
Web-basedStructuredHypermedia
Algorithm Explanation system

Elhadi Shakshuki
Jodrey School of Computer Science, Acadia University, Wolfville, Canada

Andreas Kerren
School of Mathematics and Systems Engineering, Växjö University, Växjö,

Sweden, and

Tomasz Müldner
Jodrey School of Computer Science, Acadia University, Wolfville, Canada

Abstract

Purpose – The purpose of this paper is to present the development of a system called Structured
Hypermedia Algorithm Explanation (SHALEX), as a remedy for the limitations existing within the
current traditional algorithm animation (AA) systems. SHALEX provides several novel features, such
as use of invariants, reflection of the high-level structure of an algorithm rather than low-level steps, and
support for programming the algorithm in any procedural or object-oriented programming language.

Design/methodology/approach – By defining the structure of an algorithm as a directed graph of
abstractions, algorithms may be studied top-down, bottom-up, or using a mix of the two. In addition,
SHALEX includes a learner model to provide spatial links, and to support evaluations and adaptations.

Findings – Evaluations of traditional AA systems designed to teach algorithms in higher education
or in professional training show that such systems have not achieved many expectations of their
developers. One reason for this failure is the lack of stimulating learning environments which support
the learning process by providing features such as multiple levels of abstraction, support for
hypermedia, and learner-adapted visualizations. SHALEX supports these environments, and in
addition provides persistent storage that can be used to analyze students’ performance. In particular,
this storage can be used to represent a student model that supports adaptive system behavior.

Research limitations/implications – SHALEX is being implemented and tested by the authors
and a group of students. The tests performed so far have shown that SHALEX is a very useful tool.
In the future additional quantitative evaluation is planned to compare SHALEX with other AA
systems and/or the concept keyboard approach.

Practical implications – SHALEX has been implemented as a web-based application using the
client-server architecture. Therefore students can use SHALEX to learn algorithms both through
distance education and in the classroom setting.

Originality/value – This paper presents a novel algorithm explanation system for users who wish
to learn algorithms.

Keywords Interactive devices, Multimedia systems, Programming, Programming languages,
Learning methods

Paper type Research paper

The current issue and full text archive of this journal is available at

www.emeraldinsight.com/1744-0084.htm

The first and the third authors worked on this project with a partial support provided by a grant
from the Natural Sciences and Engineering Research Council of Canada and internal grants from
the Teaching and Innovation fund, Acadia University. The authors would like to thank two
alumni of Jodrey School of Computer Science for their contributions to this project; Joe Merrill for
his implementations in Macromedia Flash MX during the first stages of the project, and Brad
Haughn for his implementations of some parts of the proposed system.

Web-based
Structured

Hypermedia

179

International Journal of Web
Information Systems

Vol. 3 No. 3, 2007
pp. 179-197

q Emerald Group Publishing Limited
1744-0084

DOI 10.1108/17440080710834238



Introduction
The analysis and the understanding of algorithms is a very important task for teaching
and learning algorithms. We advocate a strategy, according to which one first tries to
understand the fundamental nature of an algorithm, and then – after reaching a higher
level of awareness – chooses the most appropriate programming language to
implement it. To facilitate the process of understanding of algorithms, their
visualization, in particular animation is considered to be the best approach.
This approach is described in the next subsection.

Algorithm animation
An algorithm animation (AA) visualizes the behaviour of an algorithm by producing
an abstraction of both the data and the operations of the algorithm. At first, it maps the
current state of the algorithm into a picture which is then animated based on the change
between two succeeding states of the running algorithm. This way, AA facilitates
better understanding of the inner workings of the algorithm. Specifically, it reveals
algorithm’s deficiencies and advantages, thereby allowing further optimization (Gloor,
1992, 1998a). Price et al. (1993) distinguished between AA and program animation. The
former term refers to a dynamic visualization of the higher-level descriptions of
software (algorithms) that are later implemented in software. The latter term refers to
the use of dynamic visualization techniques to enhance human understanding of the
actual implementation of programs or data structures. They defined both areas of
study to collectively be a part of Software Visualization (SV).

Many researchers have attempted to describe the development and use of AA. For
more details and an overview of AA tools, interested readers are referred to the
introduction by Kerren and Stasko (2002) in the book (Diehl, 2002). Furthermore, two
extensive anthologies on SV providing overviews of the field were published in 1996
and 1998 (Eades and Zhang, 1996; Stasko et al., 1998). The latter anthology contains
revised versions of some seminal papers on classical AA systems as well as
educational and design topics. Other published articles provide summaries of different
aspects of AA, including taxonomies (Brown, 1988), the use of abstraction (Cox and
Roman, 1992), and user interface issues (Gloor, 1998b).

Drawbacks of traditional systems
Evaluations of systems designed to explain algorithms using various visualization and
animation techniques have not shown that these systems are educationally effective
(Hundhausen et al., 2002). However, software evaluations are difficult to verify and
widely used test designs have various disadvantages (Baumgartner, 1999). If we agree
that weak evaluation results are true and significant then we have to look for reasons
to prevent such results in the future.

One reason of a failure could be that many existing AA systems resemble visual
debuggers in that they show the execution of the algorithm by code stepping, work at
the lowest level of abstraction, and illustrate only the primitive code statements.
This approach constrains users to view the code in the order of execution, which is the
wrong information for understanding the algorithm. It has a poor cognitive fit with the
plan-and-goal structures that users are trying to extract from the code (Petre et al.,
1998a). Furthermore, runtime interpretation requires specific input data and cannot
consider all possible inputs and often suffers from the lack of focus on relevant data

IJWIS
3,3

180



(Braune and Wilhelm, 2000). A related problem is the missing representation of
algorithm invariants in most AA systems. Existing systems do not address the issue
of implementing algorithms in specific programming languages, paying attention to
their structure, or finding their time complexity. Adapting facilities for the learner
behaviour are not supported, nor is the additional use of media beyond graphics and
animation.

The remainder of this paper is organized as follows. Second section provides an
outline of several well-known algorithm explanation methods. Third section describes
our approach and provides its most important features and implementation aspects.
Authoring algorithm explanations and learning tasks are briefly exemplified in fourth
section. Lastly, fifth section concludes the paper and highlights our future work.

Explanation methods
By an algorithm explanation system we mean a system designed to teach algorithms using
multimedia that includes but is not limited to graphics and animation. There are various
existing approaches to explain algorithms. All approaches including visualization,
abstraction, constructivism and hypermedia have their specific advantages and problems.
These approaches are briefly described in the following paragraphs.

Visualization techniques
Static visualizations (such as flowcharts) and dynamic AAs are the most popular way
to explain their design and behaviour. As we mentioned above, this and many other
existing AA systems resemble visual debuggers. The runtime interpretation requires
specific input data and cannot consider all possible inputs and often suffers from the
lack of focus on relevant data (Braune and Wilhelm, 2000). One particular problem with
the dynamic execution of the algorithm is that the user has to remember the “previous
state”. Multiple views showing algorithm states are used to avoid forcing the viewer to
remember the previous states (Biermann and Cole, 1999). The JHAV’E system (Naps,
2005) is a support environment for a variety of available AA systems. It provides
several interaction support tools, such as input generators, stop-and-think questions,
VCR controls, etc.

Abstraction
Algorithms represent abstract processes but this aspect is rarely considered. One
approach presented by Wilhelm et al. (2002) uses a static source code analysis to
abstractly execute the algorithm on “all possible sets of input data” and visualize
invariants. An extension of this approach was exemplified for binary tree algorithms
(Johannes et al., 2005). The idea of using multiple levels of abstraction is supported by
Petre et al. (1998b) who claim that in general it is hard to determine a single suitable
level of abstraction. Their research has shown that if the presentation is designed to
highlight some kind of information, then it is likely to obscure other kinds. In our
approach, each level of abstraction is used to highlight a single kind of information, for
example invariants. So, the learner can focus on this kind of information.

The abstract model of the algorithm often uses pseudocode and it includes the
high-level abstract data structures and operations. These operations are designed so
that they can be directly mapped to most procedural and object-oriented programming
languages. Using pseudocode, the algorithm can be studied independently of any

Web-based
Structured

Hypermedia

181



programming language (Fleischer and Kucera, 2002; Naps, 2005). The pseudocode may
have an additional visual representation which exposes its properties, in particular its
invariants.

Concept keyboards
Baloian et al. (2005) suggested using so-called concept keyboards (CKs) in order to
explore data structures and to execute the methods of an algorithm. Each key of a CK is
mapped to the execution of an existing method available in the implementation of the
input algorithm. Based on the offered keys, the user can trigger more complex or
abstract operations. The approach does not focus on visualizations themselves:
visualizations or other media (sound or movies) are to only reflect the users’ attempts at
algorithms and data structures. Several evaluations show that the active use of CKs
leads to a better understanding of how algorithms work. Our approach has some
similarities with algorithm visualization using CKs. Hypermedia including
visualization is used in our system to reflect the current information. The main
difference is that we use a flexible graph structure for an algorithm to describe
operations and their dependencies.

Constructivism
The constructivist approach is based on the idea that the knowledge has to generate
itself in the learner’s mind. Therefore, knowledge cannot be transferred in a traditional
way, e.g. by instruction. Within the moderate constructivism, the teacher, the expert
and the system are not allowed to manipulate the learner’s construction process but
they can offer help and coach their individual construction processes. Therefore, a goal
of the moderate constructivism is to build learning environments that give learners the
possibility to generate their own knowledge constructs. One possibility to reach this
goal in the context of learning algorithms is to use compiler generation techniques to
generate interactive AA from specifications (Kerren, 2004a, b).

Constructivism principles are used in active learning (Hundhausen et al., 2002) and
this style of learning includes various kinds of interactions with the learner. For
example, students are able to use their own input data sets; use a do-it-yourself mode
and predict the next step of the algorithm, or determine the essential algorithm
properties. Enhancing this idea, algorithm explanations should not be prepared by
experts; instead they should be prepared by learners themselves. Additionally, they
should support programming the target algorithm, using a standard programming
language. This ability is missing from all existing systems, but in our opinion it is
absolutely essential.

Hypermedia
Development of hypermedia environments to provide knowledge and context to
explain algorithms is a relative new research area. The most notable example of this
approach is HalVis (Hansen et al., 2002), which showed the advantage of using
hypermedia over using just animations. The authors argue that an algorithm is a
process that is both abstract and dynamic, and a system designed to explain
algorithms should emulate both these features. Since, Structured Hypermedia
Algorithm Explanation (SHALEX) extends this work, we briefly summarize several
most important features of HalVis: support for enhanced learning with interactive

IJWIS
3,3

182



examples which helps learners to understand what the algorithm is doing and why;
support for active learning by providing various kinds of questions (note that HalVis
does not evaluate learner’s answers); hyperlinks that help the learner to move between
various kinds of descriptions, e.g. text and animations; and finally the analogical
animation, including both, micro and macro-animations.

Although HalVis is a very useful system and is one of the few systems that provide
hypermedia, it has several serious limitations. For example, HalVis only allows the
users to learn in one direction using a top-down approach, which does not always
reflect the structure of the algorithm and is not adaptive. Additionally, it supports
abstractions, but only for micro/macro-level animations.

Another AA system, called Ganimal (Diehl and Kerren, 2002; Ganimal, 2007),
supports hypermedia as follows: all algorithms are implemented in an AA specification
language Ganila. Ganila offers a set of control structures, such as the possibility to
annotate the statements of the underlying algorithm with URLs. Ganila programs are
translated into Java and executed within an own runtime system for animation. If the
system performs an annotated statement then a HTML-View is opened. This view can
interpret pure HTML code, show images, foreign Java applets, Flash animations, etc. to
support the learning process. Furthermore, it is possible to play sound if a special
program point is executed. Ganimal does not support abstraction levels or learner
evaluations, but it is a powerful system to produce stand-alone hypermedia
animations.

Structured hypermedia algorithm explanation
This section discusses our algorithm explanation system that includes a hypermedia
environment providing links between various kinds of multimedia. Our system, called
SHALEX (2007), aims to address most of the aforementioned problems of systems
described in the first section. The most novel property of SHALEX, which makes it
possible to reach this ambitious goal, is that it reflects the structure of an algorithm,
defined as digraph of abstractions. Thus, it is possible to support several levels of
abstractions which help the learner to understand basic properties of the algorithms as
well as to recognize good implementation strategies.

Concepts and features
A major weakness of many existing systems is that they do not adapt to the learner’s
behaviour. Therefore, a good student may be bored while a novice student may be
overwhelmed. SHALEX includes a learner model to provide spatial and temporal links,
and to support evaluations and adaptations. In this context, the system’s users can
play one of the following four roles:

(1) learners (students), who study algorithms;

(2) authors, who are responsible for tasks such as creating algorithm explanations,
various lessons, or assigning evaluations;

(3) administrators, who are responsible for tasks such as maintaining user
accounts and their roles; and

(4) algorithm administrators, who are responsible for tasks such as group
management of users assigned to study specific algorithms, management of
algorithm explanations, including log information.

Web-based
Structured

Hypermedia

183



SHALEX supports many algorithms; explanations of which are created by various
authors. To support this, we designed a taxonomy of explanations which has a tree-like
structure. Non-leaf nodes of the taxonomy represent concepts, such as “Iterative
Algorithms” (the root represents all algorithms). Leaves represent explanations of
specific algorithms, created by specific authors, for example “John Doe: Merge Sort”.
The author who creates an explanation of a new algorithm specifies where in the
taxonomy hierarchy this explanation will be placed (Figure 5, upper screenshot).

Structured hypermedia and abstraction levels. In our approach, operations are
provided in a textual form, but there is also a hyperlinked visual description used to
help the learner understand basic properties of an algorithm, for example algorithm
invariants. Each operation is either implemented in an abstraction at the lower level,
or it is a primitive operation. This is a generalization of micro/macrolevel animations
used in HalVis (Hansen et al., 2002) which will allow the novel mode of studying
unavailable in any other visualization system: an algorithm may be studied top-down,
bottom-up, or using a mix of the two (for more details see below).

We define the algorithm structure as a hierarchical Abstract Algorithm Model
(AAM) which is a directed acyclic graph with nodes representing abstractions and
directed edges representing operation dependencies. Each abstraction is designed to
focus on a single operation used directly or indirectly in the algorithm, i.e. it explains a
single operation op and consists of a textual representation and a visual representation.
The textual representation includes, among other things, an abstract data type (ADT)
that gives a high-level view of generic data structures and operations.

Let as assume that f is an operation. The abstraction that explains f, abst(f) is a pair
(ADT, repr(f)), where ADT consists of data types and primitive operations (Figure 1).
There is a directed edge from the abstraction abst(f) to an abstraction abst(g) if g is one
of the primitive operations from the ADT abst(f). Thus, a successor abstraction
provides a partial implementation of the operation from the predecessor abstraction.
Typically, there are only few operations from any abstraction’s ADT that are
implemented in a successor of this abstraction; others are considered primitive
operations. An AAM of an algorithm f is a graph sourced at abst(f).

To build an algorithm explanation, we construct an AAM with a sufficient number
of levels so that the learner is able to understand how and why the algorithm works.
In particular, the learner can form and justify invariants of the algorithm. Let us
consider the insertion sort algorithm (Aho et al., 1983) as an example. Each iteration of
this algorithm removes an element from the input data, inserting it at the correct
position in the already sorted list until no elements are left in the input. Insertion sort
can be implemented using operations from two ADTs: the insertion ADT provides

Figure 1.
Abstraction node of
the AAM

f

abst(f)

• ADT

ADT

Representations
• Representations

• Data Types

• Text
• Visualizations
• Implementations (AIM)

• Operations

IJWIS
3,3

184



generic operations, such as insert and the primitive operation swap; the insert ADT
provides only primitive operations, like last that returns the last element of a sequence,
etc. The AAM for this algorithm forms a tree of abstractions rooted at abst(insertion),
shown in Figure 2. Various examples of abstractions and algorithm explanations are
provided in Müldner (2003), Müldner and Shakshuki (2004) and Müldner et al. (2004,
2005).

Visualization. Associated visual representation may be used by the learner to help
him or her understand the basic properties of this abstraction, such as invariants. It is
possible to embed any web-viewable animations built by AA systems, such as
Ganimal (Ganimal, 2007; Diehl et al., 2002; Diehl and Kerren, 2002), Animal (Roßling
and Freisleben, 2002), or JSamba (JSamba, 2007), as well as other formats, for example
Marcomedia Flash (Macromedia, 2007) visualizations, animated GIFs, sound files, etc.
As an example, Figure 3 shows a flash visualization of the insert() function of the
insertion sort algorithm. Additional hyperlinks provide a description of fundamental
concepts and an intuitive analogy, similar to HalVis.

Easy language transfer. SHALEX provides the intermediate representation of all
AAM’s primitive operations, called an abstract implementation model (AIM) (Figure 1).
To implement the algorithm in a specific programming language, the learner has to

Figure 2.
An AAM for insertion sortabst(insert)

abst(insertion)

Representations

Representations

primitive operation

abst(swap)
ADT

ADT

insert(...) {...}
swap(...) {...}
...root

Figure 3.
Visualization of the insert

of insertion sort

Web-based
Structured

Hypermedia

185



map to the selected language all primitive operations that do not have implementations
in the AAM. The representations in AIM are generic in that they are not using any
specific programming language; instead they use high-level concepts that can be
mapped to many procedural programming languages.

Time complexity. Explanation of algorithm complexity is one of the most difficult
goals of algorithm visualization, because it requires mathematical proofs that are hard
to visualize. The only attempt in this direction, to our knowledge, is described in Pape
and Schmitt (1997). The current version of SHALEX includes three kinds of tools
designed to help the learner to derive the complexity of the algorithm being studied.
In the first tool, based on Horstmann (2001), the learner can experiment with various
data sizes and plot a function that approximates the time spent on execution with these
data. The second tool, based on Goodrich and Tamassia (2001), provides visualization
that helps to carry out time analysis of the algorithm. Finally, the third tool asks
learners various questions regarding the time complexity of the algorithm being
studied and evaluates their answers.

Learner and author models. SHALEX is an interactive system that allows the
learner to select one of the available algorithms to study. It uses a learner model to
record learner activities. These interactions are vital to support active learning
(Hundhausen et al., 2002). SHALEX helps the learner not only to understand what the
algorithm is doing but also how the algorithm works; as well why the algorithm works
(algorithm correctness).

In addition, it uses an author model to record decisions made by an author. For
example, the author may decide to prepare, for a single algorithm, various lessons with
different evaluations, and various AAM trees providing more or fewer abstractions.
Authors’ responsibilities include selecting tools to keep track of the learner
performance. Instead of fixing a single tool such as asking a learner questions,
SHALEX provides several tools including traditional tools, such as measuring the time
spent on studying specific issues and comparing this time with author-specifies soft
and hard deadlines, or keeping track of the percentage of questions that are correct
answered by learner. More innovative tools supported by SHALEX include keeping
track of user activities, such as selecting menu items, entering text fields, etc. The
author then selects a specific tracking tool, and then decides on the adaptivity of the
system. For example, the author model may also include assignments of various skill
levels to the learner. If this is the case, then there will be two types of evaluation; to
decide whether the learner’s skill level should be changed, and to decide whether the
learner has successfully learned the operation in question.

Additionally, our system has built-in features that help to evaluate the effectiveness
of studying algorithms using this system. To compare the effectiveness of two
different lessons for the same algorithm, the administrator may create two disjoint
groups of students, and assign a different lesson to each group (a single algorithm may
have one or more lessons, where two lessons may vary by the depth of their
explanations, level of evaluation, etc.).

Authoring. The process of creating an algorithm explanation is supported by
various tools, such as a library of existing lessons, and descriptions of ADTs. The
author may fetch an existing item and adjust to her or his needs. A novel and essential
feature of SHALEX is that it allows the author or the algorithm administrator to assign
different modes of learning an algorithm: top-down, bottom-up and learnerselected.

IJWIS
3,3

186



In top-down learning, the learner studies the textual and optionally visual
representation of the source node (i.e. the most abstract operation) of the AAM at
first. Then, the learner studies all successor nodes and so on. The bottom-up learning
approach is performed in an opposite direction, i.e. starting from leaves of the AAM.
The learner-selected mode needs a more careful description. For any operation op that
appears in the operation currently focused on, the learner may select op and request
one of the following: help, taking a test (if the author decided to include testing), or
explanation of this operation. In the first case, SHALEX provides a context-sensitive
help. Specifically, based on the information available in the learner model, SHALEX
provides a fundamental help (showing basic concepts), algorithm-specific help, or
practice-oriented help (if the learner model indicates that the learner understood the
algorithm but she or he had difficulties with problems that require manual simulation
of this algorithm). In the second case, the learner may be given a test, and if the test is
passed, the learner model will be updated. The author may specify that in order to
complete studying the algorithm, the learner has to complete all tests, using
evaluations available in the author model.

Note that explanations can also be built by the learners, who are permitted to play
the role of authors. This way one can test and evaluate moderate constructivism ideas.

Implementation
SHALEX is being implemented in Java and XML. We briefly discuss the
implementation of the most important technologies used in SHALEX: Java is used
to implement the basic functionality and graphical user interfaces. With the help of
XML, we represent system data (such as all algorithms, all users, nodes of AAM for
specific algorithms, etc.) as well as the author and learner model. The information
available to authors and/or learners can be rendered in a variety of ways, for example
in HTML or PDF. XML data are made persistent using a native XML database, eXist
(2007). When the learner requests the HTML view of all algorithms available in
SHALEX, then the XML data are translated to HTML using XSLT (Tidwell, 2001) and
displayed. The entire system has an open design, e.g. both models can be plugged into
the system without changing the system’s architecture. The current version of
SHALEX is implemented as a client/server, multi-tier application. Users access the
server with any web browser, and the server is implemented using servlets, which
create dynamic web pages for the clients and communicate with the database tier. The
implementation of SHALEX is an ongoing work.

Case study: insertion sort
To exemplify the use of SHALEX on the basis of the different roles, we briefly
highlight the most important steps in the development of algorithm explanations, user
management, and the most important task: learning algorithms. As an example of an
algorithm, we will use insertion sort again.

After the start of SHALEX, a login dialog appears. Here, the user has to authenticate
and choose her/his assigned role, i.e. administrator, algorithm administrator, author, or
student. We begin with the description of some technical aspects.

Administrating
Administrators are responsible for maintaining user accounts and the user’s role, skill
level (for students), or level of trust (for non-students) (Figure 4). These are purely

Web-based
Structured

Hypermedia

187



technical tasks and the administrator does not need to know anything about
algorithms. Using the Administrator Control Panel, with a single mouse-click one can
add a new user and additional information, such as e-mail address, length of study, or
course number.

The responsibility of algorithm administrators is much broader. Within the
Algorithm Admin Control Panel (Figure 5), they can define and manage student groups
(controls are located on tab 1 of the upper screenshot example), e.g. if there are two
parallel courses on algorithms or if one group should learn with visualizations using a
top-down learning strategy and the other group should learn without visualizations
using a bottom-up learning strategy. Furthermore, they can watch and record learner
activities (tab 4) for evaluation purposes. Very important part of the algorithm
administrator’s activity is the management of all available algorithm explanations, i.e.
different algorithms (tab 2, shown at the upper screenshot of Figure 5) as well as the
nodes of the AAMs (tab 3): for example, the algorithm administrator can assign
specific algorithms to student groups based on the algorithm taxonomy. Note that not
all algorithms have to be publicly available. It is possible to hide some algorithms, e.g.
for technical or didactical reasons. On the other hand, there is also taxonomy of all
AAM nodes. Here, some basic concepts, such as string manipulation-related
operations, can be found and published for common use of all authors. Selecting any
published algorithm, SHALEX opens an information window about this algorithm in
which all important learning procedures can be chosen including learning strategy (see
below) and mode (top-down, bottom-up, or learner-selected (mixed)) (lower screenshot
of Figure 5).

Authoring
For the preparation of an algorithm explanation, an author has to define an AAM for
the algorithm to be explained. Let us use the AAM shown in Figure 2. To specify it in

Figure 4.
Administrator Control
Panel and creation of a
new user

IJWIS
3,3

188



SHALEX, the user must login as Author. In the Author Control Panel, he/she can
define an AAM with the help of an easy to use point-and-click-interface (Figure 6).

We explain the functionality in a top-down manner: the author can insert/edit nodes
of the AAM at the first tab of the Author Control Panel as well as algorithms (AAM
trees) at the second tab. Nodes and trees can be specified individually and can be
published once they are completed. It is also possible to reuse public nodes/algorithms
or to copy public nodes/algorithms for own modifications. On the third tab, each
algorithm can be annotated with a learning strategy which consists of none, one or
several subtrees of the AAM. So, the author can individually control the granularity of
explanations. In our screenshot example shown in Figure 6, two different strategies
were defined: top-level learning of Insertion Sort and learning this algorithm by
watching all nodes of the AAM, called “Complete Insertion Sort”. For each algorithm,
there is a hard time, specified by the strategy definition as the total time to study the
algorithm that cannot be exceeded. Then, for each part (node) in this algorithm, there is
a soft time; where the sum of all soft times is equal to the hard time. The learner is
allowed to exceed a specific soft time, but then she/he would have to make up the
lost time when studying other parts. This feature is very helpful for evaluation
purposes.

All relevant information to edit/create a node can be entered into dialog boxes, as
shown in Figure 7. Thus, pseudocode and informal descriptions together with an ADT
are used to define an abstraction of an operation. The screenshot shows the definition
of the insert node. This operation uses further four primitive operations:

Figure 5.
Algorithm Administrator

Control Panel (only tab 2 is
shown) with a pop-up

window which contains
information on a specific

algorithm

Web-based
Structured

Hypermedia

189



Figure 6.
The three tabs of the
Author Control Panel

Figure 7.
Edit a node and new ADT

IJWIS
3,3

190



(1) comp(T t1, T t2) – compares two elements of type T;

(2) last(s) – returns the last element of a sequence s;

(3) prev(current, s) – returns the element of the sequence s, preceding current; and

(4) swap(T t1, T t2) – swaps t1 and t2 of type T.

They can be declared within the insert ADT (Figure 7) together with required data
structures: in our case, sequences Seq ,T. of ordered elements of type T. Based on this
information, a possible pseudocode implementation of the insert operation is given below:

void insert(Seq<T>s, int comp(T t1, T t2)) {
for(current¼ last(s); prev(current, s) ! ¼ NULL; current ¼ prev(current, s))

if(comp(current, prev(current, s))<0)
swap(current, prev(current, s))

else return;
}

Optionally, the author can indicate an appropriate visualization or the source of an
interactive questionnaire that will be displayed in separate windows if the learner
studies this node at learning time. Figure 3 shows a simple example visualization of the
node of the insert operation.

After the specifications of individual nodes, the author can easily build up the entire
AAM tree by a self-explanatory and comfortable point-and-click-interface shown in
Figure 8. In our running example, we have only two nodes: insertion that will be the
root of the tree and insert that will be its only child which is not primitive. Remember
that the swap operation used by insert was declared as primitive operation.

If the AAM is ready, SHALEX supports the definition of one or more learning
strategies for an algorithm. The correspondent dialog box is shown in Figure 9. In the
center of the dialog box, the entire AAM tree is displayed using a standard explorer
layout for trees. Thus, single nodes or entire subtrees can be marked for consideration

Figure 8.
Dialog box for edit
algorithms (AAMs)

Web-based
Structured

Hypermedia

191



in the learning process of the students. It is also possible to choose a hard time for
studying the algorithm as described before.

Learning
After login as Student, SHALEX offers a learning panel with assigned tasks, as shown
in Figure 10. All tasks are itemized in a task list. For example, if the student attends a
course on algorithms then the task list could contain several learning tasks, such as
“Study Sorting Algorithms” or “Study Geometric Algorithms”. Thus, each task can

Figure 9.
Define a learning strategy

Figure 10.
Student environment

IJWIS
3,3

192



imply one or several related algorithms. In our running example, we only have the
insertion sort algorithm. Choosing this example, the AAM tree and a brief description
of the selected algorithm is displayed on the right-hand side of the learning panel.
Assume the author has chosen a learning strategy for this student’s group that allows
free learning and watching of all AAM nodes of the selected algorithm (complete
insertion sort). In our example, this policy is symbolized by check marks at all nodes.
Furthermore, the algorithm was ranked as “Medium” by the author of this algorithm
explanation. To reflect the current status of the algorithm, a status bar shows how
many nodes of the AAM have been successfully completed.

If the student decides to study a specific algorithm, a new window with the current
AAM appears, as shown in Figure 10. Here, the student can select any node of the
displayed AAM tree (recall that we are using “free view” rather than a more restrictive
strategy such as “top down”) and click on the “Study Selected Node” button for
learning. Let us assume that the insert node has been chosen. Then, a new panel
appears, as shown in Figure 11.

This “Study Operation” panel contains all explanations and information provided
by the author for the selected node. All fields of this panel can contain hyperlinks to
both external and internal sources. In this way, hypermedia can be effectively used to
explain single primitive operations or to substantiate details in the algorithm
description. Visualization and a questionnaire can be invoked by the student too, as
described before and shown in Figure 3.

Conclusions and future work
This paper presented our proposed system for explaining algorithms, which is based
on structured hypermedia approach. It has been shown that the system has some
fundamental advantages, including availability of studying an algorithm top-down,
bottom-up, or using a mix of the two; support for understanding invariants; building a
learner model to provide spatial and temporal links; and the use of XML to store
information. We summarize our contributions in more detail in the following
subsection.

Figure 11.
Learning a specific

operation

Web-based
Structured

Hypermedia

193



Contributions
In this paper, we presented a novel algorithm explanation system, whose most
important features include:

(1) Active learning; students can:
. enter their own inputs; a do-it-yourself mode and predict the next step of the

algorithm, or determine the essential algorithm properties;
. develop their own algorithm explanations rather than use the existing

explanations prepared by experts; and
. use the pseudo-code available in the algorithm explanation to implement this

algorithm in a selected programming language.

(2) Multiple levels of abstraction; each level has its own pseudo-code textual
representation, visual representation which exposes its properties (particular its
invariants), and questions that help the learner to perform self-evaluation.

(3) Internal graph representation of the explanation, which is transparent to the
user and makes it possible to learn the algorithm using one of three existing
strategies: a top-down approach, a bottom-up approach, or a mix of both.

(4) Support for hypermedia, which is not limited to graphics and animations, but
also includes internal hyperlinks (pointing to other parts of the related
explanations) and external links to other web sites (such as web sites that
provide relevant definitions).

(5) Internal messaging system that can be used to exchange information between
various users.

(6) Four different roles that can be played by users; including learners, authors
(responsible for creating algorithm explanations and various lessons),
algorithm administrators (responsible for management of groups of users by
assigning them to study specific algorithms, etc.), and finally system
administrators (responsible for maintaining user accounts, their roles and
maintaining groups of users).

(7) Persistent storage that not only stores algorithm explanations but also the
student model, which can be analyzed to provide feedback, prepare reports
showing the learners performance, and provide system adaptations (such as
various kinds of help).

(8) Flexible implementation of the student model, which makes it possible to store
in the model various kinds of information, such as marks for answered
questions or learners interactions with the system.

Future work
The educational benefit of our approach has to be proven by accurate evaluation. The
good results of several evaluations of the related CK approach (Baloian et al., 2005)
support our assumption that an empirical evaluation of SHALEX will yield to good
results.

The first versions of algorithm visualizations were implemented using Macromedia
(2007) Flash. For the next version, we are considering using HTML pages to display
more complex and interactive visualizations (this follows the design of Ganimal

IJWIS
3,3

194



(Diehl and Kerren, 2002)). Additionally, some improvements related the GUI will be
implemented, for example, the AAM of an algorithm should be displayed as a real
graph in the GUI and not as a tree.

After using the results of the usability check to improve SHALEX and fix possible
bugs, we will design a quantitative evaluation with exercises for a performance test to
compare SHALEX with other AA systems and/or the CK approach. In order to make
our system usable, we are also planning on performing evaluations in class with
students from computer science at various universities.

References

Aho, A.V., Hopcroft, J.E. and Ullman, J.D. (1983), Data Structures and Algorithms,
Addison-Wesley, Reading, MA.

Baloian, N., Middleton, C., Breuer, H. and Luther, W. (2005), “Algorithm visualization using
concept keyboards”, Proceedings of the ACM Symposium on Software Visualization
(SoftVis ’05), ACM, St Louis, MO, pp. 7-16.

Baumgartner, P. (1999), “Evaluation of media-based learning (in German)”, in Kindt, M. (Ed.),
Projektevaluation in der Lehre – Multimedia an Hochschulen zeigt Profil(e), Waxmann,
Münster, pp. 61-97.

Biermann, H. and Cole, R. (1999), Comic Strips for Algorithm Visualization, Tech. Rep. 1999-778,
NYU, New York, NY.

Braune, B. and Wilhelm, R. (2000), “Focusing in algorithm animation”, IEEE Transactions on
Visualization and Computer Graphics, Vol. 6 No. 1, pp. 1-7.

Brown, M.H. (1988), “Perspectives on algorithm animation”, Proceedings of the ACM SIGCHI ’88
Conference on Human Factors in Computing Systems, May, ACM, Washington, DC, pp. 33-8.

Cox, K.C. and Roman, G-C. (1992), “Abstraction in algorithm animation”, Proceedings of the 1992
IEEE Workshop on Visual Languages, IEEE, September, IEEE Computer Society Press,
Seattle, WA, pp. 18-24.

Diehl, S. (Ed.) (2002), “Software visualization”, Vol. 2269 of LNCS State-of-the-Art Survey,
Springer, Berlin.

Diehl, S. and Kerren, A. (2002), “Reification of program points for visual execution”, Proceedings
of the First IEEE International Workshop on Visualizing Software for Understanding and
Analysis (VisSoft ’02). IEEE, Jun, IEEE Computing Society Press, Paris, pp. 100-9.

Diehl, S., Görg, C. and Kerren, A. (2002), “Animating algorithms live and post mortem”, in Diehl,
S. (Ed.), Software Visualization. Vol. 2269 of LNCS Stateof-the-Art Survey, Springer,
Berlin, pp. 46-57.

Eades, P. and Zhang, K. (Eds) (1996), Software Visualization, World Scientific Publisher, Singapore.

eXist (2007), “Open source native XML database”, available at: http://exist.sourceforge.net/

Fleischer, R. and Kucera, L. (2002), “Algorithm animation for teaching”, in Diehl, S. (Ed.),
Software Visualization. Vol. 2269 of LNCS State-of-the-Art Survey, Springer, Berlin,
pp. 113-28.

Ganimal (2007), “Project homepage”, available at: www.cs.uni-sb.de/GANIMAL

Gloor, P.A. (1992), “AACE – algorithm animation for computer science education”, Proceedings
of the 1992 IEEEWorkshop on Visual Languages, September, IEEE, Seattle, WA, pp. 25-31.

Gloor, P.A. (1998a), “Animated algorithms”, in Stasko, J., Domingue, J., Brown, M.H. and Price,
B.A. (Eds), Software Visualization: Programming as a Multimedia Experience, Chapter 27,
MIT Press, Cambridge, MA, pp. 409-16.

Web-based
Structured

Hypermedia

195



Gloor, P.A. (1998b), “User interface issues for algorithm animation”, in Stasko, J., Domingue, J.,
Brown, M.H. and Price, B.A. (Eds), Software Visualization: Programming as a Multimedia
Experience, Chapter 11, MIT Press, Cambridge, MA, pp. 145-52.

Goodrich, M. and Tamassia, R. (2001), Data Structures and Algorithms in Java, 2nd ed., Wiley,
New York, NY.

Hansen, S.R., Narayanan, N.H. and Hegarty, M. (2002), “Designing educationally effective
algorithm visualizations: embedding analogies and animations in hypermedia”, Journal of
Visual Languages and Computing, Vol. 13 No. 3, pp. 291-317.

Horstmann, C. (2001), Big Java: Programming and Practice, Wiley, New York, NY.

Hundhausen, C., Douglas, S. and Stasko, J. (2002), “A meta-study of algorithm visualization
effectiveness”, Journal of Visual Languages and Computing, Vol. 13 No. 3, pp. 259-90.

Johannes, D., Seidel, R. and Wilhelm, R. (2005), “Algorithm animation using shape analysis:
visualising abstract executions”, Proceedings of the ACM Symposium on Software
Visualization (SoftVis ’05), ACM, St Louis, MO, pp. 17-26.

JSamba (2007), “Project homepage”, available at: www-static.cc.gatech.edu/gvu/softviz/
algoanim/jsamba/

Kerren, A. (2004a), “Generation as method for explorative learning in computer science
education”, Proceedings of the 9th Annual Conference on Innovation and Technology in
Computer Science Education (ITiCSE ’04), ACM, ACM Press, Leeds, pp. 77-81.

Kerren, A. (2004b), “Learning by generation in computer science education”, Journal of Computer
Science & Technology (JCS&T), Vol. 4 No. 2, pp. 84-90.

Kerren, A. and Stasko, J.T. (2002), “Algorithm animation – chapter introduction”, in Diehl, S.
(Ed.), Software Visualization, Vol. 2269 of LNCS State-of-the-Art Survey, Springer, Berlin,
pp. 1-15.

Macromedia (2007), “Flash”, available at: www.macromedia.com/software/flash/

Müldner, T. (2003), “An algorithm for explaining algorithms”, Tech. Rep. TR-2003-01, Jodrey
School of Computer Science, Acadia University, available at: http://cs.acadiau.ca/
technicalReports/

Müldner, T. and Shakshuki, E. (2004), “On visualization and implementation of algorithms”,
Proceedings of the 5th International Conference on Information Technology Based Higher
Education & Training (ITHET ’04), IEEE, IEEE Computer Society Press, Istanbul,
pp. 138-43.

Müldner, T., Shakshuki, E. and Merill, J. (2004), “Selecting media for explaining algorithms”,
Proceedings of the AACE World Conference on Educational Multimedia, Hypermedia and
Telecommunications (EDMEDIA ’04), AACE, Lugano, Swizerland, pp. 2048-53.

Müldner, T., Shakshuki, E., Kerren, A., Shen, Z. and Bai, X. (2005), “Using structured hypermedia
to explain algorithms”, Proceedings of the 3rd IADIS International Conference e-Society
’05, IADIS, Qawra, pp. 499-503.

Naps, T.L. (2005), “JAV’E: supporting algorithm animation”, IEEE Computer Graphics and
Applications, Vol. 25 No. 5, pp. 49-55.

Pape, C. and Schmitt, P.H. (1997), “Visualizations for proof presentation in theoretical computer
science education”, in Halim, Z., Ottmann, T. and Razak, Z. (Eds), Proceedings of
International Conference on Computers in Education (ICCE ’97), AACE – Association for
the Advancement of Computing in Education, pp. 229-36.

Petre, M., Baecker, R. and Small, I. (1998a), “An introduction to software visualization”, in Stasko,
J.T., Domingue, J., Brown, M.H. and Price, B.A. (Eds), Software Visualization, MIT Press,
Cambridge, MA, pp. 3-26.

IJWIS
3,3

196



Petre, M., Blackwell, A.F. and Green, T.R.G. (1998b), “Cognitive questions in software
visualization”, in Stasko, J.T., Domingue, J., Brown, M.H. and Price, B.A. (Eds), Software
Visualization, MIT Press, Cambridge, MA, pp. 453-80.

Price, B.A., Baecker, R. and Small, I. (1993), “A principled taxonomy of software visualization”,
Journal of Visual Languages and Computing, Vol. 4 No. 3, pp. 211-66.

Roßling, G. and Freisleben, B. (2002), “ANIMAL: a system for supporting multiple roles in
algorithm animation”, Journal of Visual Languages and Computing, Vol. 13 No. 3,
pp. 341-54.

SHALEX (2007), “Project homepage”, available at: http://cs.acadiau.ca/̃solid/ae.htm

Stasko, J.T., Domingue, J., Brown, M.H. and Price, B.A. (1998), Software Visualization, MIT Press,
Cambridge, MA.

Tidwell, D. (2001), XSLT, O’Reilly, Sebastopol.

Wilhelm, R., Müldner, T. and Seidel, R. (2002), “Algorithm explanation: visualizing abstract
states and invariants”, in Diehl, S. (Ed.), Software Visualization, Vol. 2269 of LNCS
State-of-the-Art Survey, Springer, Berlin, pp. 381-94.

Further reading

Kerren, A., Müldner, T. and Shakshuki, E. (2006), “Novel algorithm explanation techniques for
improving algorithm teaching”, Proceedings of the 3rd ACM Symposium on Software
Visualization (SoftVis ’06), ACM Press, Brighton, pp. 175-6.

Roßling, G., Naps, T., Hall, M., Karavirta, V., Kerren, A., Leska, C., Moreno, A., Oechsle, R.,
Rodger, S.H., Urquiza-Fuentes, J. and Veĺzquez-Iturbide, J.A. (2006), “Merging interactive
visualizations with hypertextbooks and course management”, ACM SIGCSE Bulletin –
Inroads, Vol. 38 No. 4, pp. 166-81.

Corresponding author
Elhadi Shakshuki can be contacted at: elhadi.shakshuki@acadiau.ca

Web-based
Structured

Hypermedia

197

To purchase reprints of this article please e-mail: reprints@emeraldinsight.com
Or visit our web site for further details: www.emeraldinsight.com/reprints


