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Abstract
Many open challenges exist when dealing with different biological networks. They
are crucial for the understanding of living beings. Complete drawings of these typ-
ically large networks usually suffer from clutter and visual overload. In order to
overcome this issue, the networks are divided into single, hierarchically structured
pathways. However, this subdivision makes it harder to navigate and understand the
connections between pathways. Another challenge is to visualize ontologies and
hierarchical clusterings, which are important tools to study high-throughput data
that are automatically generated nowadays. Both of these methods produce differ-
ent types of large graphs. Although these methods are used to explore the same
data set, they are usually considered independently. Therefore, a combined view
showing the results of both methods is desired. Additionally, real life data sets,
including biological networks, usually have additional attributes related to the con-
sidered network. Investigating means to visualize such multivariate data together
with the network drawing is also one of the ongoing challenges in biology, but also
in other fields.

The aim of this thesis is to lay out the foundations towards defining techniques
for the visualization of multivariate biochemical networks. An overall understand-
ing of the problems related to biochemical networks should be acquired to achieve
this aim. More importantly, a contribution to the aforementioned challenges is nec-
essary. Two research goals have been defined to accomplish our aim: for the first
goal, we should improve shortcomings of the approach of dividing larger biologi-
cal networks into smaller pieces and contribute to the problem of a visualization of
different types of interconnected biological networks. The second goal is a contri-
bution for the visualization of multivariate biological networks.

Initially, a brief survey on techniques to visualize multivariate networks is pre-
sented in this thesis. Then, various visualization and interaction techniques are pre-
sented that address the challenges in biochemical network analysis. Three different
software tools were implemented to demonstrate our research efforts. We discuss
all features of our systems in detail, describe the visualization and interaction tech-
niques as well as disadvantages and scalability issues if present.

Keywords: Information Visualization, Biological Networks, Multivariate Net-
works, Biological Visualization
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Chapter 1

Introduction

Complex and large data sets that describe relationships between objects are visual-
ized in order to give insight into different patterns between relations of data objects
and/or their individual features. Mostly, these relational data sets are represented as
node and link diagrams (graphs or networks), where nodes represent the particular
elements, and edges show different relation or interlink between these elements. Vi-
sual analysis tools face issues related to huge, complicated and dynamic data sets
and have to cope with different challenges, such as to increase people’s understand-
ing of the underlying data or to avoid clutter. A lot of these issues can appear even
with smaller data sets as nodes and edges typically overlap each other, and this will
make the interpretation of the graph almost impossible (cp. Figure 1.1).

Often, these networks are divided into many smaller parts in order to avoid this
visual overload. For instance, if a large data set of all users of a specific social
networks is presented, one might not be able to see anything as the data might be
too big and highly interconnected, resulting in a over-cluttered image. A common
practice is to divide this network into smaller subnetworks based on some deter-
mined criteria. This approach could help to understand the data better, as it avoids
the overload, but introduces problems, such as loosing the overall picture.

Moreover, the combination of different types of networks is often desired. For
instance, if we want to analyze communication patterns among workers in an organi-
zation in context of their job position, the we can analyze the email correspondence
within the organization. The next step is modeling these data as a network where
the employees could be represented as nodes and email correspondence (relation-
ship) between two employees as a edge. By visualizing this network, we might get
insight into different patterns of communications between different workers. How-
ever, companies have hierarchies (organization charts) based on the job position of
the workers. This hierarchy is usually a tree, which is a special case of a graph. If we
want to understand the communication of employees in context of the job position,
we might want to visualize both networks to get the full context.

Another issue is that each network object may additionally have a number of
attributes that are important to be visualized in context of the overall network pre-
sentation. Visualization of networks together with additional data is one of the on-
going challenges in various network visualization domains, such as biology, social
network analysis or software engineering. If we return to the previous example of
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Chapter 1. Introduction

Figure 1.1: This figure represents the coappearance network of characters in the
novel “Les Miserables” [50, 73]. The clutter appears in many parts of the drawing,
where edges cross each other or go over nodes. This network has 77 nodes and 254
edges, while most of biological networks contain thousands of them. The image
was produced by the yEd tool for graph visualization [133].
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1.1. Motivation

the email correspondence network, we will notice that each employee has its salary,
age, gender, time employed in company, address, working hours, etc. All these char-
acteristics could be important and be regarded as additional network attributes. In
order to actually discover if there are different interesting patterns in relationships,
we would need to visualize each staff’s individual set of attributes, and see if some
pattern related to attributes emerge in context of a communication network. For,
instance do members of same gender or age communicate with each other more?

The next section continues with the motivation of this work, focusing on data
produced by biologists. It explains the main problems that are addressed by this
thesis.

1.1 Motivation
Due to advances in technology, we are facing an increase in biological network data,
such as gene regulatory networks or metabolic pathway networks (Section 2.3).
Hundreds of new elements are added and/or updated to existing biological data on
daily basis. Therefore, online databases were created to help researchers to cope
with this data [61, 36]. Networks play a huge role in the understanding of living
beings which, for example, could lead to the discovery of important information
regarding different pharmaceutical projects. However, the complexity and the sheer
amount of data being produced is hindering the interpretation and visualization of
these networks.

A standard practice to overcome the problem is to structure these networks hi-
erarchically and divide them into smaller units as described before. This approach
helps in understanding the function of smaller sub-networks and helps to reduce the
overall complexity. However, it has the disadvantage that a user loses the context.
Users will get insight into the processes of that particular sub-network, but they will
not know how various elements are connected to the other sub-networks.

Analyzing biological network data sometimes involves hierarchical clustering of
various experimental data that produces huge data sets of tree-like structures. Usu-
ally this clustering is performed on a subset of networks elements (nodes). This
subset of elements is then "mapped" on a resulting cluster tree, as clustering in a
loosest sense means placing different objects into different groups (clusters) based
on some predefined criteria. Therefore, we might say that these trees and networks
share a considerable amount of elements, i.e., they are "connected" with each other.
Often, both views are desired: the visualization of the huge network data and clus-
tering data. This fact implies the need to show two huge and complex graphs that
are of different nature, and give insight into their relationships. However, visual-
izing a graph of ten thousands of nodes is a challenge on its own, and in this case
researchers are faced with two huge network visualizations.

Furthermore, these thousands of nodes are not simple one-dimensional data.
Each one of the elements may contain many specific attributes. Biologists usu-

3



Chapter 1. Introduction

ally perform different experiments on the obtained data (biological networks in this
case). These experiments produce additional data that are often important to be an-
alyzed with respect to the underlying network structure. Therefore, it is important
to visualize the additional attributes of the network while preserving the network
structure as much as possible. The problem is not trivial as these networks could
have a high number of attributes that could be related to their node, edges or differ-
ent groups or clusters of nodes and/or edges. Even more issues arise if we consider
the previous mentioned challenges as the visualization space becomes more expen-
sive due to the complexity and amount of attribute and network data. Additionally,
these experiments may produce (multivariate) time-dependent data, as various ex-
perimental measures are taken on a number of time intervals while the experiment
lasts. These or similar challenges are also prominent in other domains beside bi-
ology, such as social network analysis or software engineering. Therefore, other
scientific domains could benefit from the solutions of network visualization prob-
lems in biology.

1.2 Research Problems and Goals
The aim of this thesis is to prepare a way towards different types and techniques for
the visualization of multivariate biochemical networks. In order to achieve this aim,
an overall understanding of the problems related to biochemical networks should be
acquired, since generally all these networks are multivariate networks. Therefore,
besides an extensive literature review, a contribution to a solution of these challenges
is necessary. With this point in mind, we define two main research goals:

1. Offer a contribution to the problem of a visualization of huge biologic net-
works. More specifically, improve shortcomings of the approach of dividing
larger biological networks into smaller pieces, and contribute to the problem
of a visualization of different types of interconnected biological networks.

2. Offer a contribution for the visualization of multivariate biological networks.

1.3 Goal Criteria
In this section, we define a number of criteria for fulfilling our research goals starting
with the criteria for the first goal:

1.1 Dividing networks into smaller units in order to avoid clutter and complexity
when visualizing huge biochemical networks introduces issues of loosing the
overview. Nevertheless, this practice is desirable by the biologists. Therefore,
an analysis of these issues and a contribution towards solving the problems shall
take place.

4



1.4. Discussion of the Research Approach

1.2 Provide an approach to combine two different types of huge networks. As de-
scribed in the motivation section on Page 3, a visualization of biological net-
works in context of tree-like data produced by clustering is desirable. Therefore,
a tool to visualize both datasets and to show their connection will be developed.

The criteria for fulfilling our second goal are:

2.1 Provide a survey on the current state of the art on the visualization of multivari-
ate networks in general. We shall not only focus on biological networks as the
problems and solution from other research domains could be easily adapted for
biochemical networks.

2.2 Introduce a novel approach for visualizing multivariate networks.

1.4 Discussion of the Research Approach
Here, we will briefly describe the approach to fulfill the aforementioned criteria,
which will lead to achieving our presented goals and aims. Our first goal is more
focused on visualization problems related to biochemical networks and not directly
on the multivariate nature of the data. Working on this goal helps in understanding
the overall complexity of the data and provides a good introduction into the domain
problems. The second goal, focuses mainly on the multivariate nature of network
data.

For the first criterion, we have decided to focus on an already known tool that
uses the idea of splitting huge networks into smaller units [54]. This tool, called
VANTED, is being developed since almost nine years and is widely used by bio-
chemists. Other approaches exist to overcome the problem of huge and complex
biochemical networks. This will be discussed later in this thesis. We focus on this
particular approach as domain researchers understand the metaphor and are used to
work in this particular way. The tool should be extended and/or improved to over-
come the issues presented by the process of division of the networks. Our approach
should provide an insight into the overall interconnectivity of the different networks.

For Criterion 1.2, we shall present an approach to combine two huge and differ-
ent graphs. In our particular case, we will provide an approach to visualize graphs
and binary trees. A prototype tool should be implemented to demonstrate our ideas.
The tool should be able to visualize and handle the huge datasets in real-time. With
this, we should finish our general contributions in terms of visualizing huge biologi-
cal networks, respectively we will achieve our first goal. The following criteria will
tackle the second goal, namely the issues of multivariate networks in biology.

As explained in the previous section, the state of the art survey about multivariate
networks should be done to address Criterion 2.1. The aim of this survey is to
provide a good understanding about the underlying problem and to classify different
approaches into different categories, based on a number of specific features used in
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Chapter 1. Introduction

different approaches. This survey will serve as a reference point for fulfilling our
last criterion and future work.

For our final criterion, we will present an improvement of an existing technique.
The main idea of this technique is to embed glyphs into graph nodes to visualize
node attributes. For instance, a biologist may need to visualize different data result-
ing from various experiments. If each element in a biological network has specific
results, one could embed a visual representation of these details into the nodes of
the network. This approach leads to some issues, such as the use of space, as the
nodes get bigger in size. These issues will be explained later in more detail. We
will demonstrate a way to overcome this problem through the use of interaction
techniques. Additionally, we will present a novel interactive way to create and use
different filters for attributes through our prototype implementation.

1.5 Thesis Outline
So far the motivation behind this work has been described. The aims and goals of
the thesis were described together with criteria and methodology to achieve them.
The rest of this thesis is organized as follows. Related work briefly presenting the
ideas on graph drawing and visualization is described in Chapter 2. Problems re-
lated to biological network visualization are discussed in this chapter as well. A
brief state of the art survey on multivariate network visualization is presented in
the next chapter where different approaches were categorized in different groups
based on predefined criteria. The following three chapters describe different tools
that were developed to address the problems mentioned in the previous section. A
contribution towards solving the problem of the division of the large networks is
presented in Chapter 4. A prototype tool that combines two different types of bio-
logical networks is described in Chapter 5. In Chapter 6, our contribution to visu-
alize multivariate networks is presented. The thesis work is summarized, discussed
and future work is presented in the last chapter of this thesis.
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Chapter 2

Background Information

In this chapter, we briefly discuss related work in context of graph and biologi-
cal network visualization. Initially, we present general ideas regarding the field
of Graph Drawing in Section 2.1 and continue with common approaches and tech-
niques for network visualization in context of Information Visualization (Section 2.2).
Finally, we present the main challenges of the visualization of biological networks
by discussing the current state of the art in dealing with huge and complex networks
and presenting the key issues related to ontologies and clustering, two important
concepts in life sciences.

2.1 Graph Drawing
Before diving into the exploration of the Graph Drawing discipline, it is worth not-
ing that we distinguish between graphs and networks in this thesis. A (simple)
graph G = (V,E) consists of a finite set of vertices (or nodes) V and a set of edges
E ⊆ {(u,v)|u,v ∈V,u 6= v}. Whereas, a network consists of an underlying graph G
plus additional attributes that are attached to the nodes and/or edges. Graph drawing
algorithms compute a layout of the nodes and the edges, mainly based on so-called
node-link diagrams (Figure 2.1(a)), while other graph representation metaphors may
be used, such as matrix-based layouts (Figure 2.1(b)) [125] or space filling lay-
outs for trees, which are a special case of graphs. We focus here on the node-link
metaphor as it is more popular than matrix based layouts. A combination of these
approaches is possible as well [44]. Layout algorithms play a fundamental role in
network visualization. Particular graph layout algorithms can give an insight into
the topological structure of a network if properly chosen and implemented, or oth-
erwise, it may conceal the nature of the underlying structure [20].

The graph readability is affected by quantitative measurements called aesthetic
criteria [66], such as minimization of edge crossings, displaying the symmetries of
the graph drawing, constraining edge lengths, etc. [23]. Thus, graph drawing gener-
ally deals with ways of drawing graphs according to the set of predefined aesthetic
criteria [20].

Readability is also affected by layout conventions and layout methods. A lay-
out convention is a basic rule followed by the drawing of graphs, such as polyline
drawing, straight-line drawing, orthogonal drawing, etc [23]. Different types of
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(a) Node-link representation of a graph (b) Matrix-based representation of
a graph

Figure 2.1: Different visual representations of the same graph.

graphs usually use different methods to facilitate the drawing with respect to the
desired criteria. For instance, if we want to draw trees, many layout algorithms are
available. One class are hierarchical layouts, which place the nodes on horizontal
layers according to their distance from the root node. Many algorithms are designed
specifically for directed graphs, such as layered drawing, which produces polyline
drawings. Force-directed algorithms are relatively simple to code and understand
due to their physical analogy, which makes them pretty desirable for undirected
graphs [66].

A good graph layout algorithm is important when doing any kind of network vi-
sualization. In most cases, a sufficient layout algorithm would represent the under-
lying graph topology and reduce the scalability problem that is one of the ongoing
challenges of the Information Visualization community in general [78].

Implementing good graph drawing algorithms is relatively complicated and time
consuming. Therefore, quite a number of different open source libraries are avail-
able (for example JUNG [86] and Prefuse [42] among others) that deal with graph
layout issues.

2.2 Graph Visualization

In this section, we focus on problems of graph visualization from an Information
Visualization perspective. They differ in many aspects from those of the traditional
Graph Drawing community. A nice overview on this subject is presented in the work
of Herman et al. [45]. Usually what differs Graph Visualization from traditional
Graph Drawing is the use of interaction techniques to overcome problems such as
clutter in case of large network data. However sometimes, it is really hard to classify
the approaches, especially when less or no interaction is involved.
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Visualization Techniques
There are techniques that do not require interaction. For instance, there exist sev-
eral approaches that try to manage the edge drawing in order to avoid any overlaps
or clutter. One such technique is edge routing to avoid edges from overlapping
nodes [26] beside the more traditional edge crossing removal algorithms, which are
usually NP-hard [34]. Another approach bundles the edges together in a tree lay-
out. It reduces edge clutter while giving insight into the relations of the nodes in
the hierarchical data set [47]. The algorithm has been adapted to work on general
graphs using force-directed layout algorithms [48]. A couple of other edge bundling
approaches have been presented recently. Ersoy et al . [31] create edge bundles for
general graphs, while Selassie et al. [103] present an approach to handle edge direc-
tions and weights.

Another technique to deal with huge data sets is to cluster the nodes. There
are two main approaches: the first one, a more domain specific, is about cluster-
ing the nodes based on their domain specific content. Usually, distance values are
calculated based on the node attributes and the nodes are clustered according to this
values. This approach will be discussed later in this thesis in more details. The other
approach is based on the structure of the graph. For instance, graph components that
are strongly inter-linked among them in contrast to other elements of the graph are
clustered together.

Certain approaches try to optimize the use of display space. Some tools use the
hyperbolic geometry in order to use it more effectively [77, 84, 83]. The main idea
is to firstly run a graph layout algorithm on the hyperbolic space and then to map the
results to the Euclidean space. In contrast to Euclidean space, the circumference of
the circle in the hyperbolic plane increases exponentially with its radius. This means
that hierarchies could be laid out in the hyperbolic space, as they tend to expand
exponentially with their depth. Although the distance between parents, children
and siblings is roughly the same when measured in hyperbolic geometry, it will
not appear so when mapping it to Euclidean space. Lamping et al. [77] map the
hyperbolic plane to a radial display region. The objects in the center of the view
appear exponentially bigger compared to the objects around them. This introduces
a need to use interactions technique and animation, so that the users can browse the
data. Each time a user clicks on a specific node, that node moves to the center of the
screen, while others move away based on their topological position.

Another way to use the display space effectively is to use interactive 3D graph-
ics. The most obvious advantage here is that we will get one more dimension to
visualize more data. Living in a 3D world gives us another advantage as we are
used to this kind of environments. There is a considerable number of tools that use
the 3D approach to visualize networks especially developed in 1990’s [95, 130, 93].
After this period, 3D visualization lost a bit of popularity due to some of the issues
this approach presents. One such a issue is that we can only project 3D scenes to
a 2D display. This requires additional interaction (moving and rotating the object)
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to perceive the objects correctly. Navigation in 3D space is more difficult as most
input devices are made with 2D in mind. Ware et al. [124] presents more in depth
analyzes of the 3D visualization problems and suggest that 2D, or 2.5D solutions
are better.

Node-link approaches have a conceptual drawback in terms of use of display
space, as in most cases there are a lot of empty, unused areas between nodes. Sev-
eral other techniques, such as matrix-based or other space-filling approaches like
Treemaps [53] or Sunburst [112], use the space more effectively. However, we will
not explain these techniques any further, as we focus on node-link visualizations in
this thesis.

Interaction Techniques
Yi et al. [132] give a great overview about the role of interaction in Information
Visualization. Here, we shortly discuss some of the interaction techniques used in
context of graph visualization.

One of the most common interaction techniques in Information Visualization are
dynamic queries. Techniques such as range sliders could help a lot in reducing the
visual clutter by filtering out unimportant data [109]. Most of these techniques could
be applied directly to graph visualization. For instance, using a slider to specify the
depth of the graph elements from a specified vertice to be shown.

Another common interaction technique that deals with huge data is zooming and
panning. Large data often cannot fit into the visualization view, therefore users
must pan, i.e., move the viewing frame. Zooming out enables to view the com-
plete data, while zooming in will uncover more details about the data. This is a
standard interaction technique used in most of the network visualization systems.
The problem with zooming is that the overview is lost when zoomed in. Therefore,
several techniques are created to enable users to focus on a specific part of data set
while showing the context of the whole or larger chunk of data (Focus+Context).
One of the most prominent Focus+Context techniques are distortion functions that
produces an effect similar to that of a fish-eye lens [109, 9, 100].

The magic lens developed by Bier et al. [11, 113] is the most closely related
work compared to our lens implementation discussed in Chapter 6. It is described
as a user interface tool that changes the view of the object beneath it by combining
its view area with an operator. The authors describe the interactions of their tool as
analogous to a real magnifying lens over a newspaper. Beside serving as a simple
magnification tool, their magic lens facilitates visual filtering of the object viewed
through it. Usually, these magic lenses perform some image processing computa-
tions on the graphical objects or filter out some kind of object. Another interesting
feature of this approach is the possibility to combine different lenses, thus producing
a new lens that acquires all the features of all the lenses being combined. Of course
this is not easy, especially when dealing with semantics and not just filtering and
using distortion functions on graphics objects. Thiede et al. [116] present a model
to overcome this issue.
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The magic lens is an approach that was originally not applied in terms of graphs.
One example of using lenses in context of graphs, albeit with slightly different aim
in mind, is EdgeLens [128]. This interactive tool is used to manage the edge conges-
tion in graphs, i.e., it is applied to graphs with high edge density in order to improve
the visual perception locally. When applied, this lens ”pushes” the edges around
the focal point, making it easier to read focused node labels, for example. More
recently, various lenses in context of graphs are presented by Tominski et al. [117].

A couple of studies suggest that magic lens-based techniques could be usable
if combined with a number of other visualization techniques. The results from the
work of Baudish et al. [9] suggest a significant time saving in their experimental
tasks and a higher subjective satisfaction when using magic lens based techniques.
The authors did a study of the usability of magic lens based techniques by apply-
ing the metaphor for their focus+context interaction interface and compared it with
overview+detail and pan+zoom interfaces. Another small comparative study based
on three types of fisheye view interfaces in context of graph layout tasks was per-
formed by Gutwin et al. [40]. Even though there are differences between competing
fisheye varieties the study suggest that lenses in general could be regarded as an
advisable tool for network visualization environments.

2.3 Biological Network Visualization

Types of Biological Networks
In this part, we briefly discuss different types of biological networks. In general
there are six types of biological networks according to Junker et al. [55]: signal
transduction and gene regulatory networks, protein interaction networks, metabolic
networks, phylogenetic networks, ecological networks and correlation networks.
Zhu et al. [134] present a slightly different classification of biological networks
types, but we will bear on the work of Junker et al. [55].

Signal transduction and gene regulatory networks play an important role in the
evolution and existence of organisms. The evolution of gene regulatory networks
is responsible for making the organisms different from one another. Signal trans-
duction and gene regulatory networks are crucial factors in intracellular regulation.
These networks are compact, sparse and exhibit increased clustering. They show a
small-world property and scale-free topology as a result of biological evolution [90].

Proteins are crucial in regulation of the majority of biological processes in liv-
ing cells. They perform this task by interacting with other molecules, such as lipids,
nucleic acids, low molecular weight compounds and other proteins. These inter-
actions are modeled as networks and are extensively analyzed and visualized. The
graph layout plays an important role in analyses of protein networks, as discover-
ing and noticing motifs and cliques are important since they play prominent roles
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as operational units in biological functions. They show a small-world property and
scale-free topology as well [14].

A network constructed of metabolites and their biochemical reactions in an or-
ganism is denoted as metabolic network. Another important concept in biochem-
istry related to metabolic networks is that of metabolic pathways, which can be
considered as small portions of a metabolic network. A metabolic pathway defines
a series of biochemical reactions for a specific metabolic function, such as penicillin
biosynthesis. On the other hand, a metabolic network gives a comprehensive out-
look of the cellular metabolism. A complete metabolic network should describe all
possible ways of material flows in the cell. This network plays a role in survival
and growth of the cell as it is responsible for generating energy and synthesizing
required components. The understanding of these networks is important as they are
used in many ways. They are used as cellular factories to produce various chemi-
cals, antibiotics, antibodies and so on. Additionally, through better understanding
of these networks we can control the infection of pathogens by using the metabolic
differences between pathogens and humans [108].

Any graph used to visualize the evolutionary relationship between species, ge-
nomes, chromosomes, genes, or nucleotide sequences is defined as phylogenetic
network [51]. Several methods for the reconstruction of phylogenetic networks ex-
ist. However, different analyzes and models, such as mechanisms operating at a
microevolutionary level are still at a relatively early stage of development [35].

Ecological networks are crucial in understanding the dynamics of the individ-
ual groups of organisms and of the entire ecosystem. They usually represent net-
works of consumer-resource interaction between a group of organisms, namely food
webs [89]. Ecological networks show who is present and who affects whom by dif-
ferent interactions, such as feeding [33].

Dealing with Large Biological Networks
Various biological networks such, as metabolic networks or gene regulatory net-
works, are significant components in biological process analysis. They are essential
for an overall understanding of living beings. The constant progress of knowledge
and technology has made the process of acquiring these network data fast. This has
resulted in the creation of large and complex networks which are increasingly hard
to interpret and visualize. An example is the network information managed in the
KEGG database [61], which contains hierarchically structured pathways with in to-
tal more than 10,000 nodes representing genes, proteins/enzymes, and metabolites.

Several systems and methods have been developed to cope with such large and
complex networks. Many tools and databases for visualization and analysis of bi-
ological networks are available on-line. Systems such as CellDesigner [32], Cy-
toscape [104], ONDEX [74], Pathway Projector [76], PathVisio [120], VANTED
[54], and VisANT [49] represent some of the more popular software systems for bi-
ological network visualization. Many approaches are straightforward, such as cases
of common graph drawing and analysis tools; they try to visualize the complete net-
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work and depend on common interaction techniques such as zooming and panning
for navigation.

These approaches are not scalable and introduce a lot of clutter. Therefore, a
common practice in life sciences is to brake down the networks into overlapping
pathways. Often these pathways are structured hierarchically, for example, in meta-
bolism several pathways representing the synthesis of amino acids are grouped into
a super-pathway amino acid metabolism. This practice of separating networks into
pathways helps in reducing the overall complexity, however it introduces a draw-
back as the user looses the context of interconnectivity to the network in general.
This becomes even more difficult as many network elements are often multiplied
several times in different pathways as a result of a division process. An example of
such an approach is the Web-interface of KEGG [61], which allows the navigation
from one pathway image to another connected pathway image by clicking on a link
(Figure 2.2). In this way, following the connections to elements in other pathways
is rather hard.

KGML-ED [71] is one of the approaches that tries to improve the navigation
between pathways by showing an overview of the top nodes of the hierarchy with
an option to zoom into such nodes or by extending the pathway by connected path-
ways within the same frame. This approach produced the same drawback as the
previous one. Namely, too much information (e. g., many or all pathways at once)
was shown which affected the readability, or the connections to other pathways
were lost or difficult to follow. Another tool that follows a similar approach was
presented by Bourqui et al. [15]: MetaViz manages to visualize the complete net-
work and specific pathways at the same time without a need to multiply the network
nodes. Networks are drawn using one algorithm, while focus pathways are drawn
using different drawing algorithms. These sets of focus pathways are drawn inde-
pendently adhering to domain specific requirements and criteria. Additionally, the
links between these pathways are visualized using an orthogonal graph drawing al-
gorithm. It produces long orthogonal edges, which are hard to follow, especially in
case of large networks. Therefore, users often need to zoom-in into one or more of
the focused pathways to see more details. This brings back the issue of loosing the
context of interconnections. To the best of our knowledge, biologists usually have
no problem with node redundancies. Recognizing “their” pathways (based on the
graph embedding of that pathway) during the exploration process is more interesting
to them.

Node duplicates are also used in other domains beside biochemistry. One exam-
ple of such a use in context of clustered social networks is presented by Henry et
al. [43]. The aim of duplicates was to avoid clutter in their graph visualization. The
authors discuss different cases when and how to duplicate the nodes. A controlled
experiment helped them in defining general guidelines for node duplications in clus-
tered graph representations. An example of such a guideline is that the interactive
highlighting of duplicated nodes and links is desirable. This particular guideline is
important to our work too, and its implementation can be found later in this thesis.
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Figure 2.2: The diagram shows an example of a KEGG reference pathway. The
image represents the Streptomycin biosynthesis – Reference pathway [1].
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Current approaches are mostly based on a close interdisciplinary collaboration
between visualization or graph drawing researchers and domain experts, such as in
biochemistry. Researchers from life sciences have a set of specific criteria in the
way the networks should be drawn. A good reference about it could be found in
the work of Saraiya et al. [99]. The authors performed a series of interviews with
domain experts and discussed the findings related to the requirements for biochem-
ical network visualization. The results of the interviews revealed five critical needs
that are important to researchers working on pathway analysis and are still not fully
realized by existing visualization tools. We will later present a tool that realizes a
2D solution for the need to overview “multiple pathways simultaneously with inter-
connections between them” [80]. Specifically, “incoming and outgoing visual links
could enable users to view how other pathways can potentially affect or be affected
by the focus pathway at each node. In a densely populated pathway, it is important
to be able to analyze connectivity between components” [99]. The work of Albrecht
et al. [3, 4] provides a good overview on open problems and challenges in biological
network visualization.

A similar project is the Caleydo framework [79] that extends the KEGG path-
ways drawings into 2.5D, comparable to the work of Kerren [65] or Brandes et
al. [16], combined with brushing, highlighting, focus + context, and detail on de-
mand. In this way, it supports the interactive exploration and navigation between
several interconnected components by using the third dimension. There are some
drawbacks of this approach. One drawback is the restricted number of connected
pathways that can be displayed because of the bucket-like visualization setup. An-
other one is the unavoidable clutter/overlaps in 3D if a node-link metaphor is used.

A grid-based visualization approach for metabolic networks supported by a Fo-
cus + Context view was recently presented by Rohrschneider et al. [96]. This view
is based on a Table Lens method [92], which provides multiple foci. Together with
the grid-layout, the user’s mental map [81] is also preserved. But even by using
these plethora of interaction and navigation possibilities the cognitive overload is
still high and the approach follows a classical top-down navigation method. Links
to other pathways must be followed successively in case the analyst starts the ex-
ploration from a single node. In this thesis, we present a technique which strives to
improve this situation. Because it is not the focus of this thesis, we do not give a
comprehensive overview of other related tools and approaches and refer to the pa-
pers [4, 96, 45] instead. These articles present an extensive list of related work (not
only focused on pathway interconnections) and consider navigation and interaction
techniques as crucial in network visualization.

Ontologies and Clusterings
Biology and medicine researchers use ontologies to structure biological knowledge.
Ontologies can be defined as a set of controlled, relational vocabularies of terms
used in a specific area of science. In life sciences, ontologies are used to struc-
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ture and standardize biological knowledge to support data integration and infor-
mation exchange. Examples are Gene Ontology (GO – to standardize gene and
gene product attributes across species), Molecular Interactions Ontology (PSI MI
– to standardize molecular interaction and proteomics data), and Systems Biology
Ontology (SBO – to standardize terms commonly used in computational modeling
and systems biology). Many of these ontologies are accessible through the Ontol-
ogy Lookup Service (OLS) [22], which provides a web service to query multiple
ontologies from a single location, providing a unified output format. Often experi-
mental data is analyzed in context of biological ontologies, for example, by means
of enrichment of ontology terms to identify statistically over-represented (inner) on-
tology terms.

In this thesis, we will mainly focus on the Gene Ontology (GO) [36]. GO is
an on-line database that provides a set of structured vocabularies (ontologies) for
the annotation of genes, gene products and sequences. These vocabularies support
a consistent representation of gene products in various databases and describe the
roles and properties of genes or gene products in organisms. Currently, there are
three independent vocabularies (or parts) that are considered by the GO: molecular
function, biological process, and cellular component. Such vocabularies are used by
biologists as guides to answer significant questions, e. g., “if you were searching for
new targets for antibiotics, you might want to find all the gene products that are in-
volved in bacterial protein synthesis, but that have significantly different sequences
or structures from those in humans” [36]. An important feature of the GO is that
new discoveries are made daily. These new findings change our understanding of
roles and properties of gene or gene products, thus making GO a dynamic data set.
The GO terms are interconnected and form a directed acyclic graph (DAG) [6, 114].

Large-scale experimental data in life sciences are often analyzed and visualized
using hierarchical clustering [27]. It is a statistical method for finding relatively
homogeneous clusters, based on two steps: (1) computing a distance matrix con-
taining the pair-wise distances between the biological objects (such as genes) and
(2) a hierarchical clustering algorithm. Hierarchical clustering algorithms can work
in two ways (top-down or bottom-up). They will either partition clusters, starting
from the complete data set, or recursively join the two closest clusters. After each
clustering step, a distance matrix between the new clusters and the other clusters is
recalculated.

The analysis of molecular-biological data obtained by high-throughput tech-
nologies is often supported by ontologies and hierarchical clustering. These high-
throughput technologies produce data constantly. This enables the investigation of
different biological data or systems under different conditions and at different de-
velopmental stages, or even with different genetic background.

The main issue with ontologies and hierarchical clustering is the size of the data.
Ontologies result in huge data sets with a DAG-like structure, while hierarchical
clusterings usually produce large tree-like structures. Often both views are desired
to support analyses of this data: representing a data set (such as the expression
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levels of the genes in an organism) in the context of an ontology (such as the Gene
Ontology) and in the context of a clustering of the data (such as an hierarchical
clustering). There are many approaches that deal with data that are part of two trees
or hierarchies or compare two trees. However to our knowledge, no solution exists
for visualizing hierarchical clustering (tree) and an ontology (DAG) of the same
dataset in one visualization system.

Next, we will discuss a specific framework that deals with visualization of bio-
logical networks. We focus on this system as it is central to the development of one
of our ideas presented in this thesis.

The VANTED System
VANTED [54, 72] is a flexible system that helps researchers analyze and visualize
experimental data in the context of biological networks or pathways. It is based on
the extensible graph library and editor Gravisto [8] for graph drawing algorithms.
What makes VANTED flexible is that it provides a mechanism for easy extension by
plugins. Several plugins were developed, such as a plugin to compute and visualize
fluxes in metabolism or to connect databases to VANTED.

Figure 2.3: Original navigation approach between pathways provided by VANTED.
Shown is a metabolic pathway with circles representing metabolites and rectangles
representing reactions. The large rectangles with rounded corners represent links to
other pathways. The background coloring to show different cell compartments was
switched off to facilitate the identification of the different graphical elements by the
reader.
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Figure 2.3 shows the standard way of navigating between interconnected hierar-
chical pathways in VANTED. A pathway hierarchy is displayed on the right hand
side in which the oxidative phosphorylation pathway is selected and shown on the
left. This pathway is a child of the energy metabolism super-pathway and relatively
small. One node (fumarate) within the pathway drawing is in the focus of the user.
All links to other pathway nodes connected to fumarate can be shown with a mouse
click. In this particular example, we may notice two rounded rectangles connected
to the focused node using dashed gray lines. Each rounded rectangle represents
another pathway. If the user wants to navigate to the Aspargine Biosynthesis (part
of the amino acid metabolism), he/she has to click on the corresponding rounded
rectangle to open a new window with the target pathway displayed. All subsequent
navigation is performed in similar manner.

Due to the unavoidable clutter if the pathways are large and many nodes are
selected, it is easy to understand that this navigation strategy should be improved.
Additionally, at this stage, it is not possible to get insight into the overall distribution
of the links as well as get an overview of all the pathways linked to the currently
selected node(s).

2.4 Summary
In this chapter, we briefly presented basic concepts of graph drawing and visual-
ization of networks in context of Information Visualization. We discussed some of
the visualization and interaction techniques that are related to the work presented
in this thesis. A brief overview on different types of biological networks is dis-
cussed followed by the current approaches to visualize such networks. We conclude
this chapter with description of the VANTED system, which is crucial to the im-
plementation of one of our approaches presented in Chapter 4. In the next chapter,
we will discuss and classify various techniques that deal with multivariate network
visualization.
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Chapter 3

State of the Art of Multivariate
Network Visualization

It is known that the amount of data produced in the world is presenting a huge
challenge in understanding and extracting knowledge from it. A lot of these data
are of relational nature, such as social networks, biochemical pathways, or software
engineering data. They can be represented using graph metaphors: graphs help us
to understand the structure and topology of relational data. However, these graphs
have usually a huge amount of additional attributes related to nodes, edges or even
attributes of clusters. The challenge is to show these attributes in context of the
underlying graph topology. This problem is becoming more and more important as
a number of researchers need solutions for their daily work.

In this chapter, we present a brief survey on multivariate network visualization
tools and approaches. We classify the approaches into several categories based on
the used visualization techniques and discuss the issues of domain and attribute
related issues. We provide a table listing a number of approaches/tools that gives
insight on the technique, nature of attributes and the domain the tool is primary used
for.

3.1 Multivariate Networks

Multivariate Data
Before describing what a Multivariate Network is, we will make a brief discus-
sion about Multivariate Data Visualization as most of the visualization techniques
can be reused for Multivariate Networks. The term multivariate data in Informa-
tion Visualization is used to describe data that contain more than three attributes or
variables [109].

There exist a considerable number of techniques to visualize multivariate data.
They are generally grouped into four approaches: projection-based, coordinate axis-
based, icon-based and pixel-based. Projection-based approaches project different
attribute values in a two- or three-dimensional coordinate system usually in small-
multiples fashion, such as Scatter Plot Matrices [41] (cp. Figure 3.1 – B). Coordi-
nate axis-based approaches map the attribute values into different coordinate axes.
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Figure 3.1: Samples of multivariate data visualization techniques. The image
marked with label A, is made with a tool presented by Kerren et al. [67, 68] based
in the original work of Pinzger et al. [87]

Examples of such approaches are Parallel Coordinates (cp. Figure 3.1 – C) or Star
Plots diagrams (cp. Figure 3.1 – A). Icon-based approaches use glyphs to visualize
the data. One of the textbook examples of this approach are Chernoff Faces [21].
And last but not least, pixel-based approaches map attribute values to single pixel
(cp. Figure 3.1 – D) [109] .

Various interaction techniques provide additional help for coping with multivari-
ate data. For instance, different visual filtering approaches can reduce clutter. The
use of focus + context techniques such as different distortion techniques can help to
explore the desired data objects while keeping the overall context of a dataset. More
details about these issues and the definition and use of relational data, i.e., networks
and graphs were discussed in the previous chapter. Therefore, we continue with the
description of multivariate attributes in networks in the following section.

Attributes in Networks
Huge networks present a great challenge to be visualized even without any other
additional information. However, real life networks carry additional attributes be-
longing to the data elements themselves, attributes describing the relation between
the data elements and/or attributes related to a cluster of elements.

Let us take an example from the social networking. Each person can be modeled
as a node, and the friendship between persons as an edge. Each node (person) has a
number of different attributes, such as Name, Age, Gender, Interests, etc. An edge
can also have additional attributes, such as family relation (mother, father, sibling,
etc.) or a friendship weight (could be calculated based on the activities such as
chatting or sharing same interests between two persons). When dealing with huge
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networks, some sort of clustering may be introduced. It is often important to know
the average values of the elements belonging to a cluster. Additionally, some new
attributes can appear as a clustering result.

In many fields, such as in Biology or Social Network Analysis (SNA), differ-
ent algorithms are used to analyze the networks. These algorithms may produce
additional data, such as network centrality metrics. These data can be regarded in
the same way as node, edge or cluster attributes and visualized using similar ap-
proaches. However, some tools are designed to specifically cope with these types of
data [25, 70].

3.2 Visualization Approaches
We have grouped several visualization approaches with respect to the way the visu-
alization is made.

(A) Allow use of standard graph drawing algorithms (maximize the perception of
network topology)

A.1 Attributes visualized separately from the network visualization

A.2 Attributes visualized together with the network visualization

(B) Use attribute values for graph drawing (hinder the perception of network topol-
ogy)

B.1 Nodes are positioned in specific non-overlapping regions

B.2 Nodes are positioned in specific positions and/or regions

The top level criteria (A and B) for creating the groups focus on the ability of
the approaches to show the underlying graph topology. Some approaches allow
the use of standard graph drawing algorithms in order to optimize the perception
of topology (satisfying Criterion (A)), while other approaches affect the placement
of network elements to emphasize the attribute values (satisfying Criterion (B)),
which in effect lowers the perception of the network topology. Criterion (A) has
two sub-criteria, which are related to the way the attributes are visualized; whether
the attributes are visualized in the same view with the underlying network (A.1)
or in distinct views (A.2) of which at least one has to satisfy the (A) criterion.
The (B) criterion has also two sub-criteria, which specify the way the network at-
tributes influence the network topology: whether the nodes are placed in specific
non-overlapping regions (B.1) or not (B.2). There are also systems that use a com-
bination of several approaches that satisfy more criteria as well as approaches that
could be placed in each of the sub-criteria. In the following, we will present and
discuss the groups we derived based on these criteria.
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Figure 3.2: Classification of approaches. The left blue circle (A) represents the
approaches that are able to represent the underlying network topology, in contrast
to the right blue circle (B).

Multiple Coordinated Views use a combination of two or more combined views
to represent the network and the multivariate data. This approach is also mostly
found in combination with others creating a Hybrid Approach. Integrated Ap-
proaches visualize the network and the underlying multivariate data in a single view.
Semantic Substrates position the nodes into separate non-overlapping areas based on
the node attributes. Attribute Driven Topology uses a similar idea to Semantic Sub-
strates, but instead of placing nodes to non-overlapping regions, it just affects the
positioning of the nodes according to attribute values.

We have done an analysis of strengths and weaknesses of each approach sepa-
rately which is explained in more details later in the chapter. Table 3.1 presents dif-
ferent articles and tools we reviewed, while Figure 3.2 shows how these approaches
are used to classify them in respect to the criteria.

Multiple Coordinated Views

The combination of several views into a single system presents one possible solution
to the underlying problem. In such cases, the use of brushing and similar techniques
is necessary as the users should experience a seamless interaction among different
views. Changes on a particular object in one view should be reflected in all other
views, unless the user specifically requires to avoid that. There is a clear advantage
using this approach as one may choose the most powerful visualization techniques
for each specific view and data set [38, 94]. However, due to the spatial separation of
the visual elements, the displayed data will be split in multiple views. In addition,
this might introduce a scalability problem with large networks as the objects will
most likely be represented in more than one view, thus consuming additional space.
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Multivariate Graph
Drawing using
PCV [105]

General • •

Network
Lens[56]

General • • •

DBE Information
System [13]

Metabolic
Networks

• •

GraphDice [10] Social
Networks

• • • •

GeoSOM [131] General • •
Jigsaw [111] Document

Analysis
• •

RelVis [87] Software • •
NVSS 1.0 [107] General • • •
PivotGraph [126] General • •
Pretorius et al. [91] General • • • •
MobiVis [106] Mobile

data
• • • • • •

Dynamic Graph
Analysis [97]

Metabolic
Pathways

• • • • • •

Table 3.1: Multivariate Approaches. The table shows information about different
approaches for visualizing multivariate networks. The Domain is shown through its
column. Heterogeneous Data column shows whether the tool visualizes only hetero-
geneous attributes. There are three sub-columns under Attributes column denoting
what kind of attributes are visualized by the corresponding tool in respect to the net-
work elements. Approaches column specifies to what kind of approach discussed
in this chapter the tool belongs to. The sub-column Integrated is divided into three
more columns stating to which part of the network has the attributes visualization
been embedded to.
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The work of Shanon et al. [105] presents one example of this idea in the network
visualization domain. They use two distinct views: one view shows a parallel coor-
dinate approach [52], and the other view displays a node-link drawing of a graph.
Their tool offers a variety of visualization and interaction techniques, while main-
taining a coordination between the views through brushing and linking [109].

Another example of multiple coordinated views is Jigsaw, a tool for document
analysis [111]. Users can model views of relational data of different documents
and entities as a graph representation while using additional views to provide more
information about the network. Although the tool is primarily designed to visually
explore the relationships among different elements of data, it provides possibilities
to visualize additional data. For instance, users can view the text of a document in a
separate view, or they can view time-dependent data in a special calendar view. The
tool uses the multiple coordinated metaphor so extensively that the authors propose
that Jigsaw should be ideally used in multiple monitor environments or on large,
high-resolution monitors.

Integrated Approaches
Contrary to the first approach, integrated approaches provide a combined visual-
ization, where the underlying graph and its attribute data are presented in a single
view. ”Integrated views can save space on a display and may decrease the time a
user needs to find out relations; all data is displayed in one place.” [38]. As ex-
plained earlier, attributes can belong to nodes, edges and/or clusters. Based on the
data set and requirements, attributes can be visually integrated accordingly.

Integration of up to four or five attributes in a node is rather straightforward, of
course depending on the data being visualized. We can use labels for textual at-
tribute and other different features, such as size, shape, color and stroke for other
attributes. As the number of attributes grows, we face more problems as the num-
ber of visual features comes to an end. We might need to introduce new visual
metaphors to cope with the increasing number of attributes.

One example of integrating node attributes is described in the work of Borisjuk et
al. [13] on the visualization of experimental data in relation of a metabolic network.
Instead of representing nodes as simple circles or rectangles, small diagrams have
been embedded inside them to represent experimental data that is related to the
regarded node. The diagrams were usually simple projection based visualizations
of multivariate data such as barcharts (cp. Figure 3.3). This approach provides a
view to all available information, but with additional costs. The size of the nodes
in the graph needed to be enlarged in order to facilitate the employment and the
readability of the diagrams. This issue may affect the readability of the network,
especially if the number of nodes and attributes is high resulting in possible clutter
and overlaps [66]. Thus, it does not scale well.

The work of Pinzger et al. [87] is another example of integrating well known
multivariate data visualization techniques into nodes. The authors use an improved
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Figure 3.3: An example of Integrated Approach shows experimental data integrated
into a biological network. The picture was taken from [13] showing the relative
levels of different “Vicia narbonensis” lines integrated into the glycosis and citric
acid cycle. “Image courtesy of IPK Gatersleben.”
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version of so called Kiviat diagrams to represent different source code metric values
in a number of software releases in the context of a network. This tool has the same
advantages and disadvantages as the previous example.

However, the problem of space usage and clutter introduced by this approach
can be avoided by using different focus + context techniques. An example of such
an approach visualizes the attributes inside nodes using a fisheye lens. Users can
choose between several different visual representations and make virtually unlim-
ited number of combinations of desired attributes to be visualized [56].

In general, the examples explained in this subsection are instances of embedding
glyphs into networks. They are graphical entities that convey multiple data values
via visual attributes, such as shape, color, position, or size [123].

Semantic Substrates
Semantic substrates were introduced in order to avoid clutter in multivariate net-
work visualizations. The main idea is that substrates ”are non-overlapping regions
in which node placement is based on node attributes” [107]. The nodes were placed
in specific substrates (regions) based on specific semantics derived from the nodes’
attributes. Additionally, Shneiderman and Aris used sliders to control the edge visi-
bility which ensured the comprehensibility of the edges end nodes.

PivotGraph [126] shows the relationship between (node) attributes and edges by
using a grid-layout. Nodes and edges that have identical values for specific attributes
are aggregated. The size of the resulting nodes and edges represent the degree of
aggregation while the color is used to code the attributes. Another approach was
presented by Pretorius and van Wijk [91]. They arrange edge labels in a list located
in the center of the view and place rectangular regions containing source and target
nodes at each side. These regions are recursively partitioned according to the node
attributes resulting in specific positioning of nodes based on the created hierarchy.
The nodes are then connected via straight lines with corresponding edge labels. One
conceptual drawback of these approaches is that the underlying graph topology is
not (completely) visible.

Attribute Driven Topology
The graph layout is an important part of network visualization and analyzes, and it
is desirable to have a good graph layout algorithm when doing any kind of network
visualization. In most of the cases of visualizing multivariate networks, a sufficient
layout algorithm would reduce the scalability problem, which is one of the ongoing
challenges in Information Visualization [78]. In cases where network topology is
not the key component in the analyses, one could use the network layout to present
insight about multivariate data belonging to network elements. This approach is
somewhat similar to semantic substrates, however it does not necessary place the
nodes into specific regions. It uses some calculations based on the nodes attribute
to ”steer” the placement of the node in the graph.
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Figure 3.4: An hourly ring of calls shows the frequency of calls every hour. The
picture was taken from [106] with permission of the authors.

One example of such a tool is GraphDice [10] which extends the ScatterDice [28]
tool used to visualize multidimensional data through multiple scatterplots. The sys-
tem uses multiple scatterplots made of various node, edge or computed attributes to
lay out the graph. Each point in the scatterplot represents a data object and a line
represents the edge of the object. Users can browse the data by selecting a combina-
tion of various attributes for the horizontal and vertical axis and see the outcome of
the graph layout. This helps noticing different relations between attributes as well
as identifying potential clusters.

Another example for such approaches uses spherical Self-Organizing Maps (SO-
Ms) to lay out the graph on the surface of a sphere. A SOM is an artificial neural
network used as dimensionality reduction technique [75]. The high-dimensional
node attributes are used to calculate the projection of nodes in a 2D plane. In this
case, the surface of the sphere is used to avoid the use of boundaries as they can not
show the relationships between data placed to the borders of the 2D plane [131].

Hybrid Approaches
The approaches belonging to this category combine at least two of the discussed
techniques. Hybrid Approaches are designed to harvest the benefits of other ap-
proaches. The most common combinations are multiple coordinated views with any
of the integrated approaches.

For instance MobiVis [106], a tool for visualizing social-spatial-temporal mo-
bile data uses a time chart to show temporal data in one view and the underlying
network as a separate view as node-link diagram. It can additionally show data
using "Behavior Rings" that are pie-shaped wedges placed around the nodes (Fig-
ure 3.4). The size of the wedge is mapped to the value of the attribute. The wedges
are placed around the node to allow the space inside the node to be used for mapping
additional attributes if necessary.
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Another hybrid approach integrates additional attributes of a biological network
inside the nodes and edges [97]. At the same time, it uses other visualization
metaphors creating multiple coordinated views to show the time related data of the
network. Users can explore the evolution of the multivariate data as well as of the
overall metabolic pathways through series of different interactions.

3.3 Summary
Initially a general multivariate data visualization outside the network visualization
context was discussed briefly, as a number of techniques could be applied directly to
multivariate network visualizations. The approaches were categorized based on the
predefined criteria, which take into account the ability of the approaches to show the
topology and the way the additional network attributes are visualized. This criteria
helped us to define four distinct groups and a fifth hybrid approach.

28



Chapter 4

Interconnected Network
Visualization

In the last few years, methods for the investigation of biological processes, such
as metabolism, the regulation of genes and the interaction of proteins have been of
interest. These processes are typically represented as biological networks. They
are important for an extensive understanding of living beings. For instance, when
modeling a metabolism as biological network, nodes are used to represent metabo-
lites and reactions, and edges connecting metabolites with reactions and reactions
with metabolites represent the ways metabolites can be changed into each other via
particular reactions. As explained in Section 2.3, the state-of-the-art strategy is to
divide a metabolic network into a large set of single (often hierarchically structured)
pathways. When visualizing these pathways, additional exploration and navigation
problems appear, since the user loses the context of the entire network. Identical
complications can emerge in other domains, such as in the visualization of social
networks, communication networks, etc.

In this chapter, a general approach for navigating between interconnected sub-
graphs is presented. We demonstrate the approach in context of biochemical net-
works, respectively in a set of hierarchically structured pathways (groups and sub-
groups of pathways). In contrast to common practice, our visualization approach
enables the researcher to obtain an overview of pathways, which are connected to
the focus pathway via its nodes and edges. This contextual information is provided
by using glyphs, brushing, and topological information of the involved pathways.
Our interactive visualization tool is able to guide the exploration and navigation
process based on this overview. In this way, it can help the analyst to perform the
analysis processes more efficiently. We implemented our approach as plugin for
the VANTED system, as we wanted to test our approach with real data, current
networks and concrete problems. VANTED was originally developed for the visu-
alization and analysis of experimental data in the context of biochemical networks
(cp. Section 2.3).

This chapter is based on the two publications [60, 59]. For background infor-
mation and related work concerning the biological as well as visualization aspects,
please refer to Section 2.3. The underlying VANTED system is briefly discussed in
Section 2.3. The rest of this chapter is organized as follows: the description of our
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novel navigation and exploration approach is given in Section 4.1. Here, we also
provide an overview of limitations and implementation issues. A use-case scenario
is discussed in Section 4.2 followed by a summary.

4.1 Novel Approaches to Guide the Exploration Pro-
cess

For demonstrating our visualization approach, we use the MetaCrop database [39]
that summarizes diverse information about metabolic pathways in crop plants and
allows the automatic export of information for the creation of detailed metabolic
models. MetaCrop can be directly accessed by VANTED and is based on the freely
available Meta-All system [127]. In MetaCrop, metabolites are shown as circular
nodes; proteins (enzymes or transporters) are represented as rectangular nodes. Fig-
ure 4.3 shows a screenshot of our tool. The background coloring in the navigation
window is used to visually represent different cell compartments (different parts
within the cell). Additionally, this allows us to restrict links to substances repre-
sented in multiple pathways to only those cases, where the substance name and the
particular compartment information is matching.

At the time of writing this thesis, our tool fully supports MetaCrop pathways,
containing six groups (Amino Acid Metabolism, Carbohydrate Metabolism, Cofac-
tor Metabolism, Energy Metabolism, Lipid Metabolism, and Nucleotide Metabo-
lism) consisting of 38 pathways in total. Thus, the MetaCrop hierarchy has two
levels only: the first level belongs to the groups (super-pathways) and the second
level represents the corresponding pathways. There are two important aspects re-
lated to this dataset that we used as guide for designing our tool. The first aspect is
the relatively small number of pathways, and the second aspect is their more or less
distinct graph topology which makes these graphs easy to identify by professionals
(depending on the graph layout).

Navigation Glyphs
Initially, we wanted to give insight into the interconnections of each individual el-
ement (node) of the currently focused pathway. We have done this by developing
small navigation glyphs, which are embedded within the network nodes. They show
the links of the specific node to other pathways (cp. Figure 4.1). Our rose-shaped
diagram resembles Nightingale’s rose diagram [85] (see also the DataMeadow [29]
approach). However, our approach is extended to support the representation of the
MetaCrop pathway hierarchy. The work of Shen et al. [106] is also similar. But,
instead of links, “glyph petals” size shows to the value of particular attributes. Simi-
larly, in the work of Elmqvist et al. [30] colored polygons visualize the strength and
direction of causal relationships.
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Figure 4.1: Navigation Glyph. The highlighted sector represents all connected path-
ways belonging to one super-pathway (or pathway group), e.g., Amino Acid Meta-
bolism.

In our approach, the size/length of the “glyph petals” shows if there is a link (to
the same node in another pathway) or not. The color coding represents the pathway
group (Level 1 in the hierarchy). Consider the sample glyph in Figure 4.1 that is
embedded into a particular node in a pathway. This specific node is connected to
five other super-pathways (pathway groups) represented by five different colors. For
color coding the super-pathways, we follow the suggestion of Ware [125, p. 126] for
using a subset of standard colors for nominal data. We have manually highlighted
a part of the glyph in Figure 4.1. The highlighted area gives us insight about the
strength of the connectivity to a specific pathway group (Amino Acid Metabolism in
this case). This area is divided into 12 petals. They represent all pathways belonging
to this group (super-pathway). Six of these petals appear longer/extended. They
represent the six other pathways where this element is found as well, i.e., there are
links to six sub-pathways of the current group in the second level of the hierarchy.
The missing petal (the gap on the lower part of our example) appears if the VANTED
system discovers a pathway group that is completely unreferenced by the currently
considered node.

The original VANTED approach is improved with the help of navigation glyphs
by providing a simple overview of the relationships to connected pathway groups
outgoing from a single node. A right click on a node displays a context menu
with a list of links to all connected pathways to which users can navigate to (cp.
Figure 4.2). The idea is similar to the Bring & Go approach presented by Moscovich
et al. [82], however without link sliding or smooth animations. In VANTED’s case,
a specific window is directly activated after a click on a specific link. This means
that the navigation is analogous to the old approach explained earlier, having similar
disadvantages, such as losing a direct link to the previous pathway window: in
order to return to the previously shown pathway, we need to minimize the newly
opened window and find the first one, or directly access the node that has a link
to it. Moreover, due to missing interactive mapping of the petals to the connected
pathways we have no clear insight into all links of the current pathway.
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Figure 4.2: Embedding of our navigation glyphs into some nodes of a (focus) path-
way. The glyph of the currently selected node is highlighted and magnified by the
system. With a right mouse-click the user is able to open a context menu with a link
list from which they can jump to connected pathways. The target pathway is then
displayed in a new window.

Extended Navigation Approach
Our aim is to overcome the drawbacks of the navigation glyphs and the general
VANTED approach presented earlier by

1. providing an overview of all connected pathways of the current focus path-
way,

2. showing statistical information about the focus pathway’s link distribution,
and

3. facilitating the navigation from nodes in the focus pathway to different target
pathways.

In order to achieve this, we present new visualization and brushing techniques com-
bined with seamless interaction of various parts of the system. These improvements
will make the navigation of different pathways easier and result in a more intuitive
exploration experience. Additionally, we have addressed the need to show more in-
sight into the links from a specific pathway by enabling users to compare the total
number of references to all connected pathways.
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Figure 4.3: Overview of the new VANTED plugin with the navigation window on
the left and the aggregated links view on the right. The background coloring of the
shown focus pathway represents different cell compartments. One node is selected
and its navigation glyph is magnified by the system. The glyph petals are directed
to the surrounding graph icons. Links to other pathways are double-coded by the
longer petals as well as by the highlighted graph icons. The link rose diagram in the
aggregated links view (on the right) is explained in Section 4.1.

Navigation Window Initially, we introduce graph icons, which are minimized
images of pathway drawings. The main idea is to lay out graph icons around the
main view that contains the currently considered focus pathway, see Figure 4.3.
Both together form the navigation window of our VANTED plugin. Navigation has
become a matter of a single mouse click on a specific graph icon. This action would
load the target pathway into the navigation window. Each graph icon’s background
color has been color mapped according to the color coding in the navigation glyph
embedded in the pathway nodes. This makes it easy to distinguish the different
pathway groups of the MetaCrop data set. Our graph icons are conceptually similar
to the approach presented by Auber et al. [7] or to the subtree icons in the SpaceTree
tool [88].

Based on the given graph topology in the graph icons and with additional help of
the aforementioned color coding, users are able to recognize the pathways connected
to the nodes of the focus pathway. As our target dataset is relatively small, users can
directly identify well-known pathways with a recognizable and unique layout, such
as the TCA cycle. The pathway layout can be computed with special algorithms,

33



Chapter 4. Interconnected Network Visualization

which take additional pathway information into account [62, 101, 102], or the layout
is given (e.g., by information in the database). If certain pathway layouts are similar
and hard to identify, a coloring of the groups can help. However, this will not be
helpful in case both pathways belong to the same group. Therefore, the user can
use tooltips for precise information about the pathways showing the name of the
pathway and of the pathway group. A mouse-over event of a specific graph icon
will show a tooltip with this information.

The layout of the graph icons is calculated to roughly match the positions of
specific petals within the small navigation glyphs, which in turn provides additional
insight to this existing feature. This layout design was chosen as users already use
the navigation glyph metaphor. So, our new approach complements the old one
aimed at specific pathway nodes as discussed in Subsection 4.1. An alternative to
this would be a simple link list, but that might require scrolling efforts to fit all the
links and does not provide a mapping of the pathways with our navigation glyphs.
We have also implemented an additional visualization view (the aggregated links
view) that uses the same layout and navigation concept and provides an integrated
tool for link aggregation to facilitate the guided interactive exploration. We will
explain this view later in this chapter.

Graph icons enable the navigation through all related pathways in one window,
while providing a good overview of all pathway links. Through a mouse-over, which
will highlight the corresponding graph icon, users can easily access all pathways
linked from an interesting node, cf. Figure 4.4. This interaction supports users to
directly navigate and/or to gain insight into the connectivity of desired pathway
components. Additionally, back and forward buttons may be used to assist the nav-
igation process. These buttons can be found on the left and right upper corner of
the navigation window. They will also highlight a specific graph icon triggered by
a mouse-over action, providing an additional insight into the destination at which
they would arrive in case of clicking the Back- or the Forward-button, respectively.
This feature avoids the need to search for the previous pathway in multiple open
windows and helps to keep track of the navigation processes.

Aggregated Links View Above we described our graph icon approach, which
gives insight about all pathways linked to the current focus pathway. However,
this approach by itself cannot show the frequency a particular target pathway is
being linked from the nodes of the focus pathway. Therefore, the visualization
of pathway interconnectivity frequency (statistical data) is desired. We decided to
adopt a multiple views approach that is a widely used technique to visualize different
kinds of data simultaneously, instead of integrating the visualization into the main
window. One reason for doing this is that we already have glyph icons and graph
icons inside the navigation window. Integrating a third visualization would overload
the view. Another reason is that the multiple coordinated view approach enables us
to choose the most suitable visualization technique for a specific view and data
set [38]. Therefore, we introduce a separate interactive diagram called aggregated
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Figure 4.4: A mouse-over action on a specific node highlights the correlated graph
icons (black framed) around the focus pathway. Note that the shaded black lines are
hand made and are not part of our plugin; they are just drawn to demonstrate the
ordering and layout of the approach.

links view to present this statistical data. The diagram was placed into the upper
right corner in a tab as seen in Figure 4.3. For a detailed view of the aggregated
links view refer to Figure 4.5. We named this interactive diagram link rose, because
it is able to guide the user similarly to a traditional compass rose metaphor, and it
resembles the navigation glyphs used in the focus pathway. It represents statistical
data about all links to other connected pathways in context of the current focus
pathway in comparison to the navigation glyphs that show links of a single specific
pathway node. In this way, it supports users to see patterns of strongly and/or weakly
connected pathways and gives an overview of all outgoing pathway links connected
to the focus pathway.

A tooltip with the name of the corresponding pathway, followed by the number
of nodes linked to that specific pathway appears on mouse-over actions on a rose
petal. The pathway group name in the second text line is also shown in the tooltip.
Thus, a textual dimension of insight into the connectivity of a specific graph to other
pathways is provided. A click on a rose petal, besides highlighting the correspond-
ing petal, has also an effect on other parts of our visualization approach. This means
that all graph nodes referencing the selected pathway are also highlighted in the nav-
igation window, which follows the idea of several coordinated views [94]. This fea-
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Figure 4.5: Link rose diagram. The GS-GOGAT cycle is selected triggering a spe-
cific petal to be shadowed in a more saturated color. A mouse-over action shows the
name of the pathway in the first line of a tooltip, while the number in brackets re-
veals the total number of links from the focus pathway to the selected pathway. The
second line of the tooltip shows the name of the MetaCrop pathway group to which
the selected pathway belongs. Users can instantly notice strongly and/or loosely
connected pathways. The legend below helps in identification of different pathway
groups. The color-coding of the groups is persistent for each specific group, no
matter where we navigate to.

ture enhances the comprehension of interconnections of different graph components
and provides a better overview of the entire network structure by supporting users
to immediately distinguish components connected to a particular pathway. More-
over, if afterwards we navigate to any target pathway, all shared nodes (clones) will
be selected in the target pathway consequently revealing the common components
between these pathways. In Section 4.2, we give a more detailed navigation and ex-
ploration example. Next, we will briefly discuss scalability issues of our approach.
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Figure 4.6: The figure shows the number of links to other pathways (same substance
in other pathways) for the reference pathways of KEGG (“Frequency” means num-
ber of pathways, e.g., there are 10 pathways which have connections to 42 pathways
each). The pathway Inositol phosphate metabolism has the largest number of links,
with substances of this pathway found in 81 other pathways.

Scalability
As mentioned earlier in this chapter, our approach is focused on the MetaCrop
database consisted of 38 pathways, and it scales well with this particular data set.
Size and resolution of the screen as well as the number of pathway links being vi-
sualized undoubtedly have an effect on the scalability of the graph icons discussed
in Section 4.1. Theoretically, if the number of pathways is large enough and/or the
display size and resolution decreases, our graph icons would look so small that it
would be hard to notice anything on them. Several approaches could be used to
alleviate this problem. We could reduce the number of displayed graph icons by
introducing some prioritization features and/or by providing more filtering. At the
current state, users can decide not to download the complete dataset, thus making a
kind of pre-filtering step. However, enabling users to filter out uninteresting path-
way groups, such as Amino Acid Metabolism by simply deselecting them could be
useful. In this case, our tool could delete all target graph icons belonging to the
deselected pathway group from the current view.
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Arranging a fixed rectangular block for each pathway group around the target
pathway is another way to address the problem of many pathway links. We could
integrate graph icons of different sizes within this block, following a semantic fish-
eye metaphor. The size could be proportional to the number of matching nodes
between the individual target pathways and the focus pathway. However, we do not
need such techniques at the moment as described in the following.

We can demonstrate the scalability of our approach by using a larger data set
with our tool. The KEGG [61] dataset contains the largest collection of path-
ways and also both signaling and metabolic pathways. Therefore, we have chosen
KEGG focusing on substances (the most commonly shared elements between dif-
ferent pathways). Our analysis showed that most of the pathways (about 95%) have
less than 62 links to other pathways in practical analysis sessions, as shown in Fig-
ure 4.6. These findings prove that our approach scales without difficulties for KEGG
in the majority of the cases. A pathway with 81 links (extreme case in Figure 4.6)
was loaded on a laptop with a screen resolution of 1280x800 pixels. Although the
individual nodes and edges in some of the graph icons were less distinguishable,
we found that the graph icons scale even in such extreme cases. We do not expect
any scalability problems for applications in biology as nowadays standard office
displays have even larger resolutions. This also holds for the number of nodes and
edges: a typically analyzed (focus) pathway contains at most a few hundred nodes
and edges, which can be easily drawn and interactively displayed by the VANTED
system.

Although our approach copes relatively well with the interconnectivity of the
KEGG dataset, the mapping of KEGG hierarchies/groups is not fully implemented
at the moment. There are two potential limitations: deeper hierarchies (i. e., more
levels) and/or broader hierarchies (i. e., many different groups). In a perceptual
context, the fact that each pathway group has a fixed position around the navigation
window is regarded as advantage. Unfortunately, this is not sufficient when dealing
with deeper hierarchies. However, in the future work section (Section 7.2) we will
discuss possible solutions to this problem. Next we will discuss implementation and
performance issues.

Implementation and Performance
The VANTED system supports extensions by implementing different plugins as sep-
arate projects. This mechanism allows a great deal of flexibility in the implemen-
tation process and possibilities for building various improvements as well as the
embedding of new (visualization) techniques or tools. Users of the VANTED sys-
tem are able to customize the functionality according to their needs by downloading
and using the desired plugins. Our current visualization tool is separated from the
original VANTED core implementation as an individual package, i.e., a JAR file
that can be imported into the main application as a plugin. A special loading dia-
log is available by VANTED in order to enable the integration of different plugins.
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Thus, users only need to download and import the plugins through a specific form
in the VANTED system. Our plugin has been added to the list of official VANTED
plugins recently.

Even if the VANTED system offers access for various core method calls through
its plugin mechanism, some interventions on VANTED’s core libraries were neces-
sary in order to implement all our desired features. More knowledge of the core
VANTED source code was required for the changes in the main view of the navi-
gation window (i.e., where the drawing of the focus pathway is located). VANTED
handles the graph layout in the main view together with its background coloring
and the navigation glyphs by itself (Figure 4.1). We had to add several frames in
order to lay out the small graph icons around the main view. We used simple buttons
for representing the graph icons. Methods, such as scaling or changing the back-
ground color, which allow the small graph icons to be embedded into the buttons
were provided by VANTED. The implementation was simplified considerably by
this feature. It speared us of the need to compute a layout of the embedded (target)
pathways. Additionally, this approach helped us to effortlessly keep a consistent
visual appearance of the specific graphs, whether they are focused in the main view
or shown as a graph icon around the main view.

As explained earlier, VANTED also supports a relatively easy access to various
data structures and methods to store and retrieve the data as well as their relations
to each other. Therefore, we made use of such facilities whenever we needed them.
For instance, the implementation of the navigation features was simply done via
action events of already existing VANTED methods. Brushing and different color
codings were implemented using similar resources. Although the link rose diagram
(Figure 4.5) was created in a separate view, it was created mostly using existing
VANTED resources besides the drawing algorithm, especially its seamless integra-
tion into other parts of the system. The visualization of navigation glyphs (standard
and enlarged) and the link rose diagram were implemented straightforwardly and
are not based on any specific algorithms.

A Dell Latitude E6400 laptop with a 2.53 GHz Intel Core 2 Duo processor and
3GB of RAM running Windows XP was useed to test our VANTED plugin. The
size/number of the desired pathways and the Internet connection speed dictate the
time to download the dataset. Users are able to load a focus pathway into the navi-
gation window in 1-2 seconds in worst case once all pathways are completely down-
loaded. This includes the computation of the link connections to other pathways and
the generation of the aggregated links view. In case the focus pathway is strongly
connected (40-50 links) to target pathways, it might take at most additional 2-3 sec-
onds to generate the graph icons. We estimate that most interactions will occur
immediately based on the connections of the KEGG data set, shown in Figure 4.6.
Worst case situations occur within the unit task level [19].
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4.2 Use-Case Scenario

In this section, we will present the way our plugin is used. Usually, users download
the whole MetaCrop data set or the pathways they are interested in. If the number
of pathways being explored increases, the navigation and exploration process gets
more complicated in standard visualization approaches. At the same time, the con-
textual information about the interconnectivity of various components is lost due to
the reasons explained in previous sections of the chapter.

Users will be able to gain insight into the interconnectivity immediately after
activating our plugin. The graph icons arranged around the focus pathway provide
an overview of the overall connectivity of the focus pathway (cf. Figure 4.3) at the
same time serving as links to particular pathways as well. More specific informa-
tion about the frequency of the connections to all target pathways is provided by our
aggregated links view. These views together with various interaction and brushing
techniques will guide the users to interactively explore the pathways. If a partic-
ular petal of the link rose is considerably long compared to the others, they might
conclude that the corresponding pathway shares a considerable amount of compo-
nents with the focus pathway currently displayed in the navigation window. We will
explain the navigation process by means of Figure 4.7.

Let us assume that our user has navigated to the Pentose phosphate pathway.
He/she notices that the link rose has a petal that is longer than the others (cp. the
upper part of the figure). He/she discovers that the name of the pathway is Calvin
cycle and that there are 16 links to that particular pathway after a mouse-over event.
All the nodes referencing that pathway will be selected after he/she click on the rose
petal. This strong interconnection between Carbohydrate Metabolism (to which
Pentose phosphate pathway belongs to) and Energy Metabolism (to which Calvin
cycle belongs to) can be further investigated by selecting the Calvin cycle.

The user navigates to the desired target pathway by clicking the corresponding
graph icon (see the bottom part of Figure 4.7). Previously selected nodes will remain
selected if they exist in the new navigated pathway. Our user will notice that several
nodes in the Calvin cycle are now selected. This example shows that the plugin
makes it rather easy to distinguish the connectivity context of different pathways
and supports the navigation between them.

Another investigation could start with the Sucrose breakdown pathway (mono-
cots.). Again, the link rose has a petal that is much longer than the others. The user
discovers that the name of the pathway is Sucrose breakdown pathway (dicots.) and
that there are 54 links to that particular pathway, after a mouse-over event. All the
nodes referencing that pathway are selected by clicking on the rose petal. Only three
nodes are not selected in this case, which clearly shows that this pathway is strongly
interconnected with the selected one. After navigating to the desired target pathway
Sucrose breakdown pathway (dicots.) by clicking the specific graph icon, a biolo-

40



4.2. Use-Case Scenario

Figure 4.7: Navigation between two pathways. The selection of the nodes is per-
sistent even when navigating in the new pathway. A feature that helps to discover
shared components.
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gist will immediately recognize that he/she is navigating in our sample through the
same metabolic pathway. In this case, it shows the differences between an important
pathway in monocotyledons (monocots) and dicotylodons (dicots).

Feedback from Biologists

The plugin was discussed in three user sessions with four domain experts. These
experts are biochemists and biologists who are familiar with the VANTED system.
They are used to work with metabolic pathways and pathway databases such as
MetaCrop and KEGG. As they used VANTED for their work, only a short introduc-
tion (less than five minutes) about the navigation idea and the usage of the plugin
was made. Afterwards, the experts were asked to work with the plugin to explore
the metabolic pathways stored in the MetaCrop system and had to report positive
and negative aspects.

Overall, they provided a very positive feedback. The navigation through path-
ways was described as very helpful and intuitive, even as “cool”. They consider
the use of glyph size and colors as appropriate and the speed of navigation (e. g.,
replacement of one pathway by the next one) mostly as fast enough. The interac-
tion between the the pathway and link rose was considered very useful for selecting
nodes occurring in another pathway.

However, the domain experts had several suggestions also. One user would pre-
fer to have all other pathways (also currently not connected ones) as graph icons
placed around the current pathway. The majority liked the currently implemented
concept of presenting only those pathways as graph icons which are connected to the
current pathway of interest. Some users recommended to include the name of the
pathway in the graph icon (currently the name is only shown after moving the mouse
over the icon), even though they are familiar with the MetaCrop pathways and had
no problem to navigate to specific pathways (graph icons). Finally, one user rec-
ommended optionally restricting linkage of substances and avoiding co-substances
(e. g., ATP, H2O). This would considerably reduce the number of interconnected
pathways.

The users found our method to navigate through pathways very helpful. How-
ever, they recommended additional functionality to make it more useful for their
work such as the ability to map measured data onto nodes or to see changes in
fluxes over reactions. It should be noted that these aspects are actually supported by
the VANTED system (e. g., fluxes can be represented by different edge width and
additional data such as metabolomics data by additional coloring of nodes or includ-
ing of diagrams into nodes) and are already used by some of the experts for their
data analysis. Such functionalities are already possible with our plugin, however, as
it is not the focus of this study, we did not extend the discussion with the users into
this direction.
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4.3 Summary
In this chapter we presented a solution to guide the navigation and exploration pro-
cess of interconnected pathway visualization and discussed it in the context of bio-
chemical networks. The analyst can obtain an overview of connected pathways
while they are working within the currently focused pathway by using our plugin.
Although the problem may appear simple, it is still not sufficiently solved in existing
visualization tools.

Our main contribution is the development of new and intuitive visualization and
interaction techniques to guide the domain expert during the exploration and naviga-
tion process and integrate it into a complex system used in practice. To achieve our
goal of providing the analyst with more meaningful contextual information in hier-
archically structured biochemical pathways, we use well-known techniques such as
glyphs [122, 123], brushing [109], and topological information of the target path-
ways (realized by the graph icons). We published our plugin, called GLIEP (Glyph-
based LInk Exploration of Pathways), on SourceForge [58], where users can easily
download it. Programmers can use our source code for further improvements or for
adding additional features. Additionally, GLIEP is now part of the official VANTED
plugin list.

Here we focused on enabling navigation and enhancing perception of intercon-
nectivity between different subnetworks belonging to one bigger network. In the
next chapter, we will discuss issues of showing interconnections of two conceptu-
ally different, but related networks.
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Visual Analysis of Different Types of
Networks in Biology

The study of high throughput data such as transcriptomics and metabolomics data
are important in biology and medicine. The analysis of these data is done usually by
using tools such as ontologies and hierarchical clustering. Statistically overrepre-
sented ontology terms are identified by enriching the ontology terms in data, giving
an overview into important functional modules or biological processes. In order to
find relatively homogeneous clusters of experimental data points, hierarchical clus-
tering is used as a standard method to analyze the data. These two methods are
usually considered separately, although they focus on the same data set. Therefore,
a combined view is desired, namely visualizing a large data set in the context of an
ontology under consideration of a clustering of the data.

In this chapter, we present a new method for the task of combining the afore-
mentioned views. It is based on the following publications [57, 69]. The rest of
the chapter is structured as follows: the properties of the input data are discussed
in Section 5.1. We present our visualization approach of combining Gene Ontol-
ogy visualization and cluster tree visualization in Section 5.2. Section 5.3 deals
with scalability issues of the proposed method. Finally, we summarize our work in
Section 5.4.

5.1 Properties of the Input Data
We focus on a transcriptomics data set representing different expression levels of
genes in E. coli. As mentioned in Section 2.3, the Gene Ontology (GO) forms a
directed acyclic graph (DAG) [6, 114]. This large DAG contains more than 34,000
inner nodes and a large amount of leaf nodes depending on the organism being ex-
amined. Only genes which are significantly up- or down-regulated were considered.
This resulted in a reduction of the initial data set to 7,312 genes. Beside the 7,312
genes, we also consider those nodes which are on paths between the GO root node
and leaf nodes (genes), resulting in the final GO data set made of 10,042 nodes
and 24,155 edges. In more detail, the final outcome of the reduction is a DAG
consisted of 1 root, 2,729 (non-terminal) nodes and 7,312 other nodes. Note that
not all these nodes are leaves of the GO as some of them are unconnected to the
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rest of the DAG. This happens because not all the genes are assigned to GO terms
and therefore do not form a part of the GO DAG. The hierarchical clustering has
been computed based on the distance of the expression levels of genes at different
time points. A binary tree (called Cluster Tree in the following) with 14,623 nodes
and 14,622 edges was produced after the cluster analysis of our data. It has 7,311
(non-terminal) nodes and 7,312 leaves (terminal nodes).

From a developer’s point of view, both of these graphs appear independent from
each other. They are two distinct types of graphs (a tree and a DAG) that have
different nodes and edge IDs. However, they do “share” a specific part of nodes
among each other since they have the same label for terminal nodes (genes). Using
the information provided by the gene labels, we can map these two data sets as
presented in Figure 5.1. For additional exploration of the relations between the GO
DAG and the Cluster Tree, a corresponding subtree of the Cluster Tree should be
calculated and shown from any interactively selected single node in the GO (cp.
Figure 5.7).

Figure 5.1: The red part on the left represents a part of the GO DAG. The blue part
on the right represents the Cluster Tree, while the green nodes in the middle are
shared between both of them. Note that this diagram shows an idealized situation,
because the common leaves do not need to be neighbored.

5.2 Visualization Approach – CluMa-GO

In this section we will discuss our approach to solve the underlying problem. To
demonstrate our approach we have implemented a prototype tool called CluMa-
GO (Cluster Mapping of Gene Ontology) [5]. We visualize the GO DAG and the
Cluster Tree in two separated and coordinated views due to the complexity and huge
amount of data to be visualized [94]. We load the data into our tool by using two
individual .gml files [46] (one for the GO and one for the clustering) through a
standard dialog box.

We already discussed the complexity and challenges of the visualization of huge
networks on its own in Chapter 2. Our current task is even more complicated as we
have to visualize and relate two huge data sets of different nature to each other: a
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DAG and a binary tree. Interaction techniques such as brushing are used to show the
mapping between both. Problems such as clutter when visualizing the GO DAG and
long or wide cluster trees (depending on the chosen tree drawing algorithm) would
appear in case we draw the graphs by using conventional graph drawing algorithms.
One way to overcome the problem in the case of trees is to use scrolling and panning
actions [121], because zooming out would not be sufficient in case of the Cluster
Tree visualization: traditional tree drawing algorithms produce much unused space
and this issue becomes worse with our binary tree as it is highly unbalanced.

The mapping of the specific subtree from a selected GO node as described in
Section 5.1 introduces another issue. These computed subtrees or sets of nodes are
not sequentially mapped resulting in “gaps”, see the green leaf node between the
two yellow rectangles in the background of Figure 5.7. The issue here is that these
gaps may appear too far apart from each other to be shown in a single view. This
might be hard to perceive and some important information can be missed.

Our strategy is to take into consideration the different features of the GO DAG
and the Cluster Tree. Therefore, specific visual representations for both are imple-
mented accordingly. These representations address the aforementioned challenges
separately, while we employ interaction to show the mapping between them. Ini-
tially, we discuss the approaches to visualize both the GO DAG and Cluster Tree.
The supported interaction techniques are described later in order to distinguish be-
tween visual representations and interaction concepts. Figure 5.2 shows a complete
overview of the GUI of our prototype implementation.

Gene Ontology (DAG) Visualization
Even if we use a subset of the entire GO, the selected GO DAG is relatively large, as
already described in Section 5.1. Without some kind of filtering or aggregation, the
visualization of such a graph would not scale when standard node-link approaches
are used. Our challenge was to show all data in one view. The approach we present
here is inspired from pixel-based approaches which usually cope with large data
sets [64]: colored pixels are used to represent the GO nodes, whereas edges are
hidden to avoid clutter. In the remainder of this chapter, these colored pixels are
referred to as node pixels. Non-terminal nodes are represented by light-blue pixels,
while red pixels represent leafs or unconnected nodes.

As there are no cycles in DAGs, they have a “flow direction” and can be hier-
archically layered. Therefore in our approach, nodes are placed into several layers,
in order to provide some insight into the topological structure of the GO graph as
shown on the left hand side of Figure 5.2. Shneiderman and Aris [107] presented se-
mantic substrates, which are somewhat similar to our idea. In their approach, nodes
are placed in regions (resembling our layers) based on specific node attributes, while
in our approach they are placed in layers solely based on the graph topology. Small
horizontal line segments are used to give cue to the spatial area of the particular
layers. Additionally, the layers are numbered. Figure 5.2 on the left shows 17 layers
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marked from 0 to 16. There is a considerable number of unconnected nodes in our
GO dataset. Figure 5.2 on the left shows a specific case where these unconnected
nodes are placed in layer number 0. This visualization reveals that this level is the
most dense layer. In order to provide more insight into the structure of the data, two
layering approaches were developed. These approaches mainly differ in the way
how leaves and unconnected nodes are positioned. We discuss these approaches in
the following two paragraphs.
Levels Layout The leaves (red pixels) and non-terminal nodes (light-blue pixels)
are placed into their corresponding layer depending on their graph-theoretic dis-
tance [12] from the source node (root) in the first layering approach named Levels
Layout. In addition, non-terminal nodes are arranged on the right part of the layer,
leaving the leaf nodes distributed on the left part of the layer. By doing so, we
gain additional insight into the topology of a specific layer by acquiring informa-
tion about the distribution of leaf nodes and non-terminal nodes on that particular
layer. An example of this layout strategy is shown in the left hand side of the Fig-
ure 5.2, namely in the GO view area of our tool. The same layout strategy is used in
the zoomed-in view shown in Figure 5.3, but showing only three levels at the same
time. It might appear that the resulting visualization is similar to bar charts. How-
ever, the number of leaves and/or non-terminal nodes cannot be precisely compared
between different layers, because the number of the leaves is proportional to the
total number of the nodes in that particular layer, and not proportional to the sum of
leaves in each layer. In other words, the density of each specific layer determines
the covered area separately. Some form of normalization of area density could be
introduced in order to achieve a true bar chart effect, but that is not implemented in
the current version of our tool. Leaves and terminal nodes are distributed in separate
regions as described above. However, the placement of the pixel nodes inside these
regions is random. Level 0 is reserved for the unconnected nodes.
Bottom Layout The second layering approach Bottom Layout shares some similari-
ties with our first approach: nodes are placed into layers depending on their graph-
theoretic distance from the source node, and the placement of node pixels within the
layers is done randomly. The main difference is that there are no separate regions
within the layers as all leaves together with unconnected nodes are placed into one
single layer with the highest number which would correspond to the bottom position
in the GO view (Figure 5.4). Unconnected nodes can be filtered out if necessary.
Figure 5.4 shows a view of the Bottom Layout with a particular node selected. The
strength of this approach is that it provides us with insight into the distribution of
nodes among different layers without considering the leaves (genes).

In order to avoid clutter, the visualization of edges is omitted by default. They
are only shown in case the user selects a desired GO term (non-terminal node) for
further exploration. Users could optionally show all the edges, but then the view will
be overloaded. Additionally, a simple edge bundling algorithm was implemented.
The strategy is to bundle only the paths outgoing from a specific node that end up
in the same layer. Figure 5.2 on the left shows the edge bundling of the computed
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Figure 5.2: GUI of CluMa-GO (rotated by 90◦). On the left hand side, the used
Gene Ontology is represented in the GO view (Levels Layout). On the right hand
side, the Cluster Tree view is located.
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Figure 5.3: Zoomed-in view using the Levels Layout approach. The red nodes
represent leaf nodes (e.g., genes); the light-blue nodes represent non-terminal nodes
(e.g., terms). This view provides insight into the distribution of leaf nodes in a
specific DAG level. The orange nodes represent the calculated subgraph (mapping).

subgraph in the GO view based on the Levels Layout approach, while Figure 5.4
shows the bundling applied on the Bottom Layout approach. Edge bundles reduce
the visual overload and give insight into how different layers are accessed by a
specific node. The use of arrows to show edge direction is unnecessary, as placing
DAG nodes in hierarchical layers ensures that the flow is from lower layers to higher
ones, i.e., from top to bottom in our case, and no edge can exist between nodes in
the same layer.

The use of pixel-based approaches introduced a new challenge. Choosing a
good color scheme that would be optimized for monitors and print was an issue.
Our tool provides options to choose different color settings for various elements
of the visualization, such as color of the non-terminal and terminal node pixels,
background, etc. All graphical elements can be easily distinguished and identified
on a computer screen in CluMa-GOs default color scheme. However, we needed to
find a good working compromise for both the computer display and for printouts.
We used ColorBrewer [18] to guide us for this task.
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Figure 5.4: GO view with visible (bundled) edges based on the Bottom Layout. The
green circle in leyer 3 highlights the selected GO term.
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Cluster Tree Visualization
We faced similar issues when dealing with Cluster Tree visualization as we did
with the GO representation. Both data sets are relatively large and any traditional
type of visualization would not scale. As mentioned earlier, hierarchical clustering
produces a large binary tree. If we draw this tree with the help of conventional
drawing algorithms, the outcome would be rather high tree drawing, or a wide one,
if we choose a standard dendrogram layout. This issue led us to the development of a
new visual representation for the Cluster Tree. One special feature of our data set is
that the trees are particularly high and unbalanced, with shallow branches (subtrees).
This characteristic enforces the disadvantages of traditional node-link layouts even
further by consuming the space even more due to the unbalanced structure of the
trees. However, we decided to leverage this feature and to design a special drawing
algorithm for large trees of such nature.

Figure 5.5: Sample cluster tree t.

Figure 5.5 shows how a small part of such a tree might look like. The yellow
colored part shows a “backbone” comprised of nodes and edges that form the longest
path that connects all branches. This backbone is laid out as a spiral, thus preserving
space and giving us a possibility to show the complete tree in one view. This is
the main idea behind our space-filling Spiral Tree Layout, which we implemented
to deal with large unbalanced binary trees. Our approach overcomes the need to
perform repetitive scrolling to browse or navigate the elements [53, 112]. The spiral
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is arranged in a way that the closer the subtrees (see below) are to the center of the
spiral the closer to the root they are, i.e., the direction of the flow in the spiral is
counter-clockwise from the center towards out. For instance, Figure 5.6 shows the
result of our layout algorithm applied on the tree t, shown in Figure 5.5.

Figure 5.6: Spiral Tree Layout of t. The drawing algorithm was inspired by standard
spiral layouts that are mostly used to represent time-series, such as [2, 118].

Due to the size of the data set, the subtrees connected to the backbone are aggre-
gated. This means that a certain amount of abstraction is allowed in our visualization
approach: each small box glyph in Figure 5.6 corresponds to one subtree branching
out from the backbone with an angle of 135◦ from the vertical. The size of a box
glyph is normalized and proportional to the number of nodes of the corresponding
subtree. For instance, the size of the box glyph marked with the brown circle in Fig-
ure 5.6 is depending on the size of its corresponding subtree marked with the brown
ellipse in Figure 5.5. The highlighted box in the spiral is proportionally enlarged by
the drawing algorithm as the highlighted subtree with five nodes is one of the largest
ones in the tree t. The space between the “spiral arms” of the backbone is constant
and not influenced by the size of the subtrees in the current version of CluMa-GO.
Therefore, we normalize the size of the box representing the subtree based on the
maximum number of elements a particular subtree has.

Interesting patterns of distributions of subtree branches in the Cluster Tree can be
identified by using this approach. For instance, the largest branches appear far away
from the root node of the tree if we take a look at the Cluster Tree view in Figure 5.2.
For a further comprehensive analysis, details of each subgraph visualized in the
spiral can be explored by clicking on a box glyph. This will display the subtree
visualization widget (Figure 5.10 and 5.11) as described later in this section. The
subtree can be drawn using two dendrogram layouts: a radial method and a so-called
HV-drawing method as well.

We use brushing techniques to show the mapping between the two parts, GO
DAG and Cluster Tree respectively. In the following subsection, we describe these
and other interaction techniques.

52



5.2. Visualization Approach – CluMa-GO

Figure 5.7: The green nodes in the middle are shared between both the GO DAG
(red nodes) and the Cluster Tree (blue nodes) (cp. Figure 5.1). The interactively se-
lected node is highlighted in cyan, from which we traverse the graph (yellow nodes)
until we reach all accessible leaves (green nodes with yellow background). The
leaves are used to calculate a subtree of the Cluster Tree (yellow nodes in the right
part of the figure).

Interaction Techniques
As described by our collaborator of this project and a domain expert, Prof. Dr.
Falk Schreiber from IPK Gatersleben, biologists explore the data in two ways: by
browsing the data set randomly or have a specific GO term in mind. Accordingly,
CluMa-GO features a list of terms that can be selected or searched through a dialog
box invoked from the menu. Users could also directly click on a particular node in
the GO view. A tooltip displaying the name of the node is shown if a mouse-over
action is performed on that node. This enables the users to select a node for further
exploration and to browse the GO. As already explained earlier in this chapter, the
GO view displays the nodes as single pixels. Using color coding only makes it pretty
hard to perceive a single, highlighted pixel. Therefore, double-coding is introduced
by drawing an additional circle around the selected node in the GO view, as seen in
the third layer of the GO view in Figure 5.4. In this way, identifying the layer the
currently selected node belongs to has been made easier too.

The subgraph consisting of all reachable nodes will be calculated after the node
has been selected. All nodes belonging to the computed subgraph, as described in
Figure 5.7, will be highlighted in orange in the GO view. The edges of the subgraph
will be shown too. At the same time, reflecting the selection made in the GO view,
the corresponding cluster subtree will be highlighted in the Cluster Tree view with
the same color. In this way, the user can easily identify the mapping between both
views by comparing the orange colored elements. Note that the higher the hierar-
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Figure 5.8: This screenshot shows the zoomed-in GO view on the left hand side and
the Cluster Tree view with opened subtree widget on the right hand side.

chical level of selected node is, the larger the number of nodes can be accessed from
that particular node (the root node of the GO DAG, for instance, has access to all
nodes of the DAG except the unconnected nodes). The complete DAG will be se-
lected in case the root node pixel is clicked. Clutter cannot be avoided in such cases.
If necessary, the visualization of edges can be disabled by the user.

Zooming at the specific layer on the GO view is also possible (Figure 5.8). The
user can also scroll up or down between three layers simultaneously. Since a lot
of edges from other layers might go through our focused layers, the edges are not
shown in the zoomed-in view as they will introduce clutter. However, the nodes
remain highlighted. It is easier to discover connections in zoomed-in mode than in
zoomed-out mode since we deal with a fixed amount of layers and magnified node
pixels. As it is easier to select and interact with bigger node representations, this
mode is particularly helpful for analyzing different elements of the subgraph.

When a specific GO term is selected in the GO view, the calculated subtree is
highlighted in orange in the Cluster Tree view, as seen in the right part of Figure 5.2.
In this case we notice that this particular GO term has a rather wide cluster subtree,
i.e., it covers most of the backbone of the cluster tree. Some subtree box glyphs
are only partially highlighted due to the fact that not all nodes in a subtree might
be mapped to the selected GO term, while others are not highlighted at all. The
area of the highlight is proportional to the number of the nodes mapped in that
corresponding subtree. Figure 5.9 displays a cut-out of a Cluster Tree view in order
to provide a larger view.
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Figure 5.9: Cut-out of a mapping in the Cluster Tree view.

Figure 5.10: Subtree (branch) view. The more detailed view of the selected branch
(green box glyph) is visualized as a dendrogram.

The subtree can be further examined by clicking on the corresponding subtree
box glyph, after which a specific widget is displayed showing the particular subtree
in one of two optional layouts that users can select based on their preference. The
subtree can be viewed as a radial dendrogram (Figure 5.10) similar to other dendro-
gram visualizations [115, 98] or in an “explorer view” (Figure 5.11) based on an
HV-drawing algorithm [23]. The default display position of the subtree widget is
next to the selected subtree box glyph. In order to show the context of the area that
it covers, slight user-defined transparency is introduced. The user can also grab the
widget with the mouse and move it around in case the area covered by the widget
is important and interesting. A mouse-over action shows the name of the particular
node of the tree through a tool-tip similar to the GO view.
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Figure 5.11: Subtree (branch) view. The more detailed view of the selected branch
(green box glyph) is visualized by following a so-called HV-drawing algorithm.

5.3 Scalability

A number of issues need to be addressed when dealing with large data sets as pre-
sented in Section 5.1. Providing an overview or showing the complete data set to
start the analysis process is one of the main challenges. We can clearly see that our
prototype is able to visualize the complete data set as explained in the previous sec-
tion. More insight into the data is gained and the mapping between the GO subset
and Cluster Tree is performed with the help of the described interaction techniques.

The responsiveness of our prototype was another issue that we faced during our
development. It is extremely important that the system can handle all data and
provide the users with real-time interaction possibilities. CluMa-GO needs approx-
imately three to five seconds to load and visualize both input files. However, the
complete subgraph and subtree has to be calculated which involves the parsing of
almost all nodes from both data sets, when clicking on the GO root term. This action
can take up to ten seconds to be calculated on a standard PC (Core 2 Duo Intel pro-
cessor with 2.53 GHz). This is of course the worst case scenario. Most of the nodes
from the lower levels respond immediately when selected. Nevertheless, we have
managed to speed up the process significantly. A simple caching strategy has been
implemented that results in around one second to highlight the calculated subtree
if the root node is chosen. The calculated mapping data are cached once the user
has selected a particular GO term. Users will experience an almost immediate high-
lighting the next time the same node is selected as the previous calculation is stored
in memory. We used a smart map from the open source library Google Guava [37]
to reduce the memory usage for caching. A limit of stored elements together with
a setting of their life times can be specified using this map. Our specification have
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been set up for a storage of up to 100 subgraphs for the GO and Cluster Tree for
about one minute. The oldest map element will be removed if one of these limits is
reached. Frequently used elements remain in the cache for a longer time.

5.4 Summary
We presented a new method for the combined visualization of an ontology (rep-
resented as DAG) and a hierarchical clustering (represented as tree) of one data
set. The proposed method interactively visualizes all the data without scrolling,
thereby presenting a complete overview. We presented a new metaphor for visualiz-
ing highly unbalanced binary trees, inspired by the shape of a spiral. Our approach
also allows for interactive selection and navigation to explore the data. We have
showed that our tool is able to tackle the problem in our research focus, i.e., the
visualization and visual mapping between two huge graphs of different type.

In the last two chapters, we were mainly focusing on visualization of large net-
works. In the previous chapter, we offered a solution for the visualization and nav-
igation of interconnected pathways. In this chapter, we visualized two different
types of networks. The next chapter takes us into another problem faced in almost
all scientific domains: we discuss an approach to visualize multivariate network
attributes.
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Chapter 6

Multivariate Network Visualization
Using Magic Lenses

Several approaches that deal with the problem of visualizing multivariate networks
were discussed in Chapter 3. In this chapter, we will present the Network Lens,
an extension of the traditional magic lens idea (cp. Section 2.2) applied to tradi-
tional node-link graph layouts. Our prototype implementation of this Network Lens
enables users to interactively build various lenses by specifying different attributes
and selecting different visual representations [24]. The Network Lens visualizes
attributes (or a subset of them) by using small glyphs each time it is applied on a
network element, i.e, the standard node representation is replaced by a new visu-
alization or diagram. Let us consider one of the standard problems in biochemical
network analysis: time-depended attributes. Experimental data measured over time
could be attached and represented by the network nodes in form of a time plot, for
example. Furthermore, let us assume that a biologist wants to analyze such data
at time step ti. Then, a specific Network Lens instance could be used to show the
data at time step ti−1 for a set of nodes without having a need to change the current
visualization setting. Thus, the visual analysis process of multivariate networks is
supported by an additional generic tool that can be adapted to standard visualization
systems. In this way, our approach can extend already existing views to show node
and edge attributes of the underlying network. It is possible to create lenses for spe-
cific exploration processes, to store them for later analyses, and to combine them to
analyze related attribute sets.

6.1 The Network Lens
In this section, we will present the Network Lens that supports the interactive anal-
yses of complex networks using visual filtering. It preserves the overall network
topology and context and facilitates the visualization of network attributes at the
same time. Our approach is independent from the graph layout and different draw-
ing conventions used to visualize the network. Users have the freedom to investigate
the network by exploring the overall visualization of the network, in terms of topol-
ogy and connectivity of particular nodes of the network. By using our approach,
users can get more details about desired attributes by focusing on specific node(s).
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6.1. The Network Lens

These desired attributes can be chosen from a subset of all available attributes the
user is interested in. Afterwards, users can interactively explore the network ele-
ments on the basis of the selected attributes. It is conceptually possible to represent
the remainder of the attributes inside the nodes if such a feature is desired, although
our current implementation does not support that. As discussed in Section 3.2, such
approaches have the drawback of space usage and clutter. In the following, we will
discuss it and show how our approach copes with such problems. We will also
present our software prototype and describe a typical use case scenario.

Approach
The main inspiration for our approach comes from the work of Bier et al. [11, 113]
as briefly described in Section 2.2. In contrast, our approach is driven by attribute se-
mantics and not focused on pure graphical filters. We extend their idea in such a way
that users can interactively build various lenses by selecting desired attributes and
assigned visual representations in context of the network visualization. A specific
number of different quantitative, ordinal and nominal attributes belonging to every
network element might be important to be visualized. Depending on the data type
each attribute or group of attributes can be represented more or less efficiently by
using different visualization approaches. Therefore, having the option to choose the
way of visualizing different attributes is important. Moreover, in order to simplify
and speed up the process of creating new lenses users should be able to combine dif-
ferent lenses by using drag and drop interaction. Additionally, one should be able
to set up and store a number of lenses for each working session as well as for later
use. In consequence, custom-built lenses can be created, stored and reloaded for
exploration of network visualization. Users can then switch between these lenses
interactively. The GUI is divided into three parts, as shown in Figure 6.1. A tradi-
tional node-link network visualization is placed on the left hand side. This is also
the main area of the tool, and occupies the major part of the tool window. After
loading the input network (using a GraphML specification [17]), an overview of the
entire graph topology is displayed. Ideally, nodes could be drawn in various ways.
However, at the time of writing this thesis, nodes are only represented as rectangles.
The user can also map the value of an arbitrary attribute to the color saturation of the
nodes. The thickness of the edges represent the value of the edge weights if speci-
fied in the data set. Such weights usually represent the strength of the relationship
between two node entities. Users can choose five different graph layout algorithms
and/or modify the position of the nodes manually. These features help in identify-
ing interesting parts of the network. They enable the user to rearrange the nodes
by manual clustering (automatic clustering could be easily added), after which the
multivariate networks can be analyzed in more details.

By looking at the Figure 6.1, an active Network Lens Natural Sciences is dis-
played in the center of the network visualization. It shows a small Parallel Coor-
dinate diagram with four quantitative and four nominal attributes belonging to the
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Chapter 6. Multivariate Network Visualization Using Magic Lenses

Figure 6.1: Overview of the Network Lens tool (rotated by 90◦). The GUI is divided
into three distinctive parts: the main network visualization area, the lens information
area on the right hand side, which we call Lens Mapping, and the bottom part where
all user-produced lenses are preserved. The multivariate network data is based on
students (⇒ nodes) who share the same courses (⇒ edges) and their individual
course grades and personal information (⇒ attributes).

60



6.1. The Network Lens

corresponding node. In the current situation it covers a single node. However it is
possible to access other nodes by moving the lens with the mouse or to translate the
graph behind the lens. The size of the lens can be changed by simple mouse resiz-
ing actions similar to standard windows based GUI’s. Additionally, lenses support
zoom functions during which node representations are only magnified and undis-
torted, while the edges are distorted to help following them as the magnification may
introduce a "cut effect". In some cases, this distortion cannot compensate enough
and the edge flow insight could be lost or distorted too much to make any sense.
This side-effect can be avoided either by slightly moving of the lens or by following
the edge lines along the lens rim. The legend of the lens attribute color mappings is
placed on the right panel (called Lens Mapping). All the lenses created and used in
a working session are located in the bottom part of the tool window.

Figure 6.2: A dialog box used to create and edit lenses. Users can specify the type
of the lens, select different attributes provided by the input data set and assign their
color mapping.

The Lens menu in the main window holds the New Lens option which is used to
start the lens creation process. The lens has to be named at first. Users are advised to
use self-descriptive names for lenses in order to remember the ”meaning” of the lens
in case a lot of them are created and stored. Let us assume our user is analyzing a
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data set of students relationships in context of their grades in various school subjects
(see Figure 6.1). Different students might have different affinities towards certain
types of subjects, and exploring their relationships in this context is important to
our user. At this point, the user can create different lenses for groups of classes
and name them accordingly. For instance, he/she might create a lens that shows the
values for attributes (subjects), such as Painting, Sculpture, etc., and name it Art
Lens and/or create a Science Lens with subjects like Mathematics or Physics.

After naming the lens, one must specify the visual representation, select the
desired attributes to be visualized and specify their color mapping by using the form
presented in Figure 6.2. The users can assign a suitable visual representation of a
lens concerning quantitative and ordinal data by selecting one of the options in the
Select Lens Type list. Our prototype supports two variations of star plots, one bar
chart, and one parallel coordinate visualization at this time, see Figure 6.3. A sample
view of the selected lens type is shown in the Illustration icon at the top of the
dialog box (cf. Figure 6.2). We use two different tabs (Quantitative Attribute and
Nominal Attribute) to specify quantitative and/or nominal attributes to be visualized
by the lens. The attributes are added to the lens by selecting them from the list and
clicking the ADD button. Color mapping of the attribute can be specified by the user,
otherwise the systems assigns the color automatically. We have created a default
color palette comprised of 12 standard colors as suggested by C. Ware [125] to
achieve a good visual perception. The lower part of the dialog box holds a separate
list showing the final color mapping. By repeating the steps described above, the
user can create several lenses. New lenses are added in form of buttons to the bottom
part of the GUI. One can than switch between lenses by clicking the desired lens
button which activates the corresponding lens.

When the lens is moved or the view is panned (while the lens remains at the
same place in the view), all the nodes that are covered by the lens change their
original node representations to the ones specified during the creation of the lens
as described above. The text labels, used to represent nominal attributes, have a
transparent background by default. This can be irritating if the underlying graph has
many edges because of potential overlaps. The user is able to switch to an opaque
background for labels in order to avoid this problem, which in turn could lead to
not very appealing lens experiences. Adding the features of the EdgeLens approach
discussed in Section 2.2 would be another way to improve this issue.

So far we presented the procedure for creating lenses. This process can be sim-
plified and extended after at least two lenses were specified. In the following, we
discuss the process of combining different lenses to create new ones.

Our approach enables us to combine already created lenses by laying them one
over another. We were inspired by optics and the work of magic lens which enables
such combinations of lenses that have different transformation functions regarding
the graphic objects. However, in our case we face different issues. Let us assume we
want to combine several lenses with different visualization metaphors for the same
set of attributes. Combination makes sense only if the lenses are different in some
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(a) Star plot diagram, 2nd variant (b) Parallel coordinate representation

Figure 6.3: Two different visual representations used to display the attributes. At-
tributes can be color coded automatically, or the color can be specified by user.
Nominal attributes, such as Name and others are represented by text labels on the
right hand side of the glyphs.

aspects. As they visualize same attributes, they might use different visualization
metaphors for them. Their combination will not be as straightforward as it could
look in traditional, graphics-oriented magic lens approaches. As in case of real life
optics or magic lens approaches, our users can simply drag and drop one lens button
over another one. However, we needed to add another intermediate step where the
user can decide the final outcome of the combined lens. Therefore, after this action
a new dialog box Combining Lenses appears as shown in Figure 6.4.

Four groups of controls are presented in this dialog box. Information about
the lenses that are going to be combined are shown in control groups Lens 1 and
Lens 2. These control groups hold information such as lens name and type, the list
of attached attributes including their color coding, as well as a preview icon. We
use set operations to create a new set of attributes from the given sets of Lens 1
and Lens 2. The user can choose between two basic set operations: Union and
Intersection in our current version of Network Lens. The Operation group holds
two radio buttons to specify the desired set operation. Combined Lens group shows
the result of the chosen operation. This way, users can specify the desired attributes
in a quicker and simpler way. It has the same GUI layout as Lens 1 and Lens 2.
At this point, users should specify a name for the combined lens. If both input
lenses use the same visualization type, then the default type of the combined lens
corresponds to the input type. User can change the type of the lens and attribute
colors of the combined lens. A new lens button will appear again at the lower part
of the main window after saving the lens, cp. Figure 6.1.
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Figure 6.4: A dialog box used to combine different lenses.

Implementation
The prototype was implemented in Java using the JUNG [86] graph drawing library.
The developer can use a set of predefined node and edge visualizations as well as
implement own visual representations. Beside different graph layout algorithms, it
offers a lot of other functions that are already implemented, such as zooming and
panning interactions.

JUNG also contains the implementation of a lens, which has the functionality of
a normal magnifying and fisheye lens. We appreciated the idea of having an already
implemented distortion based lens. Thus, we added the functionality to change the
shape of the nodes each time the lens is moving over those. In this way, we only
needed to implement the planned visualization metaphor and let the library take care
for the distortion.

Our prototype uses GraphML files as data input [17], since GraphML has its
own extension mechanism which allows to attach <data>-labels with different data
types. They are used to store the required attributes for nodes and/or edges in a graph
specification (currently, our tool only supports the visualization of node attributes).
However, the GraphML reader provided by JUNG is not flexible enough. So, we
had to implement our own parser due to the need to parse different GraphML files
having different attributes, especially for future needs.
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6.2 Application Scenarios

Biological Data
The main idea behind this prototype is to be used for any type of multivariate net-
work regardless of the application domain. We use a hand made copy of the bio-
logical network data used in the work of Borisjuk et al. [13]. The visualization of
this data using their tool can be seen in Figure 3.3. The figure represents experi-
mental data in context of the metabolic network: glycolysis and citric acid cycle.
Each bar inside the nodes represents relative substance levels of different Vicia nar-
bonesis (beans) lines. Wild types of beans are shown in dark-grey. Light-grey bars
represent the lines where the transgenic technology was used to increase protein
accumulation as beans are economically important protein source in food industry.
The visualization of these data as shown in Figure 3.3 helps biologists to see the
effect of transgenic technology on the plant metabolism.

Figure 6.5 shows that our tool can mimic the standard integrated approaches and
can handle the biological data. However as explained in Section 3.2, integrated ap-
proaches do not cope well spatially when the number of network elements increases
and/or in case of high attribute numbers. In such cases, the use of Network Lens
could alleviate the problem as there will be no need to increase the size of the nodes.
Figure 6.6 shows the lens applied to a specific part of the network. The rest of the
nodes can show different glyphs while we investigate different local parts of the
network.

Text Documents
In this subsection we will illustrate how is our prototype tool used to explore mul-
tivariate networks. For this purpose, we used a set of research papers (24 text doc-
uments) published by our group to build a multivariate network dataset. The docu-
ments are represented by nodes in a network. Each node has several attributes that
correspond to the occurrences of a specific word within the document. A similarity
between two nodes is shown by an edge connecting the corresponding nodes. This
similarity is specified by the co-occurrence of attribute sets of the considered docu-
ments. The degree of the similarity is calculated as the sum of the minimum values
of the attributes. This degree is represented as the weight of the edge (shown as
the thickness of the edge line). We filtered out frequently used words and did not
include them as node attributes, as they would not reveal any insight into the content
of the documents. Additionally, we pruned the data by setting a threshold for the
minimum occurrence of words and for minimum edge weights. A screenshot of our
tool visualizing this input data set is shown in Figure 6.7(a).

Let us assume we want to explore these documents without reading them. We
are interested to find out about the documents that are related to the topic of al-
gorithms. Therefore, the color saturation of the nodes is mapped to the value of
the attribute algorithm. Higher values of the attribute, namely higher occurrences of
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Figure 6.5: Visualization of experimental data integrated into a biological network.
Based on the data shown in Figure 3.3.
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Figure 6.6: Visualization of experimental data by using the Network Lens. Based
on the data shown in Figure 3.3.
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Figure 6.7: The transparent gray circular disk in the network visualization view (a)
represents the focus of the lenses discussed in the following. The top right image
(b) represents the view of the lens named Network, while the bottom right image (c)
shows the view rendered by the Network Visualization lens.

this word in a document are represented by the lighter colors as shown in our screen-
shot example. We can can immediately identify several documents with high value,
but a lot of documents could discuss algorithms in different context. Therefore, we
narrow our exploration to those documents with content related to algorithms and
networks (or graphs). At this point we create a new lens and select attributes (key-
words in this case) such as networks, graphs, nodes, etc., that would give insight
to documents related to networks. We name this lens Network and start the explo-
ration. We focus the lens on the lighter colored nodes (those with content about
algorithms). Here, we discover two documents with relatively high values of spe-
cific attributes, see Figure 6.7(b). We notice a high frequency of the words graph,
nodes, and pathways in these two documents. This could mean that the documents
describe some computational algorithms related to biochemical pathways and might
not be related directly to visualization. To verify this, we load a previously stored
lens named Visualization. This lens is combined with our current lens (Network)
using the Union set operator in order to create a new lens Network Visualization.
We continue the exploration of those documents again, as we created a tool (new
lens) to get more insight about the documents connected to network visualization
and algorithms. The new lens reveals that the couple of documents identified earlier
fit our criteria as shown in Figure 6.7(c).
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6.3 Summary
In this chapter, we presented a novel approach for interactive visualization of mul-
tivariate networks that supports the exploration of such networks by using intuitive
visual filtering methods for the local representation of node attributes. Integrated ap-
proaches face the issues of readability while multiple coordinated view approaches
have to deal with display sizes. Our approach offers a solution while minimizing
these side effects. More precisely, our Network Lens combines the advantages of
magic lens approaches and integrated graph drawing and reduces the overloading
issue of the latter technique. Our system offers a freedom in terms of attribute filter-
ing and selection of effective visual representations. This makes the approach easy
to generalize to different application domains dealing with multivariate networks.
Domain experts can use their knowledge and expertise to craft their visual filters
in order to gain insight into their relational data sets. The ability to combine the
lenses in an intuitive way simplifies the process of creation of new lenses for further
analysis of multivariate network data.
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Chapter 7

Conclusion and Future Work

In this chapter, we summarize this thesis and discuss our findings in context of
the goal criteria presented in Chapter 1. Finally, we conclude the thesis with a
discussion on future work.

One of the most challenging tasks in the Information Visualization and Graph
Drawing communities is the visualization of large and complex networks [78].
This, combined with the need to visualize and analyze such data, makes network
visualization a hot topic. Recently, a considerable work on graph visualization has
been done and powerful tools have been introduced. However, some fundamental
problems are still not adequately solved. The visualization of additional data that are
attached to the network nodes and/or edges is one important problem. Another ex-
ample of such problems is related to scalability issues introduced when visualizing
huge networks. Drawings of these networks are often visually overloaded (cluttered)
and do not scale. To focus on the latter problem, one traditional solution is a hier-
archical structuring of the entire network if possible, that is, the complete network
is divided into many parts. This is also a common procedure in biochemical net-
work drawings. This approach creates difficulties in navigation and understanding
the overall interlink between these pathways. Additionally, several network nodes
are duplicated to avoid further clutter. These, and other issues related to biological
and network visualization in general, are discussed in Chapter 2.

In Chapter 3, a more detailed analysis of the techniques and methods for mul-
tivariate networks is presented. Based on specific visualization techniques, we de-
fined a number of criteria and presented a system for multivariate network visual-
izations where different approaches are categorized based on the aforementioned
criteria and information, such as type of the attributes or the domain the tool was
used for.

In Chapter 4, we present an approach to overcome the drawbacks of the afore-
mentioned splitting of large networks into pieces. Our visualization approach en-
ables users to analyze a focus pathway, while providing means to navigate and have
an overview of other interlinked pathways. We use glyphs, brushing and pathway
topological information to provide meaningful contextual information to the analyst
in an intuitive way. The main idea of our approach is to lay out minimized images
of pathway drawings around the main view that displays the focus pathway. These
graph icons are additionally used to navigate to a specific pathway by mouse clicks,
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beside giving an overview of the connections between pathways. Mouse-over ac-
tions on the graph icons highlights the nodes that are interlinked in the focused
pathway, and an additional rose diagram enforces the perception of pathway inter-
connections even further. Another important aspect of this work is that we have
realized our approach as plugin of an already well known and widely used visual-
ization framework.

We discussed that showing the interconnections of pathways of a single biolog-
ical network is challenging. In Chapter 5, we deal with a slightly different problem
as we present an approach to show two different types of large networks and the
connections between them. As both ontologies and hierarchical clustering are im-
portant for biological analysis, it is desirable to show them both in the same view.
Ontologies are modeled as large DAGs, while hierarchical clustering data form large
binary trees. Our approach uses brushing and innovative layout designs to cope with
the complexity and amount of data.

We present the novel layout approaches for drawing the DAG by using pixel-
based approaches. Two variations of this approach are implemented and strengths
and weaknesses of each are discussed. Both variations place intermediate nodes of
the GO into specific hierarchical levels, and thus differ only in the way terminal
nodes are placed. One approach arranges all terminals into the last level, emphasiz-
ing the connections of each node to the terminals. The other one positions terminal
nodes into hierarchical levels accordingly, but on separate regions of the level, thus
giving an overview about the distribution of the terminals and intermediate nodes in
each level.

A new drawing algorithm for representing huge unbalanced binary trees is in-
troduced. The main idea behind this algorithm is to use nodes and edges that form
the longest path that connects all branches as a “backbone”, which we lay out in
form of a spiral, thus forming our Spiral Tree Layout. Our layout uses the space
more effectively for this particular data set, i.e., huge unbalanced binary trees, then
traditional tree layout techniques. Common brushing and interaction techniques are
then used to show the interconnections between these two graphs.

At this point in the thesis, we have presented two contributions in context of visu-
alization of large biological networks. The first contribution (Chapter 4) enhances
the navigation and gives an overview into the connections of different separated
pathways within a larger biological network. In the second work (Chapter 5) , we
present new ways to visualize the interrelationship of two huge graphs of different
types. Our next contribution deals with the issue of additional attributes connected
to the nodes of the network. Therefore in Chapter 6, we present the “Network Lens”,
a prototype for the visualization of multivariate networks.

Our prototype is essentially an extension of the traditional magic lens idea ap-
plied to networks represented as node-link graphs. By interactively specifying dif-
ferent desired attributes and selecting different visual representations, users can
build various lenses. Moreover, the lenses can be combined with each other with
the help of set operators to create new lenses. This way of combining lenses makes
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the whole process of creating new lenses and the overall exploration process more
intuitive as it follows an optics metaphor. Each time a lens is applied on a node, it
will show the peculiar attributes in particular visual representation depending on the
user specification when the lens was created. Moreover, lenses can be saved for later
explorations. We have shown an example where we visualize a specific biological
pathway by using our prototype.

7.1 Discussion
In this section, we discuss the results of the thesis in context to the goals we have
defined in Chapter 1, which are:

1. Offer a contribution to the problem of a visualization of huge biologic net-
works. More specifically, improve shortcomings of the approach of dividing
larger biological networks into smaller pieces, and contribute to the problem
of a visualization of different types of interconnected biological networks.

2. Offer a contribution for the visualization of multivariate biological networks.

In the following subsections, we compare our results with the set of criteria for each
goals (cp. Chapter 1).

Goal 1
The criteria for the first goal are the following:

1.1 Dividing networks into smaller units in order to avoid clutter and complexity
when visualizing huge biochemical networks introduces issues of loosing the
overview. Nevertheless, this practice is desirable by the biologists. Therefore,
an analysis of these issues and a contribution towards solving the problems shall
take place.

1.2 Provide an approach to combine two different types of huge networks. As de-
scribed in the motivation section on Page 3, a visualization of biological net-
works in context of tree-like data produced by clustering is desirable. Therefore,
a tool to visualize both datasets and to show their connection will be developed.

Criterion 1 is fulfilled: We developed a tool called GLIEP, which uses various
interaction and visualization (“Aggregated Links View”) techniques in combination
with our “Navigation Glyphs” and “Graph Icons” as presented in Section 4.1 in
order to guide the interactive navigation and to show the relationship between in-
terconnected pathways. GLIEP is a plugin of a well-known tool (VANTED) for
researchers in the domain of biological networks and is now a part of an official list
of supported plugins. We have presented the details of this work in Chapter 4.
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Criterion 2 is fulfilled: A new visualization approach to combine ontologies
and hierarchical clustering data was presented in Chapter 5. Both, ontologies and
clustering data are large relational data sets that are conceptually different. We used
interaction and brushing techniques to combine them, while providing new layout
metaphors to cope with the amount and complexity of both data sets.

Goal 2
The criteria for the second goal are the following:

2.1 Provide a survey on the current state of the art on the visualization of multivari-
ate networks in general. We shall not only focus on biological networks as the
problems and solution from other research domains could be easily adapted for
biochemical networks.

2.2 Introduce a novel approach for visualizing multivariate networks.

Criterion 1 is fulfilled: In Chapter 3, we present a survey on multivariate network
visualization. We investigate different approaches used in practice and developed a
set of criteria to classify these approaches into different categories.

Criterion 2 is fulfilled: We extend a general magic lens approach and apply it to
explore multivariate networks. Our tool uses the strengths of the integrated approach
while avoiding its weaknesses.

7.2 Future Work
So far, we have presented different approaches to deal with huge and complex net-
work data. As future work for the GLIEP plugin presented in Chapter 4, we plan
to enhance various features and improve different issues related to the visualiza-
tion and interaction possibilities. Most of these improvements will be regarded as
side projects as they will not directly relate to multivariate network visualization,
however they could be used to support or enhance further steps into that direction.
Research results in large graph exploration, such as the DOI-approach of van Ham
and Perer [119], could be interesting for our system too. We plan to analyze the
possibility of integrating such or similar techniques. As mentioned before, data sets
with a deeper level of hierarchies exist. At the moment, our plugin supports only
two-level hierarchies. This is enough for the MetaCrop data set. Theoretically, our
approach could be extended by using the Sunburst approach presented by Stasko
and Zhang [112] or Richard et al. [110]. The visualization of additional statistical
data is the most interesting future work unit related to GLIEP. The Link rose dia-
gram could be extended to support this. The color-coding of the rose diagram and
the navigation glyphs could be improved as well, perhaps even including a new view
to visualize multivariate network data.

Similarly, CluMa-GO has a lot of possibilities for improvements that are not
directly related to the multivariate network visualization (cp. Chapter 5). However,
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the following improvements should take place as side projects as well. The current
state of the prototype does not provide a way to visualize a direct mapping between
a terminal GO DAG node and a cluster tree leave. A simple way to overcome this
problem for a specific node is to highlight the corresponding nodes in the GO view
and/or Cluster Tree view on mouse-over action. This could be easily implemented
as a part of our future work. As explained in the Section 5.2, the zoomed-in GO view
shows three levels at the same time while displaying the subgraph by highlighting
the nodes only. The edges are omitted due to clutter problems that can occur since
edges from a higher level might go through the zoomed-in view to nodes in the lower
layers. Since we are zoomed in, this does not make sense to show, because we have
no insight from which layer those edges are coming from, nor to which layer they
are going to. However, an improvement is possible by showing only edges between
the three layers shown in the zoomed-in GO view. At the same time, the edge
bundling algorithm could also be improved. We are also working on an improved
version of our spiral tree metaphor to cope with more balanced binary trees. One
possible solution is to create something we call “nested spiral trees”. The idea is to
draw smaller spirals instead of aggregating larger subtrees that pass over a certain
threshold of nodes into box glyphs. This approach will however introduce more
unused spaces, making the approach less space-filling.

As a main research direction, we will continue the work on multivariate network
visualization. However, we will not focus only on large and complex networks
or on the domain of biological networks. As explained in Chapter 1, most of the
approaches to visualize multivariate networks can be generalized across different
domains. Therefore, the plan is to not limit us in visualizing only the datasets be-
longing to one domain. We are already working on improvements of the Network
Lens. The next step is designing a usability study, which will be used as a guide
for further improvements of the tool. We will implement more visual representa-
tions, which will allow for even greater flexibility of the tool. Furthermore, we can
experiment with time-dependent data and data quality issues.

The following discussion is not related to any of the tools described in this thesis,
but should be taken as a general guideline for future work. Even networks of few
hundreds of nodes and edges can often be hard to visualize without the use of some
interaction or filtering technique. Adding multivariate data makes this process even
more challenging. Therefore, moving into the direction of Visual Analytics could
be helpful to cope with the problem. Visual Analytics could be roughly defined
as use of Information Visualization together with Data Mining [129, 63]. The aim
is to develop tools to support multivariate network visualization that would mainly
depend on known visualization techniques in combination with Data Mining. These
tools should rely on seamless interaction techniques that will facilitate the process of
visual analysis. Thus, users should be able to analyze the network and the attached
data interactively.
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