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Abstract

Point clouds are one of the most common data structures ob-

tained with current day technology for scanning real-life objects

or various environments. As such, the importance of digitally

reconstructing the initial surfaces from the gathered boundary

points is vital in many scientific fields. Our focus goes towards

the reconstruction of environmental information from 3D range

sensor point clouds to facilitate a more accurate description of

the surroundings. One major application of this comes to life

in the area of robotics, where a precise environment description

can facilitate robot and object localization, area mapping

(SLAM), feature detection and many more.

We discuss how we can use the particularities of such a

3D range point cloud in order to reduce the noise levels intro-

duced by the scanning sensors. Further we present possibilities

for visualizing the uncertainty of the reconstructed surfaces

from the denoised point cloud data, as well as different methods

that would allow for a multiresolution 3D representation of the

scanned environment.
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Chapter 1

Introduction

For years, modern sensors enabled us to explore features of the real world that our

five human senses could not perceive. These sensors and the corresponding infor-

mation has an even higher importance in a world of powerful computational devices

that allow the proficient use of this data in fields like manufacturing, geography, ar-

chitecture, design, medicine and many more.

Figure 1.1: 3D point cloud rendering example from a music video

A large part of these sensors are meant to gather information about objects or environ-

ments where the human (mainly visual) capabilities would be useless or insufficient.

Some of the new abilities we have gained this way include seeing without the pres-

ence of light, exploring density, consistency and other object characteristics, as well

as mapping inner and outer boundaries of materials.

The last mentioned area of structural digitalization of real-life objects is a widespread

3



4 CHAPTER 1. INTRODUCTION

topic in science and industry, as it enables in-detail scans of surfaces and their virtual

representation and modification. Tasks involving 3D scans of objects can be used for

developing different virtual reconstructions of surfaces for later use as prototypes, as

well as for alternative methods for video recording by substitution of video cameras

with 3D range sensors that can result in artistic visualizations∗ through point cloud

representations (Figure 1.1).

In this paper, our focus goes towards point cloud information as 3D digitized data

defining an entire object or environment, or simply a subset of it. The structure of

the cloud consists of a three-dimensional set of points obtained with some type of

measurement device that scans the surface of a material object. A representation

of a 3D range point cloud is presented in Figure 1.2, where the x and y axis of the

initial 3D space are mapped to the two dimensions of the image, while the depth

z of the generated points is normalized and displayed in grayscale. Once a point

cloud is computed, it can later be processed by an algorithm that would group points

and fit these groups to a 2D or 3D shape, with a position and orientation in the 3D

coordinate system.

Figure 1.2: Grayscale image of the normalized distance values generated by a
TOF sensor

While the current chapter is an introduction to the topic at hand, in Chapter 2 we

present recent research in visualizing and reconstructing patches or complex surfaces

from 3D point clouds, as well as the proposed research of the thesis, organized in four

subsections. The first subsection analyzes the denoising methods that can be applied

to the point cloud data in order to obtain a more accurate distance measurement.

∗Figure 1.1 - Music video by Radiohead - House Of Cards, available as public stream at
http://www.youtube.com/watch?v=8nTFjVm9sTQ
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In Sections 2.2 and 2.3 we consider different surface representations that allow for

a proper merging of point cloud based meshes and the customization of the level

of detail (LOD), thus enabling computation complexity management. The fourth

subsection focuses on the visualization of uncertainty in the digitalized surfaces. In

the end, we point out the main features of the desired implementation.

The goal of this research is to implement graphical and visualization methods that

support a fast and reliable digitalization of 3D environments without human inter-

vention, with the secondary objective of combining robotics and graphics in order to

give new solutions to SLAM and other similar problems.





Chapter 2

Problem Description and Analysis

In this chapter we present the directions we would like to follow in our research on

fitting surfaces or patches to 3D range point clouds, as well as reasons for their via-

bility for the proposed goals, based on related approaches and publications.

The discussed field of fitting various surfaces to point cloud data is vast and in-

corporates many problems. These issues need to be handled as efficiently as possible,

in order obtain algorithms capable of solving the major task of automatically fit-

ting surface representations to sensor information, structured in the form of point

clouds. The complexity of the problem increases even more when all the issues have

to be solved in an online fashion. As an example from surface reconstruction, this

would translate not only into correctly detecting important gaps (Figure 2.12) in the

scanned areas, but also doing this in a limited amount of time, or from a computa-

tional perspective, in a limited number of processing steps.

One of our goals is to accurately reconstruct 3D objects and environments. This

process can be directly coupled with the sensor data that we are using for reconstruc-

tion. Thus, we would like to avoid using artificially generated datasets of 3D scans,

as the results of the algorithms we would implement and apply rely also on the noise

distribution present in the scans. As different sensors have different types of noise

distributions, we decided to use real world datasets that have the advantage of testing

the proposed methods with the conviction that the results will be representative for

real scenarios.

A particular type of device that we can use to acquire point cloud data is repre-

sented by the time-of-flight (TOF) sensor. Some of these devices have additionally

the advantage of generating 3D range images, with the points being distributed in

a Cartesian coordinate system. Under these circumstances, we can make use of this
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8 CHAPTER 2. PROBLEM DESCRIPTION AND ANALYSIS

property that the sensor scans generate points at a regular interval on two axes, thus

mapping the information to a 2D grid.

Figure 2.1: Range images of an object taken with the range sensor orthogonal to
the 6 surfaces of a cube that bound the object

In other words, when a single scan is displayed in a virtual space with the viewpoint

positioned and oriented as the sensor at the recording moment, we would obtain a

grid of points similar to that of pixels on a screen (Figure 2.1). In the same way as

for pixels, we would have the properties that two horizontally or vertically consec-

utive points having a constant distance between them and no two points are ever

positioned on the same line that passes through the viewpoint.

The input data for our research will be obtained from sensors widely used in aca-

demic research and industrial products for generating point clouds from surface scans

(with the purposes presented in Chapter 1), namely the Swiss-ranger (SR)[12] and

the rotating laser-range-finder (LRF)[24]. While both these sensors are TOF devices,

there are fine differences between them: resolution, point cloud structure, scan time

etc.

Our work will focus on using point clouds generated by a Swiss-ranger mounted on

top of a mobile robot. These TOF sensors offer ideal conditions for achieving our

goals, by generating data with a lower range image resolution - faster frame pro-

cessing, small scanning intervals - forces the need fr online solutions, and reduced

view angle - which allows for a better mapping to 2D. The dataset was generated by

the Robotics Department of Jacobs University and contains multiple groups of scans,
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Figure 2.2: Two Rugbots (rugged robot) in a rescue scenario with an environ-
ment similar to the Jacobs University Rescue Arena. The robots are orienting
themselves by using mainly range images generated by the sensors mounted on
them. The recorded range images are locally processed, but also forwarded and
stored to a database.

with a number of 100 to 2000 consecutive frames of an in-door environment in Jacobs

University’s on-campus premises, the Jacobs University Rescue Arena (Figure 2.2).

Each frame contains 25.344 points, as the resolution of a Swiss-ranger generated

depth image is 176x144 pixels. The points are defined by their position in the 3D

coordinate system of the sensor (x, y, z) and an associated intensity I. Technical

specifications of the device that are important for the thesis also include the facts

that the distance resolution is 1% of the range and the typical frame rate is 25 fps,

with variations between 15 and 30 Hz.

The second dataset was generated by an LRF at the University of Osnabrűck, Ger-

many [7]. It represents an out-door range recording at the AVZ building of the

mentioned university, and contains 63 frames of 81.360 data point each. The posi-

tion of each scanned point is stored as previously described.

For both datasets we have access to the odometry information of the mobile robots,

deduced from gyroscopes and represented by a set of values in global coordinates

(x, y, θ) given for each frame. Nevertheless, odometry data on many mobile robots

can be strongly imprecise and noise prone due to the slipping of the wheels or lack

of engine precision.

Another advantage of these datasets is that they have been previously used for SLAM

(Chapter A)[7][46] by different academic communities, therefore supplying us with

the possibility to compare our surface reconstruction efforts, analytically and visually.

In the following subsections we concentrate on four main topics of proposed research,
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presenting the ideas behind them, as well as particular work executed on tasks with

similar goals or similar implementation methods, in order to point out procedures we

would like to extend or elements we would like to adapt for the topic at hand.
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2.1 Noise Reduction on 3D Range Sensor Data

Digital images are nowadays present in every aspect of the human existence, be it

private or professional. But this new era of imaging has also eliminated the limitation

of representations to the visible spectrum. Nowadays visualizations allow us to gather

insight into the world of medicine, physics and chemistry in ways never imagined be-

fore.

As these images that plot distances, directions and many other features into colors

and shapes gain increasingly more ground as the basis of various analytical proce-

dures that extract vital information from them, the importance of having an accurate

representation of the data is positioned in the center of researchers attention.

Such methods that modify an image, be it natural or artificial, in order to improve

the results obtained by applying specific algorithms on the data later on, are called

preprocessing methods. A particular type of preprocessing methods that have steadily

gained importance over the last decades is represented by the noise reduction pre-

processing.

Visualized data is prone to multiple types of errors, either depending on the ac-

quired data, or on the processing and visualization step (Figure 2.15). As their name

suggests, preprocessing methods are executed on a dataset before it is used by a

specific processing algorithm, aimed towards reaching different types of conclusions

or extracting information from it. As such, the only level of error they have access to,

and thus eliminate, is the acquisition noise usually introduced by the sensor device

that generated the data.

A particular set of information that can be visualized as 2D representations is the 3D

range sensor data. These datasets have the characteristic that, for particular types of

TOF sensors, the information is obtained as a 2D grid of distances and intensities. By

using normalization of the intensity values, but more importantly of the distances, a

2D grayscale image can be generated representing the previously mentioned grid. The

color of each pixel in the grid is obtained by the normalized mapping of the scanned

distance to the color space (0−255 values for a color encoding of 1 byte per channel).

A 3D range sensor image generated in such manner allows for a much simpler anal-

ysis of the point set in a 2D image-space, thus reducing the processing complexity

and additionally offering the possibility of applying graphical methods specifically de-

signed for 2D images, in order to enhance or extract robust feature descriptors.

Nevertheless, sometimes the most important features that decide over the success

of the processing step are deteriorated by the introduced acquisition noise. This is
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especially true in the case of range images obtained from infrared (IR) sensors, which

can generate highly noisy data because of spurious readings influenced by elements

like additional IR sources (e.g. ambient light), surface properties of the scanned ob-

jects (dark objects tend to absorb IR light, offering a minimal reflection to the sensor,

thus influencing the quality of the reported information) and cut-off distances (TOF

sensors usually have a maximal distance range, which if overstepped will lead to a

reading equal to the threshold value). As our sensors are not perfect and we can not

change the environment such that the obtained information completely lacks errors,

the only suitable path to follow is the introduction of preprocessing steps that reduce

the influence of noise on the dataset.

An important step towards achieving this is represented by the analysis of the type

of errors hidden in the data. According to [14], 3D range images present the highest

level of noise along the primary directions of the sensor’s lines of sight. This is of

particular importance when dealing with range images, as we know that the vertical

and horizontal scanning errors, or in other words the inconsistencies in the spacing of

the grid, are minimal and can be disregarded. Additionally, it is proven that the noise

introduced by the scanning process along the Z-direction has an asymmetric error

distributions [14], knowledge that is valuable for any algorithm trying to eliminated

the inherent noise.

Measurement errors do not represent the only problem with range sensor point clouds.

A very important characteristic of these point sets, that is partially considered in this

section and further emphasized in the next ones, is the amount of generated points.

With large 3D point datasets, our goal is not only the elimination of noise or filtering

of imperfect data, but also redundancy reduction [38] implemented by down-sampling

the point set. This complexity reduction can be applied homogeneously or selectively,

depending on the detail levels of the scanned surface.

In general, error reduction on any given point cloud is executed in 3D space [38]

as this represents the naturally generated data. One method that is used for this

purpose presents a discrete Laplacian smoothness operator that moves one point P

to the centroid computed by 1
k

∑k
i=1 qi of the 1-ring formed by the points q1, ..., qk.

Similar algorithms can be applied on 3D point clouds by replacing the 1-ring by the

3D neighborhood of the point P .

However, the Laplacian smoothness operators is known to cause the shrinkage of

the entire mesh, fact extremely undesirable for visual information. Even if other algo-

rithms have overcome this limitation, the computational expense of reducing or even

completely eliminating noise in a three dimensional environment is still high.
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What we propose in this section is an alternative that considers - where possible

- the 3D point cloud as a range sensor image and applies modifications and combi-

nations of specific image denoising algorithms to lower the error levels in the data.

The main idea is to reduce the noise attached to the attributes that are used in

the main processing step, and not necessarily to reduce the error levels in all at-

tributes. But reducing the amount of erroneous information in images is particularly

improved by the usage of normals, especially when detecting and reconstructing sur-

faces [29]. Therefore, generating and reducing the errors in surface normals is of high

importance for our endeavor. Likewise, when we build surfaces from measured data,

we would like to reduce the effects of noise on visualization or subsequent processing.

The computation of normals specific to each range point is not a trivial task. Mul-

tiple methods can generally be applied for these purposes, as presented in [29] and

[40]. The main idea behind the algorithms is represented by the application of the

total least square method to the k nearest neighbors of the point P [62], in order

to generate a local surface. By using this surface, the normal at point P can be

approximated as the normal of the obtained surface at that position.

In our implementation of the least square method we have to consider that the

accuracy of the normal estimation depends not only on the noise levels and the

neighborhood size k, but also on the curvature of the surface and the distribution of

the samples. Nevertheless, in our case the datasets considered contain mainly planar

surfaces and the distribution of the samples is homogeneous in 2D space.

As the actual surface around a point P can have a variable complexity, the method

of manually setting the value of k [29] can be significantly improved as presented in

[40]. This approach enables us to compute the neighborhood size relatively to each

point, based on the local topology, noise and sampling density, which together with a

previous error filtering executed on the point cloud, suggest a high level of accuracy

for the computed normals.

As the underlying points for the estimation of the local surface are affected by noise,

one should for all normal extraction methods first filter out the noise of the range im-

age by a smoothing filter. Still, these algorithms influence and even eliminate edges,

an undesired result for our images. Particular methods for smoothing 2D images

without influencing the edges will be presented later in this section. By reducing the

noise inside recorded surfaces and maintaining the surface manifolds, the chances of

computing close to correct normals should be strongly improved.

Once the normal values are computed for the 3D range image, we can use this
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information together with other attributes (i.e. distance) with the porpuse of im-

proving again on the overall precision of the depth images. To achieve this image

filtering with minimal effects upon the edges of the objects, we will explore variations

of two widely used filtering methods: denoising methods and anisotropic diffusion.

Additionally to these, other filtering methods might be considered during our research.

The denoising of images is a process that can typically be described based on the

following chain of events:

• the image is transformed into a different N-dimentional (ND) space (N=1 →
∞) that allows for a better detection of the noise information

• a threshold is applied on the data inside the ND space, in order to remove the

detected error levels

• the inverse of the initial transformation is applied and the information is repre-

sented, denoised, in the original image space

A valid possibility for the ND space, which has already presented promising results for

our denoising tests, is represented by the domain obtained after computing NxD (N

- normal, D - distance) for each point in the point cloud C. As N can be decomposed

into 3 elements, which are basically the projections of the vector onto the axes, we

obtain a 3D space based on:

x′ = Nx ·D, y′ = Ny ·D, z′ = Nz ·D, X ′ = (x′, y′, z′) (2.1)

Where X ′ is the corresponding point in the new point cloud C ′, for the point X from

C.

In this new domain, points with similar distances and similar normal orientations

will be grouped together in areas of the 3D space. But distance and normal similarity

is a defining property for points that belong to the same planar surface. Thus, the

clusters in the 3D point cloud C ′ can be considered as surface correspondences and

interpreted as a mixture of Gaussians, where each Gaussian represents a real quasi-

planar surface (Figure 2.3).

An additional possible domain mapping is given by the Fourier transformation, which

follow the same basic idea:

Spatial domain h(x, y) ⇒ DFT ⇒ Transformation domain F (u, v) (2.2)

Here, the ND space, also called the frequency domain, has the distinct advantage

of detecting the presence of frequencies in the original image. But due to the fact

that, as previously mentioned, noise inside a TOF sensor acquired datasets has a

asymmetric error distribution, we could have the possibility of eliminating it.
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Figure 2.3: Range point clouds as 2D images (top) and the corresponding rep-
resentations in the NxD space (bottom). The range image on the left contains
6 planes and the one on the right 9 planes. In the NxD space some points have
been grouped to represent points belonging to the same surface.

By computing thresholds for the various clusters detected, we can conclude which

points belong to a surface and which do not. The 3D points that do not pass this

selection process represent either subsets of very small or very complex surfaces, or

elements influenced by error.

Following this approach, all the points included inside a cluster representing a surface

are mapped back into the 2D image space, leaving the missing pixels empty. This

in itself does not constitute an impediment, as our goal is not to generate complete

smoothed images, but to supply to the next surface extraction processing stage a

more precise set of information. Thus, the reasoning is that a surface could be better

detected from a marginally lower number of correct points than from a larger number

of points, strongly influenced by noise.

The main challenge for the denoising as presented so far, is the selection of a correct

thresholding function. This function would be best represented by a distance measure

that discards points for which the computed value surpassed a certain threshold.

A possible good start is represented by the square error function [25][62] that tries
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to minimize the total intra-cluster variance:

V =
k∑

i=1

∑

xj∈Si

(xj − µi)2 (2.3)

Where there are k clusters Si, i = 1, 2, ..., k, and µi is the centroid or mean point of

all the points xj in Si.

As the square error function is still a selection function that attributes each point to

a cluster Sk based on its measure, it would have to be modified in order to reject

values that are too far from any centroid.

Furthermore, the k means clustering algorithm has the drawback that the gradi-

ent descent search might lead to a local minima, and not to the optimal solution.

Therefore, we could implement an equivalent formulation of the measure as a trace

maximization problem with special constraints as presented in [25]. Under these cir-

cumstances, the maximization problem reaches global solutions based on the gradual

relaxation of the constraints. Thus, variations of the k means method could be

applied as used in computer vision tasks for image segmentation, with additional

modifications supporting error filtering.

Besides the Euclidean space, distance functions for clustering and noise filtering might

consider other attributes like color, intensity or even pixel-coordinate weighted dis-

tance [51] in order to improve the results of the grouping process.

A particular denoising approach that incorporates many of the previously discussed

elements and, in addition, presents a high tolerance to noise is presented in [49]. The

approach applies a non-parametric kernel density estimation method with mean-shift

clustering on the 3D point cloud.

Given the point cloud, the algorithm computes an unknown density function f(x),
where an estimation of f(x) is provided by:

fest(x) =
1

h3N

N∑

i=1

Φ(x− pi)
h

(2.4)

Where Φ is the kernel (Gaussian) function and h is the kernel size.

Other similarities to our previous propositions can be found, as the current denois-

ing algorithm takes the computed normal directions into account. Furthermore,

each point receives an associated likelihood, representing the probability of it being

located on a sampled surface. As such, the filtering method described in [49] elimi-

nates different noise amplitudes by means of thresholding. As suggested previously,
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the remaining points would represent the base for a more accurate reconstruction of

the underlying surface.

The main difference between this method and our proposed approach consists in

the idea of handling the information consistently as a 2D range image instead of a

3D range point cloud, for the filtering, and partially the surface reconstruction. One

of the advantages we hope to gain this way is a speed-up of the filtering procedure.

Alternative implementations for denoising based on decomposition of a signal us-

ing complex-valued wavelets are presented in [36]. The algorithm maintains the

important phase information in the signal given by the image, while at the same time

automatically determining a threshold for trimming/shrinking wavelets corresponding

to noise.

This approach has the advantage of avoiding the use of distance metrics like the

root mean square (RMS) measure, which althought widely used in image processing

tasks, might not be appropriate for every circumstance. Furthermore, many metrics

for evaluating the quality of image reconstruction have minimal or no known cor-

relation with the human visual perception, which is almost exclusively the ultimate

performance estimation system at out disposal.

However, a feature that appears to be very important in the human perception of

images is phase. As phase data inside an image contains most valuable information, it

suggests the possibility of obtaining benefits, when applying methods that eliminate

only the error phase and maintain the perceptually important phase information in

the image (2.3).

In order to preserve the phase data and at the same time filter out the noise, the algo-

rithm first extracts the local phase and amplitude information at each pixel based on

an implementation of the continuous wavelet transform. Inside the newly generated

ND space, noise amplitude distributions are estimated at each scale level. This allows

to further automatically deduce the shrinkage thresholds to reduce the magnitudes

of the filter response vectors without influencing the main phase.

The mentioned automatic thresholding process [36] is based on the knowledge that

wavelets have compact support. Thus, a mapping of the image into the wavelet

coefficient space would result in a strong localization of the coefficients supporting

important features, whereas the coefficients resulting from noise would have a ran-

dom distribution over the ND space. In other words, inside this domain the energy

from the main signal would be based on a cluster of variables that would be easily

detectable, thus allowing a correct noise filtering.
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Another important category of filtering techniques that we would like to explore

is represented by anisotropic diffusion [44]. These methods focus on reducing the

noise levels inside an image, without influencing significant parts usually represented

by boundaries and other detail elements important for the correct perception of the

visualization.

The general algorithm enables a diffusion process that iteratively filters the image

space by a locally adapted function. As such, an array of increasingly smoothed im-

ages u(x, y, t) is generated, with t ∈ (0..n), where u(x, y, 0) represents the original

image and u(x, y, n) the image after the multiple filtering steps.

Most diffusion implementations are developed by using discretized continuous partial

differential equation (PDE), which can lead to the development of different kernel

filters. This already generates a decision problem, as scientific algorithms for deter-

mining the optimal kernel filter are not available. Most diffusion filters use kernels

selected based on the personal experience of the research team with the various types

of image data. Additionally to the selection of the kernel, another difficult task is

the deduction of the edge-stopping criteria, both of which will be further discussed

in the following paragraphs.

The anisotropic nature of the diffusion refers to the lack of homogeneity in various

local areas of the image. In other words, intensity discontinuities might be present in

the images, discontinuities that need to be considered and preserved by the algorithm.

Figure 2.4 presents such a discontinuity where the neighborhood of a pixel includes

intensities from two different populations. Thus, the diffusion algorithm that needs

to compute the adjusted pixel value P ′ for P has to consider the fact that part of the

right most neighborhood belongs to another population. Once this fact is recognized,

the algorithm should be capable to adjust its function in order to give a lower weight

to the pixels representing another intensity group. A failure to detect boundaries and

handle them accordingly usually leads to a reduction of the noise levels, but also the

undesired effect of blurring the sharp features, fact particularly observable when using

an unmodified low-pass filter.

Besides edge removal, shortcomings of the basic algorithm presented in [44] include

a weak error reduction performance on large images, and the generation of strikingly

divergent solutions from similar initial images.

Therefore, the necessity for creating a diffusion filter tuned to the particularities

of our 3D range images becomes clear, as it did in the case of denoising. To create

an anisotropic diffusion algorithm capable to handle our dataset and generate the de-
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Figure 2.4: Random pixel and its neighborhood near an intensity discontinuity

sired results that would enable for a better surface detection inside the range image,

we consider multiple known approaches as a starting point.

An algorithm that considers improving the performance of anisotropic diffusion on

large noisy images is presented in [39]. At the same time, it enables the preservation

of edges by solving a nonlinear diffusion equation governed by the norm of the image

gradient. This edge-strength function is then later supplied to the anisotropic diffu-

sion algorithm, as prior knowledge about the image.

The presented idea also has the advantage of being tested on grayscale images,

which can be considered as an equivalend to our normalized distance grid.

Similarly, in [61] an adaptive kernel filter is considered as a natural generalization

of the Perona-Malik [44] version, where a parameter K controls the strength of the

filter at pixel level. As a direct result, images processed with this technique receive

a strong diffusion effect in areas with same intensity populations, and weaker effects

near edges. The parameter K can be adjusted automatically such that highly-textured

regions also receive a powerful diffusion effect, resulting in powerful noise reduction

in error prone areas.

The edge-stopping or diffusivity criteria for the anisotropic diffusion is a feature of the

algorithm that controls the iterative process, and thus the degree of image smoothing.

As such, it has an important impact upon the generated results. Much like the kernel

filter functions, the selection of the edge-stopping function in most applications is an

ad-hoc procedure based on previous observations.

To counteract this, [5] and [50] present alternatives for automatically computing

a close to optimal edge-stopping function by combining fields like Bayesian inference

and statistics.

In [5] a correlation between anisotropic diffusion and robust statistics is created.
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Robust statistics studies estimation problems in which the data contains gross errors,

similar to noise distorted images. In this setting, an original image F is interpreted

and the resulting estimate is viewed as a piecewise smooth image G. In the ideal

case, the generated image G follows the equation:

G + ν = F (2.5)

Where the error ν can be considered as a corruption added to the original image

by zero-mean Gaussian noise with small variance. Furthermore, the desired output

image Io would need to satisfy an optimization criterion that minimizes the difference

error.

The procedure considers a statistical interpretation of the the PeronaMalik diffu-

sion equation [5], which can be seen as the estimation of a piecewise constant image

from a noisy input image. The here proposed edge-stopping function is based on

Tukeys biweight robust estimator and provides us with an automatic stopping crite-

rion and a powerful edge preservation method. Additionally, the process allows the

detection of edges based on the simple highlighting of the outliers.

But novel edge-stopping functions can also be derived from image statistics by auto-

matically learning function parameters based on previously evaluated training images.

Although this approach [50] follows a different path from the previous one, it does

supply us with an automatic edge-stopping function, crucial requirement for our on-

line preprocessing on range images.

For Equation 2.5, the algorithm tries to determine a generative model for the image

pixels Fi. In order to achieve this, such models are learned from intensity and spacial

image statistics. More precisely, a statistical model is deduced from training data

presenting pairs of noisy and smooth images, and further utilized to derive a statis-

tically motivated edge-stopping function.

As a related topic, [56] presents a generalization of anisotropic diffusion from im-

age processing to surfaces, by considering the vertex normal vectors as representative

to the surface fluctuations. Following the proposition that these normals are the base

for a generalization of diffusion techniques in 3D, the subsequent surface deformation

can be presented as a process involving the filter application on the normals and a

topology preserving deformation of the surface based on the new normal vectors.

This leads to the generation of planar patches united by high curvature creases.

While overall focusing on the same topic as us, this approach does not cover our

goals of gaining advantages by making use of the particularities of range images and

corresponding image processing techniques. Nevertheless, using anisotropic diffusion

on surface normals throws us back in the region of denoising methods, suggesting
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for our range images a differentiated approach depending on the point attribute: dis-

tance, intensity, normal etc.

Furthermore, this idea is explored again in Section 2.3, as surface complexity re-

duction and elimination of undesired noise features introduced in the mesh model

after the multi-mesh merging are topics that would benefit of a surface smoothing

technique.

Additional elements that could aid the reduction of the noise present in the 3D range

images include histogram equalization and salt-and-pepper noise filtering [51]. Based

on the histogram of an image, methods have been developed that better distribute

the color values in such way that would generate a more even distribution of the gray

levels. This is particularly helpful in the correct detection of edges, as these might

be enhanced by creating a stronger visual contrast between neighboring surfaces.

Moreover, salt-and-pepper noise reduction relies on the detection and elimination of

single dark pixels in bright regions, or single bright pixels in dark regions, a procedure

of fairly reduced complexity, but with a positive impact on the point clustering.

Figure 2.5: Preprocessing filters applied to a range point cloud containing 6
major surfaces: initial 3D range image depicted through a warm color mapping
of the distance values (left), range image after anisotropic diffusion (middle),
range image after denoising (right). The images on the bottom are close-ups of
the corresponding ones on top.

Filtering tests have been already executed on multiple range images. Images 2.5

and 2.6 present some preliminary results. With both filtering methods an increased

smoothing of the surfaces is noticeable, and thus an important reduction in the noise

levels present in the image. The best results are obtained in areas very close or far
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from the sensor, where the initial noise levels are clearly visible on the normalized

depth representation.

Figure 2.6: Preprocessing filters applied to a range point cloud containing 9
major surfaces: initial 3D range image depicted through a warm color mapping
of the distance values (left), range image after anisotropic diffusion (middle),
range image after denoising (right). The images on the bottom are close-ups of
the corresponding ones on top.

However, the figures present only a partial success, as both methods have undesirable

side effects. In the case of the diffusion method, we notice a softening of the surface

edges. At the same time, the basic denoising filter manages to reduce the visibility

of planes that are very close to the maximal measurable distance. Both these effects

may influence the plane/surface extraction process from the later stages and enable

misinterpretations of the range image that can result in undetected or incorrectly

fused surfaces.

One of the techniques that in our view would ensure a measure for the performance

of the filtering algorithms is edge detection (Figure 2.7). Established edge detection

methods (i.e. Prewitt, Sobel, and Roberts operators)[10] applied to the 2D distance

images can emphasize the addition or disappearance of any surface boundaries, thus

suggesting the strength of the filter based on the edge preservation. More precisely,

by computing a matrix difference between two images obtained by using an edge

detection method on the original range image and the filtered one, and evaluating

the resulting grayscale image, one could express the proficiency of a proposed filter.

Methods for avoiding false edge detection due to remaining noise levels, as well

as edge enhancement methods, can also be considered [32]. Parts of these methods
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Figure 2.7: Laplacian edge detection results on range point clouds

might be implemented for the surface extraction or image segmentation algorithm

(discussed in Section 2.2), but as they are not the topic of this thesis, they might be

used as given and not thoroughly explained in these pages.

Other performance measurement metrics for the filtered range images will be rep-

resented by applying well established algorithms, like region growing [46][58][61], in

order to deduce which methods enabled for a better detection and estimation of the

3D surfaces in the datasets.

The preliminary results presented in this subchapter constitute a promising first step

for the undergoing research. However, this area requires more implementation efforts

and evaluation of the proposed ideas. Additional possible research paths that will be

investigated in the area of noise reduction include:

• Various combinations of the filtering methods proposed in this section will be

evaluated for performance. The main ideas include: different filter types or

filter configurations for each attribute (distance, normal orientation, intensity,

shape etc.), sequential application of filters and combinations of these.

• Our research, as well as sources like [24][12], show that the noise levels intro-

duced along the view direction is proportional to the distance to be measured.

Inspired by the maximal cut-off distance for these sensors, we want to reduce

this threshold by relatively eliminating every point with a value close to the

maximal recorded distance. By this we hope to eliminate the most error prone
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points, especially as the maximal recorded range is usually the sensor cut-off

distance.

• As noise levels in range sensor data are proportial to the scan distance, we

propose the distribution of the range points on multiple layers according to

distance and local topology. On the generated layers, one can apply local

denoising methods specially configured for the particular point sub-cloud. Fi-

nally, the denoised data segments are merged, thus forming the resulting range

image.

Even with the error reduction and noise filtering presented in this section and applied

as a preprocessing step - or even postprocessing on the fused mesh (Section 2.2) in

order to minimize merging errors - undesired influences will not be fully eliminated.

Under such circumstances, uncertainty visualization methods (Section 2.4) represent

a viable technique for correct visual interpretation, in the presence of leftover noise.
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2.2 Surface Reconstruction Through 3D Mesh Merging

After applying a preprocessing step for the 3D range images in order to reduce the

noise levels introduced by the TOF sensors during the scanning stage, we now would

like to turn our attention to another important step in SLAM and surface regenera-

tion - the merging of surfaces.

The detected surfaces inside one 3D point cloud represent only a small part of the

global puzzle - the environment that should be virtually reconstructed. For example,

to obtain a 3D visual representation of an entire wall of a building, chances are that

a sensor would require multiple scans to capture the entire surface. These separate

scans represent multiple 3D range frames, which additionally have the property that

the scan position, direction and orientation might have changed between successive

sensor sweeps.

Before we can investigate the algorithms already available for merging surfaces (more

exactly mesh representations), we need to establish two elements: which are the sur-

faces in the range images and what is the correlation between them? There are

multiple algorithms that offer us persuisive answers to these questions, most of them

being shortly presented further on.

As surface extraction and point cloud/surface matching are not topics in this pa-

per, we will only briefly cover the most important and performant methods, as well

as state that our future research will employ a standard implementation for these

methods.

To achieve a close to correct extraction of the planar and/or curved surfaces from

our filtered range images, we would like to use an implementation of the region

growing algorithm [46][58][61] or an image segmentation method [41]. While the

region growing algorithm is widely used in the robotics research community, it has

the disadvantage of requiring strong seeding points in order to achieve good results.

On the other hand, image segmentation techniques have been used and improved for

decades, allowing us to choose from a wide variety of proven approaches. Further-

more, as our previously explained filtering ideas should maintain and even emphasize

the structural edges inside the range image, the use of an edge-based image segmen-

tation technique would be preferred.

Besides these approaches, other surface generation methods rely on: generating a

collection of maximally large NURBS patches that are connected through a Catmull-

Clark limit surface [45], combining smooth density functions and ridge extraction

methods to reconstruct surfaces based on maximal local density [52], and many more

[14][13]. These provide us with alternatives and the possibility of selecting an imple-
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mentation that compromises between performance and execution time.

Most of these algorithms have the common characteristic that once the points that

make up a surface are deduced, we can apply a tessellation of the range image

segments by triangulating over the nearest neighbors. Triangulation over step dis-

continuities or gaps is achieved by the disconsideration of triangles with edge lengths

higher than a previously established threshold.

To additionally improve the performance and accuracy, we might consider applying

subsampling in the case of high density point cloud areas, as well as the reconnais-

sance and elimination of redundant information.

Detecting which points inside a range image represent a surface is only the first

step. Additionally we require correspondence information, either between generated

frame meshes or between point sub-clouds, to be able to merge the recognized sur-

faces.

For computing matches between point clouds, the traditional iterative closest point

(ICP) [3][47][63][2] is one of the mostly used algorithms for virtually reconstructing

in-door and urban outdoor environments (Figure 2.8). Modern variations of ICP

may consider minimizing error metrics that do not solely rely on Euclidean space,

but instead incorporate attributes like normals, colors, edges/shape, a.o. An aid in

this process can be represented by the computation and evaluation of the sensor’s

pose between consecutive scan. Based on the estimated positions and orientations,

one could quickly detect 3D point correspondences in a non-iterative way. However,

the computation of the translation and rotation of the robot-mounted TOF sensor is

typically very unreliable, as position sensors usually lack precision and fail to capture

extraordinary events, as for example wheel spin or side trail.

Figure 2.8: Two point clouds and correspondences computed with ICP
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Matching surfaces from two different sets, implemented as meshes or planar patches,

is another problem thoroughly explored by different research communities. Meth-

ods for computing surface correspondence take into consideration a large variety of

features like attribute-graphs, shape-factor, area ratio, curvature-histogram, inter-

surface relations or combinations of these [19]. A clear advantage, that speaks for

a surface/patch based matching, is the reduced computational expense of most of

these techniques.

Once surfaces are extracted from range images and the correspondences for these

segments are computed, we can divert out attention towards the mesh merging pro-

cess. The merging approach we would like to implement is similar to the one presented

in [14], where after processing one range image at a time, the results are combined

with the already processed information in a simple additive way. More precisely, in

our research we hope to achieve a high-accuracy iterative fusion of the frame surface

meshes. Each newly analyzed range cloud will add none, one or multiple surface

meshes to the globally accumulated mesh representation. The surface meshes can be

directly generated from the corresponding 3D points of the range image, but in order

to simplify the mesh and eliminate redundant information, the selected point set will

be down-sampled. Still, this iterative process leads to a multi-mesh representation

that gains precision, but also complexity, with every added partial surface.

The problem of linearly increasing complexity of the overall mesh will influence the

rendering performance of the reconstructed environment. To reduce these effects,

multiresolution methods will be discussed in Section 2.3 as a measure to automat-

ically adapt the complexity of the visualized environment to the size of it, and at

the same time consider the computation reduction for areas that are out of the view

frustum.

As the generation of multiple resolutions, together with tasks like hole detection

and filling, usually present themselves as computationally expensive, these refining

procedures might be executed only on demand, based either on particular thresholds

or simply by limiting their execution to every n-th merging iteration. Moreover, we

consider the introduction of a final optimization step that would shift the execution

of certain delayable and low priority processing events towards the end of the pipeline;

in case of time pressure under online circumstances, these might be omitted or sim-

plified. A good example for such delayable events is represented by hole filling tasks,

which in many cases can be performed once, after the global surface is generated by

considering all available 3D range point clouds.

While we have discussed the overall implications of the mesh merging procedure

we would like to apply, our main interest is focused on developing an actual core
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merging algorithm. Supplying an additional set of meshes for each point cloud image

and merging each of these meshes with the corresponding global one are not atomic

tasks, but the core merging algorithm would be solely represented by a strategy for

merging two corresponding 3D meshes.

A good starting point towards understanding this procedure, its complexity and pos-

sible complications that might arise, is represented by [57]. The article covers an

approach for combining a set of range images obtained from multiple TOF sensor

scans of closed surface objects. The acquired collection of meshes is merged into a

single polygonal mesh during an incremental process, where at each step a new range

image generated mesh is added. The results of the fusion is a complex mesh that

entirely describes the topology and surface of the analyzed objects.

The idea exposed in [57] is strikingly similar to the one considered at the begin-

ning. Initially, preprocessing steps ensure that the mesh representation considers a

correct topology. Once the final meshes are established, the distance between the

two triangle meshes that need to be fused is minimized. A particularity of the method

that might already represent a feature that we need to overcome in out research, is

that merging is executed for two overlapping meshes only, which is not always the

case for consecutive range images of an environment.

Figure 2.9: Merging of two partially overlapping meshes: (left) initial meshes and
the established clip boundary, with the edge intersections highlighted, (middle)
overlapping triangles that will be discarded from the first mesh, and (right) final
merged mesh with additional vertices for previous edge intersections

Once two meshes are prepared, their correspondence and a certain level of overlap

are established, the meshes are fused by the means of an intuitive process called

zippering. This process is presented in Figure 2.9 and consists of three main steps:

1. Remove overlapping portions of the meshes - redundant triangles are removed

on both meshes until there are no more triangles in any of the two meshes that
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completely cover a part in the other surface.

2. Zipper the two meshes - considers edge intersections between the triangle

boundaries of the two meshes and inserts additional vertices at those positions.

3. Remove the small triangles introduced - the merging process may create small

triangles; to avoid this, triangles with an area or edge below a threshold undergo

a process where a vertex is removed and all the surrounding triangles of that

node are joint, thus producing a larger triangle.

A question that might appear already at the first step, is how to determine the exis-

tence of an overlap of two 2D manifolds in 3D space. The solution for this is based

on the computation of the normals for the surfaces, which are used to detect an inter-

section between the normal direction at a point and the second mesh representation.

This enables to detect if an overlap exists even when the surfaces are slightly gaped,

for example due to scanning errors.

Figure 2.10 presents two meshes that are shifted along the normal direction. To

overcome this in the detection of an overlap, a 2D manifold is introduced, based on

the normals of the mesh boundary. This third mesh is used to extend the margins of

the surface and detect any superposition between the corresponding meshes.

Figure 2.10: 2D manifold representing the extended boundary of the 3D surface
mesh

However, the fact that the creation of the global mesh structure is relatively slow

and not real-time and that we are presented with closed surfaces, leaves room for

research and adaptations that might make this technique applicable for online mesh

generation of in-door and outdoor environments.

Contrary to the previous article, [53] concentrates on merging non-redundant surfaces

that do not present an overlap. In order to do so, the Venn diagram is computed for

the range images by finding the contents of the canonical subset that is sustained by

the correspondences in the mesh sets. Furthermore, the orientation of the triangles
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is also computed, allowing for a correct joining of the resulting meshes.

Figure 2.11 presents the merging procedure of two non-redundant surfaces. The

empty area between the meshes is interpolated by a constrained Delaunay triangu-

lation. While the authors focus part of their efforts on removing the redundancy,

our research will focus on combining the methods of [57] and [53] in order to detect

overlap and apply the corresponding algorithm, without trimming or extending the

initial meshes.

Figure 2.11: Boundary intepolation between two non-overlapping meshes in 3D
space: (left) initial meshes with nearby boundary highlighted, (right) merged
mesh after interpolation

Additionally, as a final optimization step, the generated joint mesh is analyzed and

different levels of resolution or detail (LOD) of the surface are generated, based on

various areas of interest. This is of a particular importance for our research of mul-

tiresolution methods, presented in the next section.

Of further interest for us, [13] presents a complete and detailed solution for extracting

range images and reconstructing complete virtual representations from them. Once

the triangle mesh is generated, the signed distance contribution is calculated by

means of ray tracing from the viewpoint (initially, TOF sensor) through each voxel

near the range surface. These rays might eventually intersect the global triangle

mesh, and allow for weights to be computed. Based on these measures, in chapter

6.1 the merging process is thoroughly explained, the end result being the extraction

of a zero-crossing isosurface from the volumetric grid.

Understanding and following alternatives for all the steps of surface reconstruction is

of high relevance for a successful research. Nevertheless, much of our attention goes

towards chapter 7.1 of [13], dedicated to optimizing the overall process and making

it computationally inexpensive, as this is of vital to achieving a real-time execution.

Previous research, as shown in [13], has presented that the parsing manner of the
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range image and the 3D space is a critical aspect, which influences efficiency of

execution. As this process will be required in multiple sections, focusing on it’s im-

provement is a clear priority. To avoid random access on either side, the data storage

has to be optimized for the given task, such that a direct mapping between the range

image and the 3D data exists.

While there are still task-driven particularities to the merging of TOF sensor generated

point sub-clouds in the form of meshes, these challenges and possible improvements

will represent the area of main interest in implementing a functional mesh fusion

technique.

A particular problem is represented by the presence of holes in meshes, or more

precisely the detection and correct elimination of them. As usually there’s no way

to establish which areas represent a gap/hole, and which are simply scanning er-

rors based on the point clouds or the point-based meshes. A simplistic solutions for

overcoming this is given by establishing a threshold for the inter-triangle area, which

governs the minimal margin for empty regions (Figure 2.12).

Figure 2.12: Processing steps from point cloud to surface mesh: (left) sub-
sampled 3D range point cloud (middle left) triangulation of the closest points
(middle right) mesh surface rendering with faces computed only for triangula-
tions with an area under a given threshold (right) final high resolution surface
rendering after eliminating mesh holes

Methods concerned with partial reconstruction of holes in meshes generated from

point cloud sets of various buildings and architechtures are presented in [53]. But

mesh-based detection and elimination of surface holes usually operates on the recon-

structed mesh, by tessellating over the boundaries between regions considered to be

empty. While this approach might be sufficient for most planar surfaces, it performs

very poorly in the case of highly non-planar gaps.
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As an alternative, the idea of volume-based hole filling is presented in [14], where

all the points of the mesh are classified into three states (unseen, empty and near

surface) in order to better detect possible gaps.

Still, both mesh and volume based algorithms have difficulty detecting the differ-

ence between a real hole in the data and one generated by undersampling. This

means that such an algorithm would either detect both gaps and errors as holes, and

thus not correct the errors, or the other way around.

A volume oriented approach is only one possibility, nevertheless. Paper [8] presents

multiple hole filling techniques besides interative or post-processing the generated

mesh, methods that involve surface evolution over time or the use of radial basis

functions (RBF) to compute a weighted sum of the points, and obtain the surface

based on the level set of the last RBF. Additionally, [8] focuses on inpainting, a term

that suggests the modification of images such that these changes are undetectable.

In our specific case, this would apply as filling in the missing regions with replacement

information that allows for further processing.

All these methods for detecting holes and their nature, while also handling them

appropriately, constitute a topic we want to further investigate for our mesh merging.

The implementation of the mesh merging algorithm and the virtual reconstruction of

the overall TOF sensor scans does not by far represent the final checkpoint in our

process. In the next sections we will emphasize the methods we would like to use to

tackle the increasing complexity of the surface representation, as well as solutions for

supporting correct interpretation and analysis via integrating uncertainty visualization

into the surface rendering.
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2.3 Mesh Simplification and Multiresolution

Representation

Even with the elimination of redundant points in the previous step and the implemen-

tations of information architechtures that enforces quick data access and retrieval,

the complexity of the mesh representation will still increase linearly with the number

of added vertices. This can in turn lead to a highly complex global mesh that needs

to be visualized interactively, a task that becomes increasingly non-trivial with the

merging of additional information.

To counteract this, we concentrate on devising a multiresolution representation which

is particularly tuned to sustain the requirements of our endeavor. In other words, our

goal at this stage is to conceive a simplification and subdivision scheme for our final

mesh, such that it incorporates a specific low-pass filter, and at the same time pre-

serve boundary shape and area for the global mesh set.

A first step we consider is the simplification [21] - as much as possible with the

side-effect of smoothing - of the surface rendering. By these means we hope to

obtain a good approximation of the original model, generated by reduction of the

number of vertices and polygons. Methods that can achieve this are usually based

on appearance attributes [11], like position, curvature and color.

As our original information has basically only the position data incorporated in the

point clouds, we consider this attribute to be most relevant. Starting from the gener-

ated global mesh, which is basically a set of triangulated point clouds (Figure 2.12),

algorithms have been devised [11] to filter part of the supporting vertex set in order

to obtain surface approximations based on local simplification operations.

The local simplification refers to edge-collapse methods that reduce the number

of triangle faces, edges and vertices by eliminating, through deletion or merging,

vertex points from the surface. A particular importance should be given to the or-

der in which the simplification operations are executed. Most methods apply an

error metric, be it local or global, that mirrors which removal operation can be exe-

cuted next with a minimal information loss. Thus, the vertex deletion is performed in

order of increasing error, assuring that relevant features receive a low removal priority.

Furthermore, mesh simplification can be categorized into strong and weak, depending

whether the affected vertices are simply a subset of the original high resolution mesh,

or if they are allowed to be positioned freely.

Removing nodes and information is not the only way to simplify, or smoothen, a
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surface representation. An alternative is presented in [56], where after a generaliza-

tion of anisotropic diffusion for 3D space, based on vertex normals, mesh vertices

are repositioned and the surface is deformed to better support a smooth transition

between normal values. At the same time, creases are detected as discontinuities in

the normal space.

At the root of this approach lies the supposition that normals are a natural gen-

eralization of points from 2D domain, as they manage to describe the manifold more

completely by incorporating additional information. Furthermore, normals are cou-

pled to the surface, and thus they manage to guide the mesh in correspondence with

their values.

As such, level set surface models can be devised that allow the complex manipu-

lation of arbitrary topology. A desired side effect, as presented in [56], is that the

approach is naturally suited for surfaces, which are generated from measured data,

fact that makes this approach even more relevant to our work.

This approach is important for us, as any method that simplifies a surface topol-

ogy by smoothing it could be used as the base for the error metric of a simplification

algorithm.

Approximation takes on an entirely new dimension in [26], where smooth 3D repre-

sentations are derived by means of planar approximations. Based on the 3D point

clouds and applying a region growing algorithm [61][46][58], planar patches are con-

structed from a maximum underlying set of points that can be approximated by a

flat 2D manifold. Afterward, neighboring patches are merged if and only if they rely

on the same plane. At the end of this process, a set of planar surfaces is obtained for

which the corresponding mesh edges are known. Additionally, these polygons simplify

an area of the mesh by eliminating vertices that retain redundant information when

on a planar segment.

By using the mapping between patches and mesh areas, certain sections of the 3D

mesh can be modified or replaced in a way that strongly reduces the overall complex-

ity. For complex, non-planar regions of the mesh, no corresponding planar surface

will be detected and the triangulation in that area is left unchanged. Differentiating

between flat surfaces affected by noise and actual sharp features (i.e. corners) is a

characteristic that makes this method stand out, as detecting real topology changes

and allowing for higher LODs in those areas is of relevance to this thesis.

Figure 2.13 presents the results of the technique from [26], when applied on a 3D

range scan of an in-door hallway.
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Figure 2.13: Mesh model from 3D point cloud of the Wean Hall at the Carnegie
Mellon University (left) and equivalend smoother, low complexity mesh model
obtained by planar approximation (right)

We speculate that this approach, coupled with e.g. adaptive subdivision methods [4]

would enable us to devise a mesh simplification that supports interactive visualization

even for a very complex initial mesh.

Other methods of similar performance in simplifying surface reconstructions are pre-

sented in [22], where computer graphics algorithms are employed in order to achieve

a powerful structural reduction of the 3D models.

While the simplification of a 3D mesh is of remarkable importance for the real-time

visualization of such a representation, it only solves half of the problem. Of course,

it is relevant to reduce the number of mesh triangles in order to decrease the com-

putational complexity. However, to obtain a dynamic, view-dependent management

of LODs, one needs to be able to retrace the steps and refine an area to an - in

our case, initial - high resolution state. To obtain this functionality, the concept of

progressive meshes (PM) is considered.

Progressive meshes [27][28][37] represent a category of algorithms that deal with

the simplification of a mesh structure by introducing a bijective mapping between

the original surface representation and a base mesh consisting of a smaller number of

faces (Figure 2.14). Usually the base domain is described as the least complex mesh

structure, held up by the least amount of mesh vertices.

A concrete approach for a fast and efficient hierarchical multiresolution method is

described in [37]. Due to the large size and the complex structure of many 3D

meshes, a hierarchical subdivision connectivity remeshing is required to be able to

access various LODs, and thus increase rendering performance.
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Figure 2.14: Fine (left, 12.946 triangles) and coarse resolution (right, 168 trian-
gles) mesh representation with preservation of edges, darts and corner vertices
on the base mesh

The adaptive multiresolution approach considered in [37] employs such a subdivision

connectivity, allowing for the coarsening and remeshing of the isosurface, depending

on various requirements.

To create a mapping between the original mesh and the base domain, a course-

to-fine approach is used that follows these guidelines:

• Coarsening : simplify the original mesh until a base mesh is obtained, which is

defined as the minimal mesh representation that does not incorporate topolog-

ical changes.

• Mapping : a correspondence must be created between every vertex of the orig-

inal mesh and a face of the base model. The mapping is usually computed

concurently with the generation of the hierarchical structure that supports the

multiresolution implementation.

• Remeshing : reinsert vertices one-by-one to iteratively increase the LOD, thus

enabling the generation of an adaptive remesh with subdivision connectivity.

• Optimizing : execute local optimizations for the inserted points. One of the

effects that can be obtained this way is a smoothing of the overall surface.

More precisely, lets consider the original surface as (P, K), where P represents N

3D point positions Pi = (xi, yi, zi) ∈ R3 with 1 ≤ i ≤ N , and K contains the

detail information of every level. In order to achieve a mesh hierarchy, the original

representation (P, K) = (PL,KL) is successively simplified until the base domain

(P 0,K0) is reached. All the intermediate meshes (P l,K l) with 0 ≤ l ≤ L are
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homeomorphic and can be obtained by computing:

(P l, K l) = (P 0,K0) +
l∑

i=1

Ki (2.6)

Where K l → K l−1 represents a simplification step. These intermediate checkpoints

are extracted by applying an operation called edge-collapse, which is basically com-

posed of two elements: the removal of the vertex with the lowest detail cost and the

retriangulation of the resulting gap.

A known side effect to vertex removal is the flattening of the generated holes, which

in our case, even if desirable as a mean to smoothen the surface and eliminate noise,

introduces the problem of area reduction and changing boundaries.

Furthermore, during the vertex reinsertion stage the positions of the 3D points can be

affected in order to support particular effects, like smoothing. In [37] this is achieved

by computing a distance measure E between each point of the original mesh and the

base triangles. By computing a threshold ε, where ε = E/B and B is the largest

side of the bounding box, we can subdivide the coarse representation by applying a

variation of the Loop method.

While the Loop subdivision has the advantage of low computational expense, other

subdivision schemes like those devised by Doo-Sabin [17][16] and Catmull-Clark [9]

must also be considered for this thesis.

Contrary to the previous article, [35] focuses on generalizing multiresolution ap-

proaches for arbitrary triangle meshes, but without the use of subdivision connec-

tivity. Not only that the hierarchical structure presented in [37] is replaced by a set

of intermediate meshes generated by surface decimation, but combined with the con-

strained minimization of discrete energy functions, a fast multiresolution approach

is devised. Additionally, the method allows for isolation and reduction of noise in a

particular band, thus smoothing the mesh.

Next, decomposition and reconstruction operations are defined, that allow for a nat-

ural separation between the surface details and the low frequency surface shape. A

particularity in this process is represented by the reinsertion method, which considers

storing the detail coefficients as difference vectors between the original point Pi and

the optimized one P
′
i . Additionally, the vital topic of constrained mesh optimization

is presented and solved in a real-time fashion.

Other methods that introduce variations or extend the limits of multiresolution rep-

resentation are presented in [48][45][20], all of them having as a common element
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the need for controlled topology simplification to achieve real-time human interac-

tion with the model. A slightly different approach for creating a mesh is presented

in [54], where 3D point clouds form the source for the implementation of a surface

visualization based on an octree representation.

A particularity of our future research related to devising a multiresolution imple-

mentation for the reconstructed surfaces is represented by the way we would handle

multiresolution dependent mesh boundaries.

As the global surface representation is composed of a set of meshes that might or

might not be zippered (i.e. one wall could be stored as a single mesh, unconnected to

any others), we have to find subdivision algorithms for mesh edges, or more precisely,

for planar surface edges. To achieve this, we distinguish two cases: crease preserva-

tion and edge preservation - or area and shape preservation - for complex meshes.

Crease preservation refers to maintaining sharp features in the mesh topology, fea-

tures that are of high relevance for the overall visualization process. An example of

such a crease would be represented by the connected triangle edges that represent the

wall corner inside a 3D mesh generated from the scans of two orthogonal surfaces.

Moreover, we hope to reduce the informational and visual complexity of quasi-planar

surfaces, and at the same time enable the representation of major topology changes

with minimal effort. Related to this, [35] presents a simplification approach for shared

borders edges that considers a symmetrical subdivision method.

However, edge preservation in a multiresolution scenario refers to a more difficult task

of maintaining the outer shape of the mesh, and implicitly, its area. While focusing

on this problem, we would like to explore variations on adaptive subdivision schemes

[4], which might ensure a constant boundary shape for the generated global mesh set.

Even if all the sections described this far consider the presence of errors in the in-

put data and try to compensate, a perfect noise reduction is highly unlikely due to

its stochastic nature and multi-level introduction (Figure 2.15). Knowing where in

the surface reconstruction we still have noise and at what intensity, would assist the

analysis process of the end-user, be it human or artificial. To facilitate this, the

next section focuses on adding uncertainty information to the visualization of the

reconstructed 2D manifolds.
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2.4 Surface Uncertainty Visualization

While in Chapter 2.1 we focused on approaches we would implement in order to

reduce the amount of inherent errors that appear in sensor-acquired data, in this sec-

tion we present methods for visualizing the uncertainty of the reconstructed surfaces.

Uncertainty is presents in all aspects of life, and this is also reflected in the digi-

tal world. If we visualize any information that is affected by errors of different nature

without including a visualization of the uncertainty present in the data, analysis of

these visualizations run the risk of reaching incomplete or inaccurate conclusions.

This is the main reason for which uncertainty visualization tries to display the addi-

tional error information incorporated in the representation.

All types of sensors created until this point in history are affected to a lower of

higher degree by uncertainty, which is uphold by external errors introduced during

the measuring stage or internal errors based on the imprecisions of the device itself.

This type of uncertainty is called acquisition uncertainty [42] and it usually represents

the first point of a digitization process, where error is introduced in the production

pipeline (Figure 2.15). These errors can vary in consistency and structure from one

scanner to another, a few error types being represented by: precission errors, mini-

mum or maximum trucation values, external noise influence, missing data, etc.

Figure 2.15: Pipeline showing the stages that can introduce uncertainty: acqui-
sition, transformation and visualization uncertainty

The applied sensor technology is of crucial importance to the distribution and varia-

tion of the uncertainty over the entire surface. From [14] we know that uncertainty

variations in sensor data can be overcome by applying weights that capture the nature

of the variation. Such weighting factors include the dot product between each vertex

normal and the viewing direction for triangulation scanner, or simply a distance value

for TOF sensors, where we know that the error margin for each scan increases with
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the distance.

For the case of TOF scanners, the primary source of error (assuming an environ-

ment without external noise that acts on the sensor) is given by the travel time of

the light pulse, from the emitor to the reflection point and back to the sensor. As our

preliminary analysis of the two point cloud datasets (Chapter 2) showed, our main

concern for the error levels in the input data will be given by the depth errors along

the scanning direction of the beams [13].

Another type of uncertainty can be introduced in the process due to successive trans-

formations of the scanned data: approximation, fusion and derivation of new infor-

mation from the initial data. This step, together with the data acquisition stage, will

probably introduce the highest amount of uncertainty in our surface reconstruction

process, even with the error reduction algorithms applied to the initial TOF sensor

datasets.

The last stop in the pipeline of uncertainty is represented by the visualization uncer-

tainty itself, an element often underestimated or considered to have limited relevance.

This visualization insecurity covers uncertain rendering and illumination of objects.

For example, a complex surface with a poor illumination scheme applied to it can

have as effect that the viewer misinterprets the topology of the structure or the shape

in some areas.

To avoid this, our implementation will support a proper illumination and interac-

tive viewing of the virtual environment. These features might be available also in

online processing mode, but if the computational expense surpasses the limit of real-

time processing, these will be automatically deactivated in order to analyze the data

in an online manner.

Figure 2.16 presents the uncertainty types we expect to encounter in our mesh gen-

eration. While UL1 is representing the uncertainty added by the input dataset ac-

quisition, UL2-UL4 are the equivalent of the transformation errors resulted from the

algorithms that will be developed as presented in Sections 2.2 and 2.3, and introduced

by the second stage of the uncertainty pipeline. Knowing the types of uncertainties

we can expect, as well as the stages of our reconstruction process at which they will

appear, our goal is extended to not only visualizing the cumulated surface errors, but

even to supporting an interactive selective visualization of the uncertainties. This of-

fers the advantage of visualizing the effects of one or multiple particular error factors

when applied to the reconstructed mesh (e.g. visualization of the surface with the

transformation uncertainties only - UL2, UL3, UL4).
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Figure 2.16: The 4 levels of uncertainty in our mesh visualization. The figure
presents a gray surface on the right, which can be interpreted as a single planar
patch in the entire mesh. On the normal direction to the patch, we represent the
different levels of uncertainty in the order of appearance: UL1 - uncertainty added
by the noise in the TOF sensor data, UL2 - uncertainty in the computed local
patches, UL3 - uncertainty through repeated point cloud matching and merging,
UL4 - uncertainty introduced by mesh multiresolution methods

As visualization of uncertainty for surfaces has received an important amount of at-

tention from the scientific community, at this point we would like to present a few

visualization methods, as well as new ideas and modifications of previously proven

algorithms to the subject of surface uncertainty visualization.

One of the approach categories we would like to avoid due to the lack of correlation

between the obtained surfaces and the uncertainties, is represented by techniques

that visualize the surfaces and the uncertainty separately. In this case, an extra vari-

able representing the uncertainty is incorporated in the dataset and displayed on a

separate subfigure, using any standard visualization method.

In contrast to this idea is the one of verity uncertainty visualization [59][55], where

new and/or adaptations of existing visualization methods incorporate the generated

information and the auxiliary uncertainty data in the same representation. The ad-

vantage of this approach is that the facts can be transmitted consistently under this

unified representation, but one has to give extra attention to not visually overloading

the 2D display area. A mismanagement of the visualization can lead to 3D occlu-

sions, weak distinctive features and wrong conclusions, thus loosing the advantages
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previously gained.

For verity uncertainty visualization, there are multiple techniques and classifications.

The one presented in [42] clearly underlines the separate categories by highlighting

the set of variables that the representation may influence: adding geometry, mod-

ifying geometry (space as variable), modifying geometry attributes (color, texture,

etc.), animation (time-space variation) and sonification (sound variable). The fol-

lowing paragraphs convey existing methods and possible new ideas for visualizing

surface uncertainty as mentioned above. Methods for animation and sonification are

intentionally omitted, as these might not be desired (i.e. sound) or do not seem to

bring significant advantages to our topic.

Figure 2.17: Point-based surface uncertainty visualization - (a) opacity modu-
lation (b) Gaussian probability distribution (c) representation of normals with
length proportional to the error and without displaying the underlying surface

Adding geometrical elements to the scene and/or modifying the surface geometry is

one of the key possibilities for visualizing the uncertainty of the reconstruction. A

particularly simple, but effective method is obtained by using points for uncertainty

visualization of surface representations [23]. In this case a collection of points can

be positioned along the surface normals at a computed distance from the surface,

proportional to the uncertainty in that area (Figure 2.17). The normals that would

be taken into consideration can pass through various surface points, which in our

scenario would most probably be represented by mesh vertices or the barycenter of

the mesh faces. Not only that these origin points V for the normals allow for a

sufficient representation of the uncertainty, but they also have the advantage that

for the mesh vertices we should hold the possibility of computing the differentiated

uncertainty, as presented in Figure 2.16.

The basic algorithm behind the point-based uncertainty representation can be modi-

fied and adapted for our obtained surfaces, thus leading to the following pseudo-code:
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1. Obtain uncertainty level for mesh vertices V

2. For each mesh vertex V :

3. Compute the normal N to the surface

4. Generate two points Pi and Pj , situated on the normal N , with Pi on one side

of the surface, and Pj on the other

5. Calculate the displacement of Pi and Pj compared to V

6. Displace Pi and Pj in the direction of the normal at V and render them

7. End the for loop

There are multiple possibilities for computing the displacement of the points Pi,j .

The equation proposed in [23]:

Displacement = Rand() · (UncertaintyatV )a · Scale (2.7)

Takes into consideration the uncertainty level at the current position (influenced by

the falloff a) and weightens it by the scale and a random number in order to avoid

creating a dense point set that resembles a maximal or minimal uncertainty surface,

which would occlude the reconstructed mesh. Nevertheless, in cases with a relatively

small number of points this risk is reduced and the randomization term can be omit-

ted.

The method has a complexity of O(n), which can be supported in a real-time imple-

mentation, even if the number of added points Pi,j is not 2 (one Pi and Pj for each

vertex point V ), but 8 (corresponding to both sides of the surface and all 4 possible

uncertainty levels).

As an alternative to displaced points, line segments on the normals could be de-

picted (Figure 2.17-c). The length of each segment would be established by the

surface point V and the displaced point on the normal direction Pi,j . This idea is

also suggested by Figure 2.16, where multiple contiguous segments are used to depict

the different uncertainties at the surface point. In order to better differentiate the

lines from the generated surfaces, as well as the multiple uncertainties present at that

surface point between one another, the lines can be rendered using color coding, hue

variation or added transparency proportional to the segments’ length.

Another geometry based uncertainty visualization method that we would like to ex-

plore considers the suggestion of the uncertainty levels via translation or rotation of

the reconstructed mesh faces (Figure 2.18). While the translation of the patches

along the normal direction is trivial and embeds some of the features already pre-

sented for the point-based algorithm, in the rotation of the faces multiple issues have
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Figure 2.18: Surface uncertainty visualization through - (a) translation of surface
patches (b) rotation of surface patches (c) change in the diffusion coeficients (d)
change in the specular coefitients - by a value equal to the difference between the
real surface and the obtained one

to be considered: axis of rotation - which is usually a fixed direction in space, like one

of the coordinate system axes - and overall result of the rotation (while the rotation

of the mesh faces might help to suggest uncertainty in quadric meshes, for triangular

meshes the results are poor and this method should probably be avoided).

A set of geometrical methods for uncertainty visualization that can be specifically

applied on surfaces is suggested in [55]. These algorithms are grouped in uncertainty

glyphs, fat surfaces, perturbations and oscillations.

Uncertainty glyphs are symbols or icons that encode error information based on

shape and/or geometrical attributes [33](like color, saturation, etc.). A represen-

tation where deformed cones and coloring are used as glyphs in order to highlight

additional features of a surface is given in Figure 2.19. This representation can be

easily adapted for surface uncertainty visualization, with the additional constraint of

simplifying the shape of the glyphs in order to support real-time rendering and inter-

action. As previously mentioned for the line-based approach, different error elements

can be visually enhanced by color mapping or transparency.

While shape glyphs add geometry to the reconstructed surfaces, fat surfaces try

to apply a technique that covers the entire uncertainty space by incorporating all

the possible values into a volume. This visualization can be obtained by using all

the left-most and right-most uncertainty points Pi,j in order to render two bounding
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Figure 2.19: Glyph representation of population density per square mile. Geo-
metrical glyphs attached to surfaces can alternatively represent uncertainty

meshes for the uncertainty volume. Such a pair of two meshes can be later connected

into forming a closed surface by applying triangular or quatric patches between the

corresponding Pi and Pj points on the mesh boundaries.

A similar approach that can bring some advantages to uncertainty visualization is

the representation of the reconstructed surface, as well as the two boundary max-

imum error meshes. In order to facilitate the distinction of the different surfaces

by the user, the two boundary meshes should be semi-transparent and each surface

should have a different color.

Applying perturbations to a surface in order to visualize the errors of the estima-

tion process is similar to the point-based method, as both try to suggest uncertainty

by rendering a surface that seems randomly rough to the user, but where the absolute

roughness value is governed by the error information (Figure 2.13 - left).

Oscillations are a particular type of uncertainty visualization through geometry changes,

which due to their temporal nature, fall in the animation category. Even if temporal-

dependent error visualization is not a direction our research aims towards, the sim-

ilarity to previously presented geometrical methods makes it viable for a possible

implementation through a time-varying mesh, where the vertices randomly take val-

ues on the vertex normals, between the extremes Pi and Pj .

The second group of error visualization techniques we want to use and potentially

combine with the geometrical one is represented by the attribute addition and/or
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Figure 2.20: Main visual attributes that can be added, modified and combined
in object representations

modification. Figure 2.20 contains a chart of the basic visual attributes that can

be applied, depending on the scenario and the complexity of the visualization, for

uncertainty representation [33]. For each of these variables multiple data-mapping

techniques have been developed over the years. We will further emphasize the most

important ones to this thesis.

In this segment of variable visual properties, the best known and most widely used

methods involve simple color coding and pseudo-coloring (Figure 2.21), which gen-

erally have the advantage of generating revealing visualizations that captures uncer-

tainty through the colors of the objects.

Figure 2.21: Hue-based surface uncertainty visualization - (a) surface without
uncertainty (b) surface with uncertainty representation - higher uncertainty is
rendered using warmer surface colors
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But simple color mapping (in the RGB space) is not the only way to approach such

tasks. Changing the values of other attributes like hue (Figure 2.21), saturation,

light intensity or luminance (in the HSI space)[23] can improve the rendering results

compared to plain color methods. More complex approaches imply the use and vari-

ation of shading and lighting, such as altering the diffuse or specular coefficient of

the rendered objects (Figure 2.18), or shading variation on curved surfaces.

While color-based methods manage to capture and represent uncertainty in most

cases, many times they fail to localize these exactly due to their natural lack of

sharpness. To counteract this effect, texture mapping approaches use 2D elements

of different shapes and sizes to capture details that color representation could miss.

One way of using textures is to populate these with 2D glyphs that would incorpo-

rate the uncertainty information in their shape, color or other attribute. An intuitive

example for this would be a white surface with red glyphs represented by circles. In

areas of high certainty, the radius of the circles would be low so that the glyphs would

barely be visible, while in areas of low certainty the size of the circles would increase.

As new methods for visualizing errors by employing geometry attribute modifications

we propose the use of transparency and contrast. For the generated surface, each

mesh face or mesh vertex would have an opacity attributed to them, proportional to

the uncertainty level in that area. This means that for a reconstructed surface, the

patches with high certainty would have almost no transparency, while the ones with

high possibility to be an erroneous representation the transparency level is increased.

The transparency has a manual threshold, as mesh faces are not allowed to reach a

completely transparent level.

Contrast in graphics and imaging is determined by the difference in coloring and

brightness of two neighboring objects or areas. By making use of this knowledge, we

would like to apply a fairly complex texture to the rendered mesh and use contrast

as a differentiating feature to highlight areas which contain uncertainty. Parts of the

surface that have a low uncertainty value will have a crisp, sharp view of the tex-

ture on the surface, while parts with high uncertainty will be represented as strongly

blurred. This approach not only has the advantages of color-based methods, in which

the uncertainty can be recognized from a viewpoint that is orthogonal to the surface

and occlusion is omitted, but also the fact that the human visual system is more

sensitive to contrast and color than to saturation and light intensity.

In this section we have presented methods for uncertainty visualization, focusing

on surface uncertainty, as well as possible research directions we would like to follow

in order to better extract and represent errors for reconstructed surfaces.





Chapter 3

Real-Time Graphical Methods for

3D Point Cloud Processing

The datasets [7] mentioned at the beginning of Chapter 2 contain point clouds that

can be structured as two-dimensional arrays. These 2D arrays coincide with the ac-

tual structure of the range-image generated by the TOF sensor(s). At each position

x1, x2, there is a 3D point, the third dimension being represented by the depth on

the Z-axis, which is the value actually stored at that position. Thus, one has access

to both the original neighborhood information and the calculated 3D data for each

separate frame. This particular type of point cloud is also entitled range sensor point

cloud.

In this thesis, we implement part of the proposed research ideas from the previ-

ous subsections (Chapter 2) in C++ and OpenGL [30]. A short list of reasons for

using OpenGL as programming interface, and also advantages that would derive from

this implementation, includes:

• fast preprocessing/filtering/denoising of the error-prone point cloud data

• advanced visualization possibilities for the uncertainty of the generated multi-

resolution patches/meshes, and even for the initial point clouds

• easy integration of OpenGL in various libraries, frameworks and applications.

Also, most Robotics libraries are written in C/C++. This would further facili-

tate the evaluation process of the implemented algorithms

• high flexibility in researching different representations (point sets, patches, pla-

nar patches, meshes etc.)

• good documentation on various advanced visualization techniques

49
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Processing speed is a key element in the previous list, as our goal is to generate

methods that can be applied in real-time settings. Nevertheless, maybe the major ar-

gument towards using a flexible and advanced computer graphics library like OpenGL

[60] [6] is suggested by the title of this proposal itself: we need the capability to

generate advanced visualization methods that can later be included in various 3D

range sensor point cloud processing scenarios.

Matlab scripts are used additionally to OpenGL, especially for the topics that can

be investigated separately and without initial time constraints. Such topics are data

visualization, preprocessing denoising (Section 2.1) and even surface merging (Sec-

tion 2.2). While Matlab has the major disadvantage of slow processing, it enables

quick development and easy visualization with its vast libraries supporting various

fields (including Graphics, Robotics, Machine Learning, etc.) and strong plotting

capabilities.

Figure 3.1: Point cloud processing model encorporating the following stages:
point cloud noise reduction; surface detection, reconstruction and reduction;
merging of point cloud frames - local and global model; global model complexity
reduction; global model rendering; uncertainty computation and representation

Figure 3.1 presents our processing model that covers all the steps that are considered

for converting the range sensor point cloud into a virtual surface-based representation

of the scanned surroundings. Initially, in a step that other approaches fail to cover,

we reduce the noise levels present in the point cloud data due to acquisition errors

or ambient noise. Next, the points belonging to a surface are selected and used as
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support nodes for a mesh representation. In an iterative process, the correspond-

ing surfaces from successive point cloud scans are matched and merged. In order

to allow the incorporation of many scans and reduction of computation times, the

reconstruction resulting after each fusion is subject of a multi-resolution technique

that minimizes the number of required vertices in every mesh. Finally, after the gen-

eration of a sufficient global representation, the scene is rendered together with the

computed uncertainty levels.

While this thesis considers the entire conversion process to surface representation, it

focuses on developing or enhancing only a part of the composite modules; the rest are

implemented based on well-known and recognized algorithms from the corresponding

scientific field. For the later, references to standard implementations will be supplied

and described brifly.

For the implemented algorithms that are part of the processing model and described

in detail in the following sections, we achieved our goal of online computation, as

the cumulative execution time for all the stages varies between 0.1 − 0.25 seconds.

In the worst case, these values still allow for a processing of 4 point clouds frames

per minute, sufficient for most online tasks. Moreover, over half of the run-time is

attributed to the preprocessing step, which is still implemented in Matlab.

To allow later performance comparisons, we mention that the Matlab and C++/OpenGL

based applications that are part of this thesis were executed on a computer equipped

with a 2.4 GHz Intel Core 2 Duo processor, 2 GB of RAM and an Intel 965 video card.

The following sections highlight the research and implementation of a set of methods,

representing various stages of the procedural model depicted in Figure 3.1.
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3.1 Error Reduction with Anisotropic Diffusion and Wavelet

Denoising

Most of the methods dealing with 3D range point clouds and with the extraction of

surfaces do not consider the presence of noise in the scan datasets or try to overcome

this problem by using noise insensitive techniques for the conversion. While methods

that are immune to error prone data do produce good results, they usually require

complex computations to be executed and thus represent limited usefulness for tasks

that require online execution. Also, there are complex 3D based techniques that at-

tempt filtering the point cloud in order to remove the acquisition noise (Figure 2.15)

as described in Chapter 2.1, but these too are rather expensive in terms of processing

speed. As a result, in most real-time implementations the point cloud is not denoised

and simplified noise insensitive approaches are used.

Figure 3.2: Scene photography and normalized grayscale distance image obtained
with the SwissRanger SR-3000 (top), edge detection on original distance image
using Prewitt (left-bottom) and Canny (right-bottom)

Figure 3.2 presents the problems of noise prone 3D range sensor point clouds for the

case of SwissRange 2D mapped and normalized distance images. Even though the

photographical representation of the scene is quite intuitive, the grayscale distance

image looses a lot of the spacial information due to noise introduced by the sensor

upon the surfaces (i.e. the pixelated areas in the corners of the distance image) and

due to ambient noise (i.e. external lighting that contains IR light).
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To avoid the negative influence of the noise on the analysis of the point cloud data,

we propose two methods for eliminating it - anisotropic diffusion and wavelet denois-

ing with phase preservation. The idea to which both algorithms adhere, is to reduce

the noise levels inherent on all surfaces and maintain the edge features, as boundaries

are used in many approaches as vital information for correct segmentation of the 3D

points into surfaces. Furthermore, we are gaining the advantage of faster process-

ing, as these methods analyze 2D grid structures and not a complete 3D space, and

therefore use the particularity of grid structured range images.

The used anisotropic diffusion filter is based on the algorithm of Perona and Ma-

lik, as detailed in [44]. The basic idea of the approach considers the summing of the

original image with a set of derived ones, obtained by convoluting the base image

with a Gaussian kernel. The kernel should have a variance equal to t, in order to

make it space invariant, while the set of derived images can be viewed as the solution

to heat conduction in Physics.

Our implementation uses the normalized grayscale distance images as input for the

diffusion filter and follows these main steps:

• Use the original distance image I to create a filter If by adding a border of

zeros to it

• Compute the differences δi between If and I shifted by one pixel in the four

main dirrections

• Compute the conduction Fc(i) in all directions

• Compute the seeked diffused image as:

Idiff = I + λ ·
4∑

i=1

Fc(i) · δi (3.1)

Where λ controls the speed of diffusion and Fc(i) is the value of the conduction

function computed in the ith direction.

As suggested in [44], different conduction functions can have better results depending

on the task. In order to maximize our chances for obtaining a good diffusion filter,

two conduction functions are considered:

Fc = e−( δ
k )2

(3.2)

and

Fc =
1

1 +
(

δ
k

)2 ; (3.3)
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In this case, the parameter k controls conduction as a function of gradient. If k is

low, small intensity gradients are able to block conduction and diffusion across step

edges; on the other hand, a large k reduces the influence of intensity gradients on

conduction.

While the meaning and the impact of the parameters is quite intuitive, selecting

the right parameters for the filter constitutes a crucial role in the production of a

good model. Our experiments have shown that noise reduction with maximal edge

preservation can be achieved with a lower value for k (k=20) to block diffusion over

edges and small λ (λ=0.1) for an increased stability (or reduced diffusion speed), in

the case of edge methods like Prewitt, Sobel and Roberts.

As edge detection using the Canny method follows very different and more com-

plex guidelines, the best results for it have been obtained with a slightly different

setup: a high diffusion speed of λ (λ = 0.3) and the same k (k=20) for no diffusion

over edges. Also, the filtering was executed up to three times and the effect con-

voluted. All these positive results have been achieved by employing the conduction

function 3.2.

To further limit the amount of artifacts present in the edge images, we introduced

two additional filtering steps, this time oriented towards the reduction of noise or false

positives directly in the edge extraction. While edge detection and improvement are

not the direct topic of this work, the capability of correct detection of edges in the

distance image is considered a stable measure for the effects of an error reduction

filter. The reasoning is that even if the diffused, or more generally filtered image,

is not perfectly purified, by applying a set of easy and computationally inexpensive

methods, we can further improve the results.

Two of the problems present on some of the diffusion filtered edge images are the

presence of isolated pixel edges and false boundaries detected around the margins of

the image due to the way anisotropic diffusion convolutes the original and derived

images. To overcome these issues, the edge image, which is basically a binary image,

is rapidly post-processed by removing any edges closer than two pixels to the image

boundaries and any simple pixel edges that do not present the possibility of conti-

nuity. More clearly, if a pixel is considered on an edge, but none of the 8 neighbors

is a border, it will not be automatically removed and the second order neighbors are

checked to see if there is a continuity (i.e. if the first pixel to the left and right are

not borders but the second ones to the left and right of the current edge pixel are,

then the edge pixel is not removed).

The best edge extraction solutions after anisotropic diffusion, border clearing and
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Figure 3.3: Edge detection algorithm results on original distance image (top).
Best edge detection results on distance images filtered by anisotropic diffusion
(middle). Best edge detection results on distance images filtered by wavelet
denoising (bottom).

single pixel removal can be inspected in Figure 3.3b. Moreover, a comparison be-

tween the diffusion based edge extraction and the same methods applied on the raw

distance images shows an improvement in the sense of reduction of false positives,

as well as a conservation of the real edges. An important fact to consider is that

the edge detection methods that were used are constant over all the experiments

presented in this thesis, and use an automatic parameter calibration where required.
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Although Figure 3.3 presents only one distance image, our results have shown that

an efficient noise reduction and thus edge extraction can be achieved for over 90%
of the tested point clouds.

In terms of run-time, the execution of anisotropic diffusion takes up to 0.02 sec-

onds on a single range point cloud. Even if for Canny edge detection better results

can be obtained with up to three consecutive filtering operations, 0.06 seconds is

more than enough for an online execution, not to mention that a speedup is defi-

nitely expected for a C++ implementation, over the current Matlab one.

Compared to anisotropic diffusion, wavelet denoising is a fairly more complex, but

also a more promising filtering method, as suggested in [36]. The concept that guides

denoising methods is that the initial space, which in our case is represented by the

2D distance image, has to be transformed into another domain where the noise can

be easily identified and eliminated. After this removal, the remaining information is

morphed back into the initial space, thus reconstructing a noise-free image.

Wavelet denoising relies on the fact that an image is basically a combination of

wavelets with a compact support. While this support can be described by wavelet

coefficients that are highly localized, the coefficients corresponding to noise signals

are rather distributed. Following this line of thinking, the coefficients that support

the main information would be more easily detectable.

Our approach reimplements the denoising method with phase preservation as de-

scribed in [36]. The technique uses non-orthogonal, complex valued, log-Gabor

wavelets instead of the more commonly encountered orthogonal or bi-orthogonal

wavelets, and has the additional advantage of allowing the automatic computation

of a noise threshold value at each scale. Also, in order to preserve the phase infor-

mation of our distance image, the local amplitude and phase have to be extracted

at every pixel. This is achieved by using wavelets that are pairs of symmetric and

anti-symmetric, as well as by employing a wavelet transform.

At the heart of the approach lies the convolution of the signal and each of the

quadrature pair of wavelets. To obtain this, one needs to compute the frequency

component of the signal, which can be described as a complex value:

C = En + i ·On (3.4)

Where En and On are obtained from:

En(x) = I(x) ∗WE
n

On(x) = I(x) ∗WO
n

(3.5)
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In the previous equation, I denotes the signal, while WE
n and WO

n represent the even

and odd-symmetric wavelets for a certain scale n.

By further computation, one can extract the amplitude and phase of the transform

at a given scale, as:

An(x) =
√

En(x)2 + On(x)2 (3.6)

And

Θn(x) = atan2(On(x), En(x)) (3.7)

The response vectors extracted by this procedure for each x and at every level are the

basis for the localized representation. In this representation, the denoising procedure

consists of noise threshold deduction for each scale and reduction of the response

vector amplitudes accordingly.

From an implementational point of view, the algorithm follows these steps:

• Compute the Fourier transform IFTT of the initial distance image

• As described above, compute En and On as two matrices: the elements of En

have values equal to the x coordinate relative to the center, and ones of On

have values equal to the y coordinate relative to the center

• Calculate the amplitude and phase of the transformation, as described in Equa-

tion 3.6 and 3.7

• Initialize the total energy ET that will retain the energy levels from different

scales

• For each orientation:

– Compute the angle of the filter in the current orientation

– Based on the filter angle and the phase, compute the angular distance

∆Θ from the specified filter orientation for each point

– Compute the angular filter component as:

Spread = e
−∆Θ2

2Θσ (3.8)

Where Θσ is the standard deviation of the angular Gaussian function used

to construct filters in the frequency plane

– For each scale:

∗ Compute the log Gabor function, which represents the radial filter

component, and multiply it with the previously calculated angular

filter to obtain the filter for the current scale
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∗ Convolve the transformed image IFFT with the even and odd filters

to extract the current energy Ei

∗ If the current scale is the smallest, estimate the mean and variance

in the amplitude response of the smallest scale filter pair at this

orientation

∗ If the current scale is not the smallest, use estimate of the noise am-

plitude distribution for the smallest scale to compute the one of the

current scale. This is achieved by using the property that the ampli-

tude response is directly proportional to the filter centre frequency in

2D images

∗ Based on the estimated noise response distribution at each scale, set

the noise reduction threshold to be T , where T is higher by k times

the standard deviation than the mean of the distribution

T = µRayleigh + k · σRayleigh (3.9)

∗ Add the current energy Ei to the total one ET and calculate the

wavelength of the next filter

Additionally to using the algorithm, one has to be able to determine the right values

for the input parameters, from which many relate to the specification of the filters in

the frequency plane. The parameters that were iteratively set for tuning the denoising

approach to the type of error inherent to the point cloud data, were:

• NSD - number of standard deviations of noise to be filtered

• NS - number of filter scales

• MF - multiplication factor between scales

• NO - number of orientations

In the sense of highest noise reduction with best edge preservation when applying an

edge detector, the best denoising results for Prewitt, Sobel and Roberts were obtained

with a filter setup that considered only 2 standard deviations NSD for the rejected

noise, but had a high number of filtered scales (NS=7), a powerful multiplication

factor (MF=3) and considered 8 different orientations NO.

Again, to obtain similar results for the Canny edge detection, the parameters had

to be reevaluated. The standard deviations number NSD was increased to 5, only

5 filter scales NS were used with a multiplication of 2 between them and 6 different

orientations NO considered.

These two configurations for the denoising algorithm performed generally well, reduc-

ing false positives for the edge images and in some cases, even allowing the detection
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of previously unseen edges! An example for the results of wavelet denoising with

phase preservation is given in Figure 3.3c.

The execution time of the denoising filter varies between 0.07 and 0.1 seconds, which

is enough to accommodate real-time preprocessing of distance scans from a mobile

robot.

As described above, one of the metrics employed for estimating the performance

of the noise filtering is given by the edge detection images that are generated from

the already preprocessed images (Figure 3.3). Nonetheless, in order to avoid using

a single performance metric another way of evaluating the error filtered data is pro-

posed. As using only distance information or positioning for 3D point clouds is rarely

enough, an intuitive way of detecting quasi-planar surfaces relies on the computation

and evaluation of the normals.

Mathematically, a planar segment should have the same value for the normal at

every point of the surface. Various established methods use this property and com-

pute the normals at every vertex in order to add another degree of detection and

separation for the later segmentation process.

As a secondary measure to evaluate the precision and performance of the proposed

filters, the previously stated property and the surface normals are used. More exactly,

the set of 3D points composing the cloud is translated into another 3D space, where

the axis are defined by the projection of the normal at point x on the three original

axis X, Y and Z, weighted by the distance D of the point to the sensor. In this new

3D space, a noiseless scan of a planar surface should result in a set of points that all

have the same normal direction, thus the same normal projections.

This means that these points would be grouped and that the only variation would

be introduced by the distance D. More generally, in a perfect scenario, if multiple

surfaces are part of a point cloud set, all the points corresponding to the same surface

would be clustered inside the new space and the clusters would be (in most cases)

clearly separated. The problem is that in a real, noise prone scan, the information

is distorted and the clusters are no longer clearly distinguishable or/and many points

can not be clearly attributed.

Figure 3.4 presents the typical results obtained by the transformation in the normal

based 3D space, in the case of the original point cloud, as well as for the two filtered

versions. Notice that in both cases, especially the wavelet denoising, the desired ef-

fects of compressing the clusters, eliminating non-attributed points and maintaining

the distance between clusters for classification purposes is achieved. The visualization
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Figure 3.4: Comparison of noise reduction in NxD space based on original image
(left), best anisotropic diffusion filtered image (middle), best wavelet denoised
image (right).

is not only important for the evaluation of the filters, but also for the segmentation of

the point cloud (presented in Figure 3.5), such that subsets of points that are known

to embody elements on the same quasi-planar surface are selected. The notion of

quasi-planar surface is used, as even after error filtering there can still be points that

lead to a noisy planar surface; nonetheless, the elements of such a patch need to be

accepted by the method.

The clustering of corresponding 3D points inside the NxD space is also used as the

base for segmentation (Figure 3.5), in order to allow the later reconstruction of a

mesh. The segmentation process is not a topic of this thesis, its implementation

is rather brute, but has the distinct plus of completing the pipeline and allowing

for more resources to be dedicated to the actual topics. The clustering method it-

self is based on the idea of surfaces being composed of closely situated points that

for a tight group, and therefore can be identified by employing a mixture of Gaussians.

Initially, it is considered that each point in the NxD space represents the center

of a Gaussian. Then, in an iterative process, all the points that are inside another

Gaussian are identified, resulting in the merging of the two clusters and updating

the cluster center. This continues while there are still clusters that can be merged.

In the end, a threshold establishes which Gaussians actually include the points of a

surface by setting a lower limit to the number of 3D points required. In some cases,

when the segmentation was insufficiently accurate, manual adjustment was added to

return a more appropriate set of points that describe the surface.

During our evaluation of the edge detection results on the filtered distance images,

besides the positive outcome with the elimination of false positives, preservation of

edges and in some cases extraction of new edges (i.e. based on phase preservation),

it was observed that applying various edge detection methods on the two sets of noise

reduced images eliminated errors rather consistently, but generated different correct

edges.



3.1. ERROR REDUCTION WITH ANISOTROPIC DIFFUSION AND WAVELET
DENOISING 61

Figure 3.5: Normalized distance image (top-left). Corresponding 3D space repre-
sentation of initial point cloud after NxD transformation (bottom); the colored
circles highlight the detected clusters of 3D points part of the same surface and
its size. Initial normalized ditance image with an overlay of the two largest cor-
rectly detected clusters/surfaces (top-right); surface color corresponds to cluster
color in the previous subfigure.

In order to use this advantage, an approach was devised to reconstruct as many

possible edges from the various filtered images and sumate them into one edge im-

age. Two examples are presented in Figures 3.6 and 3.7, and the basic idea for

implementing the method follows these steps:

• Apply anisotropic diffusion with the second set of parameters on the original

distance image

• Compute the Canny edge detection image of the diffused image

• Apply the boundary and single pixel filter (previously described) on the edge

image and store the result in E1

• Restart the process from the original image and apply denoising with the second

set of parameters on it

• Use the denoised image as input for an anisotropic diffusion step with the first

set of parameters
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Figure 3.6: An error reduction, as well as an edge preservation and enhancement
scheme for 3D range point clouds. The sample point cloud contains 6 surfaces
and all images use Canny edge detection. Top image - edge detection on original
distance image. Left branch - denoising (1) followed by border pixels removal
and single pixel removal. Right branch - denoising (2) followed by anisotropic
diffusion for error removal and border pixels removal and single pixel removal.
Bottom image - binary sum of the edge detection images.

• Apply the boundary and single pixel filter to the previous result and store the

edge image in E2

• Convolve E1 and E2 to obtain the final edge image

Although this portion of the research is not directly related to the initially proposed

one, the positive results obtained based on the convolution of multiple edge images

obtained from filtering variations are impressive and further support the need for a

preprocessing step for noise reduction in the case of sensor datasets.

Most of all, the technique is still compatible for an online execution, as the total

run-time does not surpass 0.2 seconds, thus allowing for 5 fps to be analyzed. While

this can seem a small value, especially as the main processing steps still need to be

executed, code optimization should reduce this initial model stage.

Once the sets of points are extracted as the based for surfaces inside a point cloud,

this information needs to be represented. Normally, the rendering of the global scene
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Figure 3.7: An error reduction, as well as an edge preservation and enhancement
scheme for 3D range point clouds. The sample point cloud contains 6 surfaces
and all images use Canny edge detection. Top image - edge detection on original
distance image. Left branch - denoising (1) followed by border pixels removal
and single pixel removal. Right branch - denoising (2) followed by anisotropic
diffusion for error removal and border pixels removal and single pixel removal.
Bottom image - binary sum of the edge detection images.

(Figure 3.1) would be executed at the end of the pipeline, but we present this issue

at the one-mesh level, for a better perception of the problem.

To display a mesh based on a set of 3D scattered points, the Delaunay triangu-

lation [34][15] scheme is implemented. More precisely, to achieve better performance

and simplify the task, a 2D triangulation is used based on [18] and the depth infor-

mation of the point cloud is disconsidered, as we are basically dealing with a 2D patch.

In this approach, the mesh representation generated from the surface points con-

siders selecting a point approximately at the middle of the grid and creating an edge

with the nearest neighbor. Then, the right side of the edge is scanned and the max-

imal angle point is selected. These three points are used to compute a circle - if

the circle has any other points in it, the process is restarted with the new point,

otherwise the three points can be triangulated and stored as a triangle configuration.

By computing all the available triangles that have this property of no other point

being in the surrounding circle, a triangular mesh can be generated. This 2D mesh
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can then be extended by simply adding the z dimension to each point and rendering

in 3D space.

Until this point of the procedural model (Figure 3.1) we have implemented noise

reduction, segmentation and mesh rendering. The next section will detail our ap-

proach for surface matching, merging and multi-resolution.



3.2. SURFACE MULTIRESOLUTION REPRESENTATION 65

3.2 Surface Multiresolution Representation

As the information from 3D point cloud frames is added to the global reconstruction

of the scanned surroundings, the need of a method for handling the large number of

surfaces and support points becomes increasingly obvious. To overcome this problem,

we propose a multi-resolution approach particularly tuned for almost 2D open mesh

surfaces generated by range sensors.

Applying a multi-resolution or subsampling solution for surfaces from a single point

cloud or from a global representation can actually be reduced to the problem of vary-

ing the number of nodes inside a single mesh. We then estimate the distance of each

mesh to the viewport in order to decide on the number of vertices to be used, or

LOD to be displayed, by means of a linear function.

To understand the procedure, one has to consider that the initial mesh represen-

tation of a surface uses all the vertices of the 3D point cloud that were previously

selected as part of the same surface. A multi-resolution approach would thereby

imply that from the list of selected support nodes of the mesh, we remove the least

important ones, iteratively. By doing this, the mesh is gradually being simplified, and

thus its rendering becomes less expensive. Additionally, maintaining the information-

packed nodes in the lower resolution representations maximizes the conservation of

support features, and therefore the overall shape of the mesh.

In order to implement this, we need to create an evaluator that would quantify

the information content of each vertex to achieve a correct representation of the

surface. Ideally, sharp features like corners or bumps would get a higher value, while

planar areas - a value close to zero. In this manner, we should manage to preserve

the overall shape of the surface even at low resolutions.

Intuitively, in a scenario with quasi-planar surfaces, a majority of points should re-

ceive values close to zero, as removing a support situated inside an almost flat patch

should not affect its boundaries. An exception to this is the case when the vertex is

displaced on the 3rd axis - depth of the sensor data. While this displacement might

be due to the remaining error after preprocess filtering, it could be also the case that

we are dealing with a real sharp feature on the surface.

To accommodate all these ideas, we introduce an algorithm that evaluates the im-

portance of a node X inside a mesh based on the four closest neighbors X1 −X4.

These four neighbors are used to estimate the value ze of the node X, resulting in

Xe = (x, y, ze). The difference between the actual value z of X and the estimated

one ze then represents the quantity of information encoded in that vertex.
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In the initial setup, where the points of a surface are successive on x and y, the

four neighbors are simply the closest pixels in 2D, that is the ones above, bellow and

on the sides of the pixel, as suggested in Figure 2.4. The depth or z component is

neglected, as this approach focuses on retrieving the depth displacement features.

Therefore, limiting the search and comparison space to 2D, another opportunity to

make use of the point cloud grid structure is captured.

As the method advances and points are being removed, the mesh vertices need to

be reevaluated, in order to get a new estimation of their value. As a natural gener-

alization of four direction look-around, the introduction of a dynamical computation

of the node importance is based on the idea that through vertex removal, remaining

nodes can incorporate some of the information of non-displayed nodes and increase

their sharpness value. In the case of missing pixel neighbors due to positioning on

the mesh boundary or previous removal, the method is generalized as presented and

uses the four values of the closest nodes to the current X.

The multi-resolution concept is implemented by adding a dual vector of vertex in-

dexes and corresponding vertex significance for each mesh. The vector is then sorted

based on the node importance and a pointer to the current LOD is stored. The

displacement of the LOD pointer allows thus for the rendering of all resolutions, from

the coarsest to the finest, which contains every selected surface points. Moreover,

after each change in resolution, the importance of the vertex is recomputed for the

”visible” part of the mesh.

We know that the computation of the estimated value of X is based on the four

closest neighbors, but we still need to clearly specify a function that gets the neigh-

bors as input and outputs the estimation. To go into further detail, we implement

two 2D interpolation schemes in order to estimate ze: inverse distance weighting and

natural neighbor interpolation.

Inverse distance weighting (IDW) or the Shepard interpolation is a well-established

method for a rapid interpolation in 2D, as described in [1]. The corresponding func-

tion that guides the computation of the local estimation is a particularization of the

Shepard function and can be described as:

ze =

∑4
i=1

1
d(x,xi)

· zi
∑4

i=1
1

d(x,xi)

(3.10)

Where X represents any given point, Xi is one of the four known points, d is the

metric operator or the distance between X and each Xi. You can notice that as the

weight decreases, the distance increases from the interpolated points. The additional

advantage of this function is that if the closest known points are coplanar, the es-

timation will be coplanar too. Therefore, the difference (X − Xe) is very likely to
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capture a distortion in the surface, if present.

Figure 3.8: Multi-resolution representation of a surface mesh from fine (top) to
coarse (bottom) resolution. The usefulness of a vertex is computed by comparison
with the Shepard interpolated value. The natural neighbor interpolation obtains
similar results.

The second spacial interpolation function employed is given by the natural neighbor

interpolation, also known as the Sibson interpolation [43]. The method is based on
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the Voronoi tessellation and the Delaunay triangulation on a discrete set of 2D points,

shortly presented in the previous chapter.

The main idea is that for each point X which we want to evaluate, we add X

as a site to the Voronoi diagram of the original sites, and average the values of the

sites weighted by the fraction of the cell for X previously covered by each other

cell. This relatively complicated procedure results in a continuous function, smooth

everywhere except at the original sites.

In mathematical terms, the function used to estimate the value of ze is:

ze =
∑4

i=1 Ai · zi∑4
i=1 zi

(3.11)

Where zi is the value of each known neighbor and Ai is the intersection of the Xi

neighbors Voronoi area with the area of Xe, when Xe is introduced as a known point

and the 2D surface is retessellated.

While the Sibson approach is computationally expensive, as multiple surface areas

have to be calculated, it has the advantage of being a high precision method. Also,

as we have already used the Delaunay triangulation to represent the reconstructed

surfaces (Chapter 3.1), we consider that most of the structural and computational

complexity is already embedded in the procedural model, and therefore using this

interpolation scheme can be considered a reasonable investment of resources.

A representation of the multi-resolution implementation for a surface, based on the

Shepard interpolation function is presented in Figure 3.8. The results obtained with

the natural neighbor interpolation function are quite similar, suggesting that the

Shepard interpolation, which is less computationally expensive, should be appropri-

ate in most cases for the importance estimation.

Capturing the sharp features along the depth axis of the 3D point clouds is only

half of the solution. In the case of non-closed surface representation, a very impor-

tant factor is the preservation of boundaries or edges. Even if the surface boundary

can be error prone, a conservation of the overall shape is desired, for as many LODs

as possible.

To include border preservation in the proposed approach, an algorithm is used that

increases the significance of the marginal points, by adding to the values computed

with the interpolation schemes. To maintain consistency, the methods for sharp edges

consider the same strategy: remove the current node, estimate the local boundary

based on the neighbors and compute the distance between the actual pixel and the

new margin. Again, the computations use the advantages of a 2D grid representation.
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The stages of the method for surface boundary preservation, as implemented in this

thesis, are:

• Mark the boundary points at the finest resolution. A border point is one that

has at least one neighbor missing

• Create a two-way list of the boundary pixels in order to be able to search the

neighborhood of a current point

• For each visible boundary element, compute the distance to the segment created

by the connection of the immediate neighbors

• Add this distance to the depth vector at the corresponding position

The last step ensures that edge vertices are maintained as much as possible in every

LOD, by increasing their importance, as these might represent sharp features on both

z and (x, y).

In terms of performance, the multi-resolution approach is sufficiently fast to main-

tain real-time execution and high enough frame rate, as tested for up to 10 surface

meshes.
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3.3 Mesh Matching and Merging

After determining how surfaces are handled based on the distance to the view screen,

the next step covers one of the main stages of the processing model: the mesh merg-

ing. In order to be able to fuse two meshes generated based on different point clouds,

we first need to establish the correspondence of any two such sub-surfaces. As this is

something that has been widely covered in the literature and good results have been

obtained with various methods, we concentrated our efforts on the actual merging

process. Nevertheless, a matching step is required.

Therefore, the iterative closes point (ICP) algorithm [3][63] is implemented to min-

imize the difference between two point clouds or, in our case, the distance between

the point sets that have been selected as part of a surface. The technique basically

follows these steps:

• Associate points by the nearest neighbor criteria

• Estimate transformation parameters using a mean square cost function

• Transform the points using the estimated parameters

• Re-associate the points and restart the process from the first step

The result in our case is not only a transformation that guides the positioning of

the second point cloud data relatively to the first one, but through the comparison

of the distance between the sub-point clouds represented by the surface points, the

correspondence of two sets of points is established, if present. As we employ the

basic algorithm for ICP, matching errors might occur; these are currently overcome

by manual adjustments and matching, as more precise and complex algorithms for

matching can be introduced at a later time. The odometry of the robots that have

the sensors mounted is not used, as this is quite noisy, and exceeds the scope of this

thesis.

Once it is known which two sets of points correspond to each other, if any, the

merging algorithm is executed. The technique uses a rather simple approach and

has the added advantage of maintaining the structure that allows multi-resolution to

work on the merged mesh.

Based on the ICP matching of the two sets of vertices, we can fuse the sets of

points by computing an average for each point that has a close enough correspon-

dence in the other set. These new averaged vertices are then stored in a vector, as

was the case for any surface points. Additionally, the points from both sub-clouds

that had no correspondence are added to the end of the vector.
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Figure 3.9: Merging two corresponding mesh surfaces - rendering of two corre-
sponding meshes separately (left) and rendering of the resulting merged mesh
(right). Vertices present in both meshes are averaged and presented as green
support points, while others are simply added to the next global surface.

An alternative, simpler implementation, considers only adding the two sets of points

inside the same vector, thus eliminating ICP related computation. But this has the

disadvantage that the number of nodes supporting the finest resolution representa-

tion is much higher, which can become a problem after adding many point clouds.

The new vector of 3D points is then displayed and triangulated using the Delaunay

method as described in the Chapter 3.1. Figure 3.9 presents the merging of two sets

of 3D points to create a new, extended surface rendering.
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3.4 Uncertainty Visualization Methods for Surfaces

Figure 3.1 presents the uncertainty visualization as the last stage of the conversion

process from 3D point cloud to a list of rendered surfaces. While it is at the end of

the pipeline and also not a mandatory module to be executed for each point cloud

to be processed and added to the global representation, it carries a high importance

to the correct and complete representation of the extracted surfaces.

As one of the main topics of this thesis, error visualization has been already broadly

discussed in Section 2.4, where various general uncertainty representations have been

presented and analysed. In the following paragraphs, we present a set of techniques

for graphically representing uncertainty for error prone mesh surfaces generated based

on point cloud data. This can be of particular importance when submiting virtual

environments that have been reconstructed from a series of 3D point clouds (e.g.

successive scans of a range sensor mounted on a mobile robot) to human analysis of

the global representation or local feature particularities.

Figure 3.10: Implemented techniques for visualizing the multi-resolution uncer-
tainty of the resulted surface based on color mapping and transparency.

A first group of methods focuses on modifying preexisting geometric attributes, in

this case the color and transparency levels of the surfaces. The uncertainty is then

represented by adding color or transparency mapping to the meshes, as presented in

Figures 3.10a and 3.10b, thus encoding the accuracy of the displayed mesh in those

attributes.

While the geometry attribute related techniques encode the error of the surface, are

quite inexpensive and allow for a good human perception of variations in intensity

levels, they offer the downside that the information is not quantitatively proportional

to the geometry. Human perception has a better capacity of comparing similar types

of visual information. Therefore, as a surface is first of all geometrical, the uncer-

tainty in shape and position is better transmitted by the use of added geometry.
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Figure 3.11: Implemented techniques for visualizing the multi-resolution uncer-
tainty of the resulted surface based on geometry addition (top to bottom): points,
bars, uncertainty boundary and uncertainty volume.

To satisfy this, Figure 3.11 shows implementations of surface uncertainty representa-

tions that rely on methods highlighted in the previous chapter - points, bars, meshes.

In order to render the additional geometry, the normals of the surfaces at each mesh

vertex are computed. As detailed in Algorithm 1, the geometric elements are then
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positioned on both sides of the mesh, on the normal to the corresponding node.

These two mirrored values and the mesh vertex are then used to graphically display

the uncertainty at that particular point by different geometric structures. The us-

age of points, as well as the one of lines to depict uncertainty has the advantage of

minimal computation and a good communication of the global information. On the

other hand, arranged sets of points and/or lines are not too common to the human

environment.

However, as these techniques solve our direct comparison problem and give the user

the possibility of perceiving the covered probability space of each surface, problems

might still arise when they are used at a high LOD. In these cases, the mesh sup-

port nodes are very close to each other, thus generating many additional elements,

resulting in occlusion of uncertainties or of the underlying surface. To minimize this

effect, blending is introduced and can be enabled for any of the geometric methods,

with the goal of achieving opacity in cases where occlusion becomes a serious problem.

As an alternative to a scattered representation of the accuracy, mesh based error

representations are introduced - uncertainty boundary and uncertainty volume, as

presented in Figure 3.11. Not surprisingly, these methods rely strongly on blending

in order to avoid occlusion. At the same time, they manage to transmit a more com-

pact representation of the error levels of a surface, encouraging the development of

intuitive interpretations - a solid shape delimited in space has more correspondences

in the real world than a set of bars or points.

Nevertheless, in certain cases even these visualization techniques reach their limits.

A problem noticed during this project refers to the fact that when two meshes are

closely positioned, the probability space or uncertainty volumes might intersect. In

this case, the geometry based methods deliver poor results, due to the incapacity of

finding the corresponding surface and occlusion.

As mentioned in Chapter 2.4 and, more specifically, in Figure 2.16, we expect to

encounter at least four types of measurable uncertainties: uncertainty added by the

noise in the TOF sensor data, uncertainty in the computed local patches, uncertainty

through repeated point cloud matching and merging and uncertainty introduced by

mesh multi-resolution methods. All these error values can be represented by using

the representations from Figure 3.10 and Figure 3.11.

The current thesis implements only the computation and visualization of the fil-

tering and multi-resolution error types. Still, other sources of uncertainty can be

easily employed by using the same representation. Additionally, by using multiple

proposed uncertainty visualization methods, we can differentiate between the various
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Figure 3.12: Separate visualization methods for different surface uncertainties by
simultaneous use of multiple techniques - color mapping for filtering uncertainty
and bars for multi-resolution uncertainty (top), transparency for filtering uncer-
tainty and points for multi-resolution uncertainty (middle), cone with for filtering
uncertainty and cone height for multi-resolution uncertainty (bottom).

errors introduced in the reconstruction process and their importance and influence.

This approach is highlighted in Figure 3.12, where the noise reduction and multi-

resolution uncertainties are displayed cumulatively. Also, Figure 3.12c presents a

previously discussed method for adding geometrical gryphs that have the advantage

of encorporating multiple levels of uncertainty in a single geometrical shape, in this

case width and height.
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A different approach considers the usage of the same uncertainty visualization method

for multiple levels of uncertainty (Figure 3.13. Notice that the possibility of employ-

ing the same representation for different errors and still be able to distinguish between

them is mostly available for the geometric methods. While it is sometimes possible to

have multiple uncertainties and represent them all with colors and transparency, it has

the distinct drawback of limiting the differentiation process. Nonetheless, approaches

like the bar or point based visualization manage to minimize the occlusion and clut-

tering, especially when the surface features are down-sampled. but most of all, the

uncertainty volumes manage to incorporate the highest amount of information and

maintain it visible from almost any angle. A particular advantage of the geometric

methods is that they are not limited, allowing for the parallel representation of any

number of uncertainty levels.

Figure 3.13: Identical visualization methods for different surface uncertainties by
simultaneous use of multiple techniques - cumulative uncertainty representation
via bars (left) and volume (right).

In cases with many sources of uncertainty and thus many additional geometric struc-

tures, the possibility for selective representation of the information is desired. As such,

the different error levels can be enabled and disabled, or rearranged inside the rep-

resentational pipeline, to allow for maximal flexibility and minimal information clutter.

On one hand, the use of additive uncertainty representation enables the estimation

of the overall possible error in the computation of the optimal surface, as this can be
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important in various tasks - a robot trying to navigate might be more interested in the

closest possible surface, even if it has much lower probability than the optimal one.

On the other hand, knowing exactly what error source influences the results most neg-

atively and being able to create a more complete environment reconstruction to be

submitted for user analysis, allows the better distribution of a limited resource: time.

When working with a real-time application, like the interpretation of 3D point clouds

and the reconstruction of the sensor’s surroundings from them, setting priorities is

vital. As such, computing and visualizing multiple uncertainty levels allows for the

objective selection of the most distortive one, towards devising / implementing a

likely more computationally complex algorithm to limit its effects. In other words,

one can minimize the error that introduces the maximal uncertainty.

In terms of performance, the uncertainty visualization methods have a limited in-

fluence on the rendering speed of each frame. Even if visualizing the error levels can

double or triple the number of displayed vertices (i.e. the surface and volume uncer-

tainty representations create additionally one or two maximal uncertainty meshes),

they also are correlated with the current displayed LOD of the underlying estimated

surface. Therefore, the rendering time can be reduced when additional noise levels

are displayed by decreasing the LOD of the main surfaces and corresponding uncer-

tainties. Furthermore, our tests have shown that a sufficiently high frame rate (over

25 fps) can be maintained when visualizing tens of meshes and uncertainties in a

complex representation (i.e. lighting, blending etc.).





Chapter 4

Conclusions and Discussion

Throughout this thesis we propose a new model for virtual environment reconstruc-

tion from successive 3D range point cloud scans, with an emphasis on high precision

and good performance, obtained by algorithms mostly used in the fields of graphics

and visualization.

The problem of converting a series of point clouds to a surface-based environment

is decomposed into multiple stages, as presented in Figure 3.1. A great advantage

of the processing model is that the execution time of all the stages is small, allowing

for the 3D mesh computation and rendering to be performed online.

In the beginning of the pipeline, instead of using algorithms that strive to be noise

insensitive, we introduce a preprocessing step in order to minimize the presence of

noise in the data and to supply enhanced distance images to the actual processing

algorithms. To achieve the desired surface error reduction without eliminating vital

edge information, we use anisotropic diffusion and wavelet denoising with main phase

preservation. The parameters of these filters are tuned for maximal surface noise re-

moval and optimal boundary preservation between surfaces scanned by a SwissRanger

sensor that generates a 2D grid aligned 3D point clouds. By using this approach, the

normalized range image is altered such that a high percentage of the scans can be

successfully denoised. Additionally, we introduce an inexpensive and efficient denois-

ing algorithm that not only eliminates false positives in Canny edge detection, but

also allows for reconstruction of undetected boundary information in the original data.

For the actual reconstruction and rendering of the surfaces, we implement a multi-

resolution method that is executed on every mesh surface independently. The idea

here is to counteract the constant complexity increase of the overall representation

with every set of surfaces and corresponding new vertices that are added. Besides the
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fact that the LOD is reduced linearly with the increasing number of mesh nodes, the

complexity of the surfaces is also guided by the distance to the viewer - the further

a mesh is from the viewport, the less vertices it uses to be represented.

Note that the surface complexity is reduced by eliminating the least important nodes,

one by one, by dynamically computing the sharp feature value of the surface at each

point. During this process, the approximate boundary shape of each mesh is main-

tained, thus enabling a minimal information loss for quasi-planar surface representa-

tion. Additionally, a mesh merging approach is devised, which considers the previous

multi-resolution scheme and reimplements it for the resulting mesh.

Finally, we have explored multiple surface uncertainty visualization methods that

allow for estimating the environment more completely and devising optimal posi-

tioning and tracking algorithms by considering the represented maximal error levels.

Furthermore, various error sources that affect the surface reconstruction process were

visualized separately, as well as convoluted, offering support for tasks as targeted er-

ror handling/reduction and in-depth data analysis.

All in all, this paper supplies a new approach for the virtual reconstruction of sur-

roundings from 3D point cloud scans, by exploiting the advantages of both graphics

and robotics techniques, in order to achieve an efficient and precise environment

reconstruction for robot understanding and navigation, as well as implement a user-

intuitive representation for human interpretation.



Chapter 5

Future Work

Considering the overall complexity of the devised point cloud processing model (Figure

3.1), but also the intricate nature of each of the composite algorithms, the develop-

ment directions that can be followed are numerous. Additionally, during this research

several questions remained yet to be answered, mostly due to temporal constraints.

From a broad angle, we have to further elaborate and refine the entire process of

converting a sequence of 3D point cloud scans into surfaces, all of this in real-time.

In order to achieve this, various modules of the model have to be modified or yet

implemented.

An important aspect for coherence and online functionality is the reimplementa-

tion of the noise reduction module in C++, to allow a real-time interaction with the

following processing stages. Moreover, this would certainly boost the execution times

for the filtering and enable us to consistently compute the computational expenses

of each stage.

Of high importance is also the evaluation of other error reduction methods, espe-

cially denoising techniques that consider phase preservation, as these have already

proven to be successful. To obtain a continuous processing, a more efficient surface

registration and segmentation method has to be implemented, in order to eliminate

the necessity for any human intervention. This can be achieved by use of preexisting

methods, as surface registration and matching are not direct topics of this thesis.

In the presented approach, the multi-resolution methods are influenced only by the

size of the global reconstruction - number of vertices in meshes - and the distance

from each mesh to the screen. To improve this aspect, we consider implementing an

extension that additionally manages occluded meshes and changes the LOD distance
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scheme to redesign the previous heuristic one, by setting the detail level such that no

two vertices of a mesh will be displayed in the same pixel. Also, in order to preserve

sharp features for complex meshes, different vertex evaluation methods have to be

considered.

An increase in speed can be also achieved at this stage by implementing the oc-

clusion detection and mesh merging by means of the OpenGL depth buffer, that has

the added bonus of simplifying the implementation.

Another direction that should be further pursued is the uncertainty visualization.

Experimenting with other visual representations for uncertainty, evaluating their ad-

vantages and disadvantages from human and algorithmical view-point, handling over-

lapping uncertainty volumes, further exploring the possibilities of multi-level uncer-

tainty representation and its limitations by considering additional information, like

odometry, are only a couple of areas that would required attention.

Finally, probably the most important and challenging unsolved task is represented

by the extension of the procedural model to incorporate and correctly solve the prob-

lem of reconstructing highly non-planar surfaces.
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Appendix A

Terminology

• Point Cloud - digitalized data containing a set of 3D points (each point pre-

senting at least 3 values for the 3 coordinates - X, Y , Z) defining part of an

object or environment. The data is usually generated with some measurement

device (i.e. time-of-flight sensor) and it represents the object’s boundary, but

in rare cases it can be generated computationally.

• Surface - an infinite densely connected manifold, referring usually to the 2D

and 3D cases. A surface can be positioned and oriented in space, and it can

either have a boundary or extend infinitely. A planar surface is a particular

case, where all the points of the surface are included in a 2D manifold and the

normal at each point is the same. Mathematically, a surface can be represented

either implicitly (F (x, y, z) = 0) or explicitly (F (x, y, z) = a).

• Rendering - the process of generating a drawing/image on a graphical output

device from a model, by means of computer programs. The model is a strict

description in a particular language or code of the 3D objects. In general,

rendering a scene would suppose the presence of geometrical data, viewpoint,

texture data, lighting and shading information. Common rendering techniques

include ray-tracing and scanline rendering. Additionally, rendering can be di-

vided in geometry-based rendering or image-based rendering [31].

• Level of detail (LOD) - the amount of detail or complexity of an object or

environment that is computed in order to be displayed at a moment in time.

The higher the LOD, the more time it will take for the object to be rendered on

a computer screen and the more probable it is that the displayed object will be

more accurate/complex, and vice versa. LOD is usually correlated in graphics

with the distance between the rendered object in the virtual 3D space and the

projection surface (i.e. the screen).
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• Pixel - the smallest piece of information in a digital image (PIcture ELement).

Pixels are displayed in a regular 2D grid and are in general represented by small

squares or dots. Each pixel is a sample at a certain position of the original

image. Thus, more pixels lead to a denser sampling, which again leads to a

more accurate representation of the original image.

• Mesh - a set of planar faces joined together along their edges. As such, these

faces do not overlap and they can present 3 or more edges. The most common

mesh is the triangular mesh, where the planar faces are 2D triangles. The

structural elements of a mesh are the faces, the edges and the vertices.

• Modeling - the generation of a computer implemented object defined by a set

of 3D points. By uniting pairs of such points by lines (e.g. tessellation), one

can obtain structures representing multi-dimensional objects. Such a simple

representation that is based on lines only is called a wireframe.

• Simultaneous localization and mapping (SLAM) - a technique designed for mo-

bile robots with the purpose of building a map within an unknown environment,

and at the same time keeping track of their current position. One major diffi-

culty in this process is represented by the inherent uncertainties in discerning

the robot’s relative movement from the provided sensors, as using only the

odometry sensors proves to be generally inefficient.

• OpenGL - a standard specification developed by Silicon Graphics Inc. (SGI)

in 1992, defining a cross-language cross-platform programming interface for

creating rich 2D and 3D computer graphics applications. The interface enables

the use of multiple graphical primitives that allow the composition of complex

three-dimensional (3D) scenes. Areas that use OpenGL intensively include vir-

tual reality, scientific visualization, information visualization, flight simulation,

as well as video games and 3D animation, where it competes with Direct3D on

Microsoft Windows platforms.

For further information on terminology in this proposal please refer to [31].
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