict running time constraints.
Such a scenario of continuously monitoring the similarities
of multiple data streams can be found in many application
domains, such as financial analysis [12] or biological data [13].

According to Zhu and Shasha [12], in any system that
manages data streams with a sufficiently good performance:
(a) streams are updated through the insertion of new elements
(with little to no change of previous steps); (b) streams are
treated as never-ending sequences of events, not as sets of
elements; (c) one-pass algorithms must be used, due to the
sheer size of streams; and (d) sacrificing accuracy for speed is
acceptable. In this paper, we describe a set of enhancements
to the DTW algorithm, collectively called SlideDTW, that
follow these guidelines and allow it to be used efficiently in
a streaming scenario. The proposed incremental computation
of DTW supports an append operation for new time steps
with a complexity of O(N) when an exact, error-free DTW

Andreas Kerren
In Proceedings of the IEEE International Conference on Big Data (Big Data '18): Workshop on Real-time & Stream Analytics in Big Data & Stream Data Management, pages 2924-2929, Seattle, USA, 2018. IEEE. DOI: 10.1109/BigData.2018.8621878

is needed, or a constant complexity when either a Sakoe-
Chiba band is acceptable, or when a sliding window is the
desired range for the data. While the latter two situations
result in approximate computations and potentially incur on
lower acccuracy, our experiments with one synthetic and four
natural data sets have shown that our proposed techniques
outperform other implementations (in terms of speed) and the
errors are, in general, much lower than another state-of-the-art
approximated DTW technique.

The rest of this paper is organized as follows: in Section II
we introduce some of the DTW background needed to clearly
understand the proposed improvements; in Section III we de-
scribe in details the SlideDTW algorithms for implementing
an incremental DTW that supports the append operation—and
the computation of a DTW with a sliding window—with high
performance; in Section IV we discuss some of the related
work and how they compare to our approach; in Section V
we show the results of our experiments on the performance
and accuracy of the described approach; and in Section VI we
offer some final remarks and ideas for future work.

II. BACKGROUND

Arguably the simplest way to compute the similarity be-
tween two time series S and T is to use the well-known
Euclidean distance [14]. In this case, each time series is seen
as a vector of real values (its time steps), and the distance
measure can be computed in a straightforward manner. In
case the time series are multivariate, i.e., each time step i
(Si, Ti) is a vector of measurements, a local distance measure
δ is necessary in order to compare pairs of multivariate
time steps. Again, it is possible (and common) to use the
Euclidean distances between multivariate time steps for the
local comparisons, but any other distance measure between
two vectors may be used. This process is summarized in
Equation 1.

E(S, T) =

√∑
i

δ(Si, Ti)2 (1)

Comparing the time steps of two time series in this way
leads to an arrangement similar to the one shown in Fig-
ure 1(a), where the vertical lines connect the time steps that
are compared with δ. A quick visual inspection of the two
time series in Figure 1 is enough to realize that, although they
may not match perfectly, there are many similarities in their
shapes, namely two consecutive peaks (1 and 2) and a valley
(4), separated by a period of average values (3). These similar
features are not captured when applying the Euclidean distance
to this pair of time series and comparing their steps linearly.
Take, for example, Peak 1 from time series T : it is directly
compared with some of the lowest values of time series S,
which come right before the rise that leads to the equivalent
Peak 1 from S. While it may seem like shifting T to the right
would fix this issue, that would make the misalignment from
Valley 4 even worse, since it is already shifted to the right
(when compared to its counterpart from S). These and other

similar problems that can be observed in the other features
happen due to the two time series being non-linearly shifted
from each other, i.e., not only their features are not aligned,
but their misalignment varies along time.

(a) Euclidean Distance

(b) DTW Distance

Figure 1: Comparison between the Euclidean and the DTW
distances of two time series S and T , regarding the matching
of steps for comparison.

A. Dynamic Time Warping (DTW)

The use of DTW to compare two time series aims to solve
exactly that problem: to find an optimal non-linear alignment
between the time series, so that their comparison fits as best as
possible their matching features. Figure 1(b) shows an example
of the result of DTW when applied to S and T . It can be
observed from Figure 1(b) that matching features between
S and T are now being compared correctly. Although the
final value of the distance is still computed using δ between
pairs of time steps, one from each of the series, as shown in
Equation 2, now the algorithm searches for different possible

pairings that may be better than the default ones from the
Euclidean distance. Notice that in Equation 2, as opposed to
Equation 1, the indexes of the time steps being compared (i, j)
are potentially different at each execution of δ.

DTW (S, T) =
∑
i,j

δ(Si, Tj) (2)

The question then is how to find the optimal sequence
of pairs (i, j)—called the warping path w—to apply δ to
in Equation 2 and get the final optimal DTW distance. Al-
gorithm 1 describes a recursive procedure to obtain w and
compute DTW (S, T), using the notation S→i = [S1, . . . , Si]
(the subsequence of S from the 1st to the ith time step).

Input: Time series S, T ; indexes i, j
Result: DTW (S→i, T→j)

DTW (S→i, T→j) = δ(Si, Tj)+

0, if i = j = 1

DTW (S→i, T→j−1), if i = 1

DTW (S→i−1, T→j), if j = 1

min{
DTW (S→i−1, T→j−1),

DTW (S→i−1, T→j),

DTW (S→i, T→j−1)}, otherwise

Algorithm 1: Recursive algorithm for DTW

In summary, we start the recursion by running
DTW (S, T) = DTW (S→i, T→j), for i = |S| and
j = |T |, i.e., we want the distance for the full sequences,
up to their last elements (the pair (i, j) formed by the last
two elements of S and T will always be the last pair of
w). Then, recursively, we choose the previous pair of w by
finding which pair among {(i− 1, j− 1), (i− 1, j), (i, j− 1)}
results in the minimum DTW distance for the corresponding
subsequences. In case either i or j equals 1 (meaning the
first element of a time series was reached), the selection
is trivial. The pair (1, 1) ends the recursion and is always
the first element of w. The final value of the DTW distance
results in the sum of δ(Si, Tj) for all (i, j) ∈ w, as described
in Equation 2.

III. INCREMENTAL DTW FOR BIG DATA STREAMS

In this section, we describe some simple mechanisms to
allow for efficient on-the-fly DTW computations of streaming
time series, which we collectively call SlideDTW. In order
to explain these mechanisms, we must first introduce an
alternative way to compute the DTW between two time series,
by means of the Accumulated Cost Matrix (DS,T) between two
time series S and T . The procedure is described in Algorithm 2
and illustrated in Figure 2 with a simple (artificial) example.

The cells of the first row and first column of the DS,T matrix
are computed in a straightforward manner, by accumulating

Input: Time series S, T
Result: Accumulated Cost Matrix DS,T

D = empty |S| × |T | matrix;
D(1, 1) = δ(S1, T1);
for i← 2 to |S| do

D(1, i) = δ(Si, T1) +D(Si−1, T1);
end
for j ← 2 to |T | do

D(j, 1) = δ(S1, Tj) +D(S1, Tj−1);
end
for i← 2 to |S| do

for j ← 2 to |T | do
D(i, j) = δ(Si, Tj) +
min(D(Si−1, Tj−1), D(Si−1, Tj), D(Si, Tj−1));

end
end

Algorithm 2: Accumulated Cost Matrix DS,T

the costs of previous cells of the same row or column. These
are computed by the first two for’s in Algorithm 2 and
illustrated in Figure 2 (a) by the single arrows coming out
of each cell from the first row and column, pointing to
the previous cell. The direction of the arrows in Figure 2
(a) indicate dependency, i.e., which cells must be calculated
before the one which originates the arrow. For example: cell
(S1, T2) depends only on cell (S1, T1), while cell (S2, T2)
depends on cells (S2, T1), (S1, T2), and (S1, T1). All the rest
of the cells are computed as an accumulation of the minimum
DTW cost of all their dependencies.

In Figure 2 (a), the green (or blue) arrows represent the
previous cell that was “chosen” (i.e., they satisfied the min
constraint), while the red arrows point to the previous cells
who were considered, but not chosen (due to not being the
min). After all the cells are computed, as a side effect, the last
cell of the last column (or row) of DS,T stores the final DTW
value between S and T , i.e., DTW (S, T) = DS,T (|S|, |T |),
which is the same as computed with the recursive version of
DTW shown in Algorithm 1. The warping path w, illustrated
in Figure 2 (a) by the blue arrows, can be extracted by
starting from DS,T (|S|, |T |) and back-tracking through DS,T

by following the “chosen” cells.
To illustrate the results of Algorithm 2, the DS,T for time

series S and T from Figure 1 is shown in Figure 2 (b), along
with the warping paths for the DTW (white) and the Euclidean
distance (gray). It is possible to visualize how the path of
the Euclidean distance crosses high values (e.g., the regions
around cells 5, 10, or 25), while the DTW searches for paths
that pass through lower-valued cells.

Considering Figure 2 (a), one important observation can
be made: the computation of each row of the DS,T matrix
depends only on the previous row, and the computation of
each column of DS,T depends only on the previous column.
If one additional time step is appended to one of the time
series (or both), we need only the last row and column of the

S1 S2 S3 S4 S5

T1
first row

T2

T3

T4

T5
DTW(S,T)

last row

first col. last col.

(a) Simple example to illustrate the computation of DS,T

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0

20

40

60

80

100

(b) DS,T and warping paths for S and T from Figure 1

Figure 2: Examples of Accumulated Cost Matrix (DS,T) and
warping paths. (a) Simple example to illustrate the computa-
tion of DS,T and the choice of the warping path starting with
the last cell (blue arrows). (b) The DS,T for the time series
from Figure 1, with the warping paths for DTW (white) and
Euclidean distance (gray).

DS,T to compute the DTW between the updated time series.
This observation leads to the definition of Algorithm 3, an
incremental computation of DTW for big data streams. The
procedure is executed every time new time steps s and t are
appended to S and T respectively, i.e., when new data is
added to the stream, and it efficiently updates the value of
DTW (S, T) to reflect the new data.

The input for Algorithm 3 includes the previous state of the
two time series S and T (before the new steps are appended),
the two new steps s and t, and the last row (RΩ) and last
column (CΩ) of the accumulated cost matrix DS,T . Initially,
two new empty lists are generated; these will function as the
new row (R) and column (C) that would normally be appended

Input: S, T,RΩ, CΩ; new time steps s, t
Result: S, T,RΩ, CΩ; DTW (S, T)
R,C = empty lists of size |S|+ 1 and |T |+ 1;
R1 ← δ(t, S1) +RΩ

1 ;
for i← 2 to |S| do

Ri ← δ(t, Si) + min(Ri−1, R
Ω
i−1, R

Ω
i);

end
C1 ← δ(s, T1) + CΩ

1 ;
for j ← 2 to |T | do

Cj ← δ(s, Tj) + min(Cj−1, C
Ω
j−1, C

Ω
j);

end
DTW (S, T)← δ(s, t) + min(R|S|, C|T |, R

Ω
|S|);

R|S|+1 ← C|T |+1 ← DTW (S, T);

RΩ ← R; CΩ ← C;
S|S|+1 ← s; T|T |+1 ← t;

Algorithm 3: Update DTW by appending new time steps

to DS,T . The new row and column are computed in a very
similar way as in DS,T , i.e., by accumulating the minimum
value of the costs of the previous steps (their dependencies).
In order to do that, as observed earlier, we do not need to
store the entire DS,T matrix, but only its last row and last
column, in this case RΩ and CΩ respectively. Note that, in the
first execution of the algorithm, in case S and T are empty,
RΩ

1 and CΩ
1 should be taken as inf (the rest of the algorithm

remains unchanged). The final step is to compute the new
DTW (S, T) based on the last elements of R and C, which is
then appended to the end of the new lists. The third element
of the min operator is simply the current DTW (S, T), i.e.,
the last element of either RΩ or CΩ (using CΩ

|T | would not
change the result). Finally, R and C replace the current RΩ

and CΩ, which are discarded, and s and t are appended to S
and T .

The described procedure works for appending one single
time step at a time to each time series; in case more than one
step must be appended to the stream at a time, the algorithm
can simply be repeated as many times as needed (which would
be the same as computing several new rows and columns of
the accumulated cost matrix DS,T).

It is important now to discuss the differences between
Algorithm 2 and Algorithm 3 and why the latter is more
suitable for streaming data than the former. One important
use case for the real-time analysis of streaming time series is
to re-compute the distance between pairs of time series every
time new data arrives. Using the default implementation of
DTW as described in Algorithm 2 (which is the one found in
most software libraries) will lead to a quadratic time and space
complexity of O(nm) as the data arrives from the stream.
Every update of the DTW for each pair of time series (S, T)
requires the entire computation of the DS,T matrix in two
nested for loops. As can be seen in the quantitative results
shown in Section V, such a performance constraint can quickly
become infeasible for big data streams. On the other hand, the

incremental approach described in Algorithm 3 removes that
constraint and brings the complexity in this use case down to
O(n+m); the results are now obtained from performing two
separate (instead of nested) for loops. The space complexity
is also reduced to O(n + m), since only two additional lists
(instead of an entire matrix) must be stored in memory.

There are, however, two important disadvantages that must
be highlighted for the approach described in Algorithm 3.
The first one is that, for each DTW (S, T) between each
pair of time series, their corresponding RΩ and CΩ must be
stored at all times in-between executions of the algorithm.
In both cases, the entire series S and T must be stored
permanently and reused for each time step, but for Algorithm 2
the entire matrix is recomputed and discarded at each step,
which allows temporary memory to be used. This is not the
case for Algorithm 3.

The second point is related to the first: the accuracy of
the final DTW (S, T) computed from Algorithm 3 depends
on the user-defined space reserved for storing RΩ and CΩ

(which we will call σ). As long as there is space available
to store the two complete lists (i.e., σ ≥ |RΩ| + |CΩ|), the
computed DTW (S, T) is error-free, since its computation
mirrors exactly the computation of DS,T . When the space limit
is reached, however, then old time steps must be discarded
in order to make space for new ones, which will have an
effect on the accuracy of the results. Such a limitation is very
similar to defining a Sakoe-Chiba constraint, as discussed in
Section IV, with a band width of σ, and shares its strengths and
weaknesses. The effects of this are illustrated and discussed
further in Section V.

A. Incremental DTW with a Sliding Window

While Algorithm 3 provides a way to compute, in real time,
an accurate DTW for streams considering them in their entirety
(i.e., the distance between two streams considering all time
steps since the beginning of the data collection), sometimes
another use case is relevant: to obtain the DTW distance
between two streams considering only a sliding window of λ
time steps [15]. Examples of applications for this are speech
recognition [16] and text mining [17].

With any standard implementation of DTW (such as the
ones introduced in Sections II and IV), the workflow is simple:
for a window length of λ, after new time steps are appended
to the streams, discard older time steps and only consider the
most recent ones, such that

DTW (S, T) = DTW (Sλ→, Tλ→), (3)

where Sλ→ = (Si−λ, . . . , Si) and Tλ→ = (Tj−λ, . . . , Tj),
then re-compute DTW (S, T) normally.

The same is not true, however, for Algorithm 3, due to its
reliance on accumulated values in a similar way to the DS,T .
As can be verified from Figure 2 (a), a change in the first
row or column (which is the case when an older time step is
discarded) causes a cascade of changes that affects all other
rows and columns, potentially forcing the re-computing of the
entire DS,T and resulting in an entirely new warping path. In

order to achieve the gains offered by Algorithm 3, such cost
is prohibitive.

We propose DTWλ (Equation 4) to improve on this and
provide an approximation of the computation of DTW between
two time series S and T for a sliding window of length λ:

DTWλ(S, T) = DTW (S, T)−DTW (S→λ, T→λ), (4)

where S→λ = (S1, ..., Si−λ) and T→λ = (T1, ..., Tj−λ).
Since the full DTW for two time series of the same length

i is computed as the accumulated cost of the warping of all i
time steps, we assume that the DTW for the window length
of λ < i (i.e., the last λ time steps) is approximately the value
of the full DTW (S, T) minus the value of the DTW for the
first i− λ time steps. Conveniently, when using Algorithm 3,
DTW (S→λ, T→λ) is already computed as a partial step to
DTW (S, T). All we need to do is to augment Algorithm 3
to store the last λ values obtained from DTW (S, T) in a list

Λ =
[
DTW (S→λ, T→λ), . . . , DTW (S, T)

]
.

Whenever new time steps are added to S and T , the oldest
(Λ1) is removed and a new one is inserted at the end of the
list, so that Λλ ← DTW (S, T). Finally, DTWλ(S, T) =
DTW (S, T)− Λ1.

The quantitative results, as discussed in Section V-C, con-
firm that the value is not exact, but yields—in most cases—a
very good approximation of the values that a fully quadratic
DTW computation would give. Coupled with the significantly
better performance, it stands out as a potentially useful tool
for time series analysts.

IV. RELATED WORK

In this section, we discuss existing works related to modifi-
cations of the original DTW algorithm regarding performance
improvements and support for streaming.

A. DTW Performance Improvements

In its raw form, the procedure described in Algorithm 1 is
exponential, due to a recursive re-evaluation of entire candidate
paths for every new pair appended to the optimal warping path.
This is usually brought down to a quadratic complexity using
dynamic programming, as described in Section III, which is
still prohibitive when dealing with big streams of time series.
One common way to deal with this is to add global constraints
to the search for candidate paths, with techniques such as
Itakura’s Parallelogram [18] or the Sakoe-Chiba band [9]. With
a Sakoe-Chiba band of constant width σ, warping paths never
deviate more than σ steps from the diagonal of the DS,T ,
which not only brings down the complexity to O(σN), but
may also yield better results, for example, in machine learning
tasks [19].

Silva and Batista [20] observed that the Euclidean distance
works as an upper bound of DTW—the DTW distance be-
tween two time series is never larger than the Euclidean
distance—and developed PrunedDTW as an exact, error-free
speed-up of the original technique. The DTW computation
remains the same as the original, but it is pruned to avoid extra

unnecessary computations when the upper bound is reached
(i.e., the optimal solution cannot be improved by following
a pruned path). As a disadvantage, in order to set its upper
bound, PrunedDTW requires the preliminary computation of
the Euclidean distance between the two full time series. In
a streaming scenario, the full time series are not available
beforehand, so the Euclidean distance must be re-computed at
each step to ensure the upper bound is correct (as we have done
in the experiments in Section V). Although the computation
of the Euclidean distances at each step might be accelerated
using a similar method as ours (by re-using the components of
the last computation), in order to maintain its error-free results
the entire DS,T matrix would need to be re-computed due to
the change in the upper bound value.

When an exact DTW is not absolutely necessary, some
techniques have been proposed to approximate its value with
faster computation times by using data abstraction [21], [22].
FastDTW [11] estimates the DTW using a multi-level ap-
proach, starting from a solution to sampled-down, coarse ver-
sions of the time series, and recursively refining that solution to
higher-resolution versions. The refinement is done by locally
adjusting the coarse-level warping path, looking for solutions
in the neighborhood of the simplified warping path (according
to a radius parameter), until a final solution is found to the
original time series. While the performance gain is significant,
since the complexity of FastDTW is O(N), the procedure
only works well in cases when the optimal warping path is
composed of nodes that are located near the initial coarse-
level solutions; otherwise, the solutions can be far from the
optimal (as our experiments in Section V show).

Another example use case for approximated DTW is when,
among a full set of time series, only the nearest ones to a
certain reference S are needed, i.e., when searching for nearest
neighbors or querying large databases [23]. In such cases, an
approximated DTW can be useful for discarding time series
that are below a threshold of similarity, leaving only a small
filtered subset of candidate series where the full DTW is then
computed. A well-known example is LBKeogh, where upper
(U) and lower (L) bounds are defined around a time series S
according to a width b, such that

Ei =
[
max{1, i− b},min{|S|, i+ b}

]
,

Ui(S) = max{Sj |j ∈ Ei},
Li(S) = min{Sj |j ∈ Ei}.

(5)

An Euclidean-like local distance δ is then computed for each
step Ti of a candidate series T , such that δ = 0 if Ti is within
the bounds (Li(S) < Ti < Ui(S)), or it is the Euclidean
distance between Ti and the closest bound (either Ui or Li)
otherwise. LBKeogh only gives a rough estimation of the real
DTW value, which is fast and works well enough as a filter
before the exact DTW is applied but not as a replacement for
the DTW itself.

B. Support for Streaming
In order to deal with the problem of monitoring, processing,

and comparing multiple data streams, Zhu and Shasha [12]

proposed StatStream, a system that uses a sliding window
to compute different statistics about streaming time series,
including correlation (which can be seen as the opposite of
a distance/dissimilarity). They reported being able to monitor
in real-time up to 10, 000 streams, but the system does not
support DTW.

The problem of reducing the complexity of DTW for
streaming cases has been considered recently in the work of
Oregi et al. [8]. The authors propose ODTW (On-line DTW),
which also includes a form of incremental computation of
DTW, complemented by a mechanism for weighting down the
pairs that compose the warping path according to their age—
older pairs of time steps have less influence in the final value of
the distance. Even though the authors present their technique
as a generalization of the DTW (i.e., it can be exact with the
correct parameter settings), the results are, in general, different
than the original DTW, which may or may not be desirable
for the analyst. Additionally, the mechanism of weighting
down the older pairs from the warping path is a parameterized
setting, and it has not been applied for computing the DTW
with a sliding window, as we proposed.

Khan et al. [24] also used an incremental implementation
of DTW in the context of matching a series of user’s gestures
with a reference series of gestures from an expert, for the
domain of physical therapy. The authors’ implementation dif-
fers from ours in that the user’s series are constantly growing,
while the expert’s series is static, so the matching does not
happen between two streams. Also, there is no support for
re-using previous computations in order to compute the DTW
between a sliding window of time steps.

V. EVALUATION

We start by evaluating the techniques described in Sec-
tion III using five data sets, one synthetic and four natural,
according to two criteria: performance and accuracy. The
performance experiments are intended to show that the re-
duced complexity of the incremental DTW is indeed observed
in practice, while the accuracy experiments measure the
magnitude of the errors of the results when compared to the
full, exact DTW results (if applicable). For both measures, a
smaller value is better.

Our described incremental DTW techniques are compared
to the following other DTW techniques: (a) the DTW, imple-
mented according to Algorithm 2 using Python and optimized
with Numba’s just-in-time compiler; (b) the FastDTW (de-
scribed in Section IV), implemented in Cython1; and (c) the
PrunedDTW (described in Section IV), re-implemented from
the original code in Python and also optimized with Numba’s
just-in-time compiler.

The five data sets used were chosen for the paper after a
pilot run of the experiments together with a set of 80 additional
data sets (taken from the UCR Time Series Classification
Archive [25]), during which we identified a few different
profiles of results, i.e., groups of data sets for which the results

1https://github.com/slaypni/fastdtw

behaved similarly. This final set of 5 data sets exemplifies each
of the observed profiles.

1) Random: 100 uniformly-sampled random time series
with 600 time steps each.

2) Tweets: 100 time series extracted from the Nordic Tweet
Stream project [26], in the period of May 2016. Each
time series represents the number of tweets that included
one of the 100 most popular hashtags each hour of the
period.

3) Earthquakes: 322 time series with 512 time steps
each, obtained from the UCR Time Series Classification
Archive [25]. The data comes originally from Northern
California Earthquake Data Center, and each time step
is an averaged reading of seismic activity for one hour.

4) Ham: 109 time series with 431 time steps each, obtained
from the UCR Time Series Classification Archive [25].
Food spectrograph measurements of dry-cured hams for
the classification of food types, with applications in food
safety and quality assurance.

5) BirdChicken: 20 time series with 512 time steps each,
obtained from the UCR Time Series Classification
Archive [25]. The time series are descriptors of shapes
(outlines) of images of chickens and birds mapped into
1-D series of distances to the center, designed to be used
in classification problems.

For each data set, the first step was to extract a random
sample S of pairs of time series (among all N time series
available in each data set) to use for each experiment, i.e.
S = {(si, sj)}, 0 ≤ i, j < N, i 6= j. The reason for this initial
sampling is that we want to measure the accuracy and speed of
the DTW computations, which is an operation that is applied
to pairs of time series. We could have simply compared all
pairs of time series of each data set, but by choosing a fixed
set of random pairs from each data set, we ensured that the
population of time series from each data set was represented in
a balanced way while we maintained a feasible running time
for the experiment. For this paper, we used ‖S‖ = 50.

A. Experiment 1: Performance

Figure 3 shows the results of the first evaluation: the
performance of each DTW implementation (y axis), averaged
on 50 runs, against the number of time steps appended to the
time series (x axis). To simulate a streaming situation, we start
with empty time series and iteratively append one time step
at a time, computing the running time at each iteration.

As expected, our described technique (SlideDTW) behaves
similarly in all five data sets: the running time increases very
slowly as the series grow, since it directly supports the append
operation in linear time O(n+m). Neither of the other tested
implementations (FastDTW, PrunedDTW, or DTW) support
such an append operation, which means that the running
times grow much more steeply, linearly for FastDTW and
quadratically for PrunedDTW and DTW. All the techniques
showed consistent behavior among all tested data sets.

B. Experiment 2: Accuracy

As discussed in Section III, SlideDTW is error-free as
long as RΩ and CΩ are stored in their entirety; when some
user-specified space limit is reached, older time steps must
be discarded, which will lead to decreased accuracy as new
time steps arrive. In this context, accuracy is considered to
be the absolute difference between the value computed by
SlideDTW (or FastDTW) and the value computed by DTW
at each iteration (which is considered to be the optimal value).

In order to comprehend the magnitude of the accuracy
problems the user has to deal with, we re-ran the experiments
on each of the five data sets with four different imposed space
limits: N (the full time series), N/2, N/4, and N/8. The
plots in Figure 4 show the accuracy of SlideDTW with each
constraint, plus the accuracy of FastDTW for comparison.
As with the previous figure, the x axis indicates number of
appends, while the y axis represents the error observed at each
append, averaged from 50 runs. Note that the running time
(performance) of the space-constrained experiments are not
shown, because they follow the same results as Figure 3.

While it could be argued from Figure 3 that the differ-
ences in running times for SlideDTW and FastDTW are
not significant, the accuracy results paint a different picture.
As it can be seen from Figure 4, as new time steps are
appended to the time series, in most cases the errors for the
FastDTW implementation increase very fast, while the errors
for SlideDTW are significantly lower. Different than the first
experiment, however, the results are not consistent among all
data sets. The best results are obtained from data sets Random
and Earthquakes, where the errors are either non-existent or
very close to zero. For time series with this profile, the choice
between the two implementations appears to be clear. Slightly
worse results were obtained from data sets Twitter and Ham,
where it is possible to observe that, as the space constraint
gets smaller, the errors begin to appear. Even in their worst
cases, however, when the space is constrained to be equal
to one eighth of the total length of the series (purple lines),
they are still significantly lower than FastDTW. Finally, in the
results observed with the data set BirdChicken, the SlideDTW
technique is still superior in most cases, losing only in the
smallest space constraint (N/8).

C. Experiment 3: Sliding Window

The third set of experiments were designed to test how
the different DTW implementations behave when a sliding
window is used, i.e., when only the last λ steps of each time
series should be used to compute the DTW between them (as
described in Section III-A). The setup for these experiments
is slightly different than previous ones. For each run of the
experiment, the window length λ was fixed; next, all time steps
of each time series were appended, one at a time, sliding the
window as described in Section III-A. After each append, the
accuracy was recomputed by comparing the obtained value of
SlideDTW (or FastDTW) at that step with the value of a
newly computed DTW that considers only the last λ steps, i.e.,
a standard DTW computation as if the time series involved

0 100 200 300 400 500 600
0

1

2

3

4

1e 3

(a) Random

0 100 200 300 400 500 600 700
0

1

2

3

4

5

6
1e 3

(b) Twitter

0 100 200 300 400 500
0.0

0.5

1.0

1.5

2.0

2.5

3.0
1e 3

(c) Earthquakes

0 100 200 300 400
0.0

0.5

1.0

1.5

2.0

1e 3

(d) Ham

0 100 200 300 400 500
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

1e 3

(e) BirdChicken

Figure 3: Experiment 1 – Performance, in milliseconds (y axis) per series length (x axis). Average for 50 pairs.

(a) Random (b) Twitter (c) Earthquakes (d) Ham (e) BirdChicken

Figure 4: Experiment 2 – Accuracy, in difference from DTW (y axis) per series length (x axis). Average for 50 pairs.

(a) Random (b) Twitter (c) Earthquakes (d) Ham (e) BirdChicken

Figure 5: Experiment 3 – Sliding window. First row: accuracy, measured in difference from DTW (y axis) per window length
(x axis). Second row: performance, measured in milliseconds (y axis) per window length (x axis). All results averaged for 50
different pairs of series.

were only λ-steps long. After all steps were appended, each
of these partial accuracy scores were averaged, resulting then
in the accuracy for the corresponding window length λ. As
before, this was repeated for 50 different random pairs of time
series for each data set, and the results were again averaged.
For example, in Figure 5 (top row), in the 100 mark of the
x axis, the y value represents the average accuracy obtained
when a pair of time series is appended, one step at a time, with
a window of fixed length λ = 100. The performance values
(Figure 5, bottom row) are measured as the average time for
computing the DTW for one window of each length; this is
the most relevant for a streaming situation, since you want to
recompute your DTWs and update your data as fast as possible
as the data comes in. This is different than measuring the total

running time for computing all windows, since that changes
depending on the window length: smaller windows are fast
to compute, but you need to compute many of them; larger
windows are slow, but you need to compute few of them. We
did not measure that as it is less important in a streaming
scenario.

The results reflect the observations made in Section III:
computing a sliding window by reusing and adapting the
accumulated values from the SlideDTW is very fast, but it is
an approximation and may not yield optimal results when the
length of the sliding window is too small. In some data sets
the FastDTW implementation works better for small window
lengths (e.g., λ ≤ 150 for Twitter, or λ ≤ 200 for Ham), but,
as the window length increases, the magnitude of the errors

from FastDTW also increases (following the results shown in
Figure 4), while the errors for SlideDTW decrease and move
towards zero as λ approaches N . For scenarios involving big
data streams, where the amount of data for each time series is
very large and the sliding windows are big, SlideDTW shows
more promise. However, as with Experiment 2 (Section V-B),
the results are again not consistent throughout all data sets. The
results for the BirdChicken data set (Figure 5(e)), for example,
are the worst among all the tested, with the SlideDTW im-
plementation only gaining an edge against FastDTW around
λ ≥ 425. This shows that, depending on the profile of the time
series, the accuracy of SlideDTW may vary, warranting the
need for more research in the direction of identifying aspects
of time series that may help the analyst preview the quality of
the output and choose which technique to use.

Performance scores remain unchanged when compared to
Experiment 1 (Figure 3), i.e., SlideDTW is still the fastest
when compared to other implementations, even after the
inclusion of the operations that adapt the time series at each
append to approximate the window-based DTW.

VI. CONCLUSION

In this paper, we described a set of enhancements to the
DTW algorithm, collectively called SlideDTW, that allow it
to be used efficiently in a streaming scenario, with a linear
complexity of O(N) when an exact, error-free version of
the DTW is needed, or a constant complexity when a user-
defined constraint is added (in a similar way to a Sakoe-
Chiba band). SlideDTW supports the use of a sliding window
with a constant length as the desired range of analysis for
the data. Our experiments with synthetic and natural data sets
have shown that the performance improves dramatically over
previous implementations, and the potential errors incurred by
the approximations are, in general, much lower than another
state-of-the-art approximated DTW technique.

As future work, we intend to investigate the different “pro-
files” of time series that were detected during the experiments,
in order to understand why they happen and how to improve
the performance for some of the worse results, and additionally
investigate the effects of the described techniques in other ac-
tivities that depend on pairwise similarities, such as clustering,
classification, dimensionality reduction, or visualization.

REFERENCES

[1] A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh, “The great
time series classification bake off: A review and experimental evaluation
of recent algorithmic advances,” Data Mining and Knowledge Discovery,
vol. 31, no. 3, pp. 606–660, 2017.

[2] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh,
“Querying and mining of time series data: Experimental comparison
of representations and distance measures,” Proceedings of the VLDB
Endowment, vol. 1, no. 2, pp. 1542–1552, Aug. 2008.

[3] E. Keogh and S. Kasetty, “On the need for time series data mining
benchmarks: A survey and empirical demonstration,” Data Mining and
Knowledge Discovery, vol. 7, no. 4, pp. 349–371, 2003.

[4] S. Aghabozorgi, A. S. Shirkhorshidi, and T. Y. Wah, “Time-series
clustering — A decade review,” Information Systems, vol. 53, pp. 16–38,
2015.

[5] J. P. Cunningham and M. Y. Byron, “Dimensionality reduction for large-
scale neural recordings,” Nature Neuroscience, vol. 17, no. 11, p. 1500,
2014.

[6] E. S. Ristad and P. N. Yianilos, “Learning string-edit distance,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 20,
no. 5, pp. 522–532, 1998.

[7] E. J. Keogh and M. J. Pazzani, “Derivative dynamic time warping,”
in Proceedings of the 2001 SIAM International Conference on Data
Mining. SIAM, 2001, pp. 1–11.

[8] I. Oregi, A. Pérez, J. Del Ser, and J. A. Lozano, “On-line dynamic time
warping for streaming time series,” in Joint European Conference on
Machine Learning and Knowledge Discovery in Databases. Springer,
2017, pp. 591–605.

[9] H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization
for spoken word recognition,” IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. 26, no. 1, pp. 43–49, 1978.

[10] M. Müller, “Dynamic time warping,” Information Retrieval for Music
and Motion, pp. 69–84, 2007.

[11] S. Salvador and P. Chan, “Toward accurate dynamic time warping in
linear time and space,” Intelligent Data Analysis, vol. 11, no. 5, 2007.

[12] Y. Zhu and D. Shasha, “StatStream: Statistical monitoring of thousands
of data streams in real time,” in Proceedings of the 28th International
Conference on Very Large Databases, ser. VLDB ’02. Elsevier, 2002,
pp. 358–369.

[13] P. Capitani and P. Ciaccia, “Warping the time on data streams,” Data &
Knowledge Engineering, vol. 62, no. 3, pp. 438–458, 2007.

[14] B.-K. Yi and C. Faloutsos, “Fast time sequence indexing for arbitrary
Lp norms,” in Proceedings of the 26th International Conference on Very
Large Data Bases, ser. VLDB ’00. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2000, pp. 385–394.

[15] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models
and issues in data stream systems,” in Proceedings of the Twenty-first
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, ser. PODS ’02. New York, NY, USA: ACM, 2002, pp. 1–16.

[16] G. Kang and S. Guo, “Variable sliding window DTW speech identifica-
tion algorithm,” in Proceedings of the Ninth International Conference on
Hybrid Intelligent Systems, ser. HIS ’09, vol. 1, Aug. 2009, pp. 304–307.

[17] M. Matuschek, T. Schlüter, and S. Conrad, “Measuring text similarity
with dynamic time warping,” in Proceedings of the 2008 International
Symposium on Database Engineering & Applications, ser. IDEAS ’08.
New York, NY, USA: ACM, 2008, pp. 263–267.

[18] F. Itakura, “Minimum prediction residual principle applied to speech
recognition,” IEEE Transactions on Acoustics, Speech, and Signal Pro-
cessing, vol. 23, no. 1, pp. 67–72, 1975.

[19] C. A. Ratanamahatana and E. Keogh, “Everything you know about
dynamic time warping is wrong,” in Proceedings of the Third ACM
SIGKDD Workshop on Mining Temporal and Sequential Data, ser.
KDD/TDM ’04. New York, NY, USA: ACM, 2004.

[20] D. F. Silva and G. E. A. P. A. Batista, “Speeding up all-pairwise dynamic
time warping matrix calculation,” in Proceedings of the 2016 SIAM
International Conference on Data Mining, 2016.

[21] E. J. Keogh and M. J. Pazzani, “Scaling up dynamic time warping for
datamining applications,” in Proceedings of the Sixth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
ser. KDD ’00. New York, NY, USA: ACM, 2000, pp. 285–289.

[22] S. Chu, E. Keogh, D. Hart, and M. Pazzani, “Iterative deepening
dynamic time warping for time series,” in Proceedings of the 2002 SIAM
International Conference on Data Mining. SIAM, 2002, pp. 195–212.

[23] E. Keogh and C. A. Ratanamahatana, “Exact indexing of dynamic time
warping,” Knowledge and Information Systems, vol. 7, no. 3, pp. 358–
386, 2005.

[24] N. M. Khan, S. Lin, L. Guan, and B. Guo, “A visual evaluation
framework for in-home physical rehabilitation,” in Proceedings of the
2014 IEEE International Symposium on Multimedia, ser. ISM ’14, Dec.
2014, pp. 237–240.

[25] Y. Chen, E. Keogh, B. Hu, N. Begum, A. Bagnall, A. Mueen, and
G. Batista, “The UCR time series classification archive,” Jul. 2015, www.
cs.ucr.edu/∼eamonn/time series data/.

[26] M. Laitinen, J. Lundberg, M. Levin, and R. Martins, “The nordic tweet
stream: A dynamic real-time monitor corpus of big and rich language
data,” in DHN, 2018.

