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Abstract—While many data sets contain multiple relationships, depicting more than one data relationship within a single visualization
is challenging. We introduce Bubble Sets as a visualization technique for data that has both a primary data relation with a semantically
significant spatial organization and a significant set membership relation in which members of the same set are not necessarily adja-
cent in the primary layout. In order to maintain the spatial rights of the primary data relation, we avoid layout adjustment techniques
that improve set cluster continuity and density. Instead, we use a continuous, possibly concave, isocontour to delineate set member-
ship, without disrupting the primary layout. Optimizations minimize cluster overlap and provide for calculation of the isocontours at
interactive speeds. Case studies show how this technique can be used to indicate multiple sets on a variety of common visualizations.

Index Terms—clustering, spatial layout, graph visualization, tree visualization.
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1 INTRODUCTION

Many types of data that are important to analysts, such as social net-
work data, geographical data, text data, and statistical data, often
contain multiple types of relationships. These can include set rela-
tions that group many data items into a category, connection relations
amongst pairs of data items, ordered relations, quantitative relations,
and spatially explicit relations such as positions on geographic maps.
Common approaches to visualizing set data focus on solutions that
integrate clustering and bounding outlines. That is, when possible,
set members are moved into close proximity and contained within a
convex hull. When set member proximity is not possible, alternate ap-
proaches make use of additional visual attributes, such as colour, sym-
bol or texture, to indicate that discontinuous items or groups are in fact
members of the same set. Bubble Sets provide continuous bounding
contours, creating outlines analogous to hand-drawn enclosures, and
do not require prior spatial reorganizing. This eliminates the cognitive
load of keeping track of spatially discontinuous set members.

Bubble Sets is an approach to visualizing set relations over existing
visualizations that respects the spatial rights of the initial visualization.
For some types of data, such as scatter plots, maps, and timelines, the
semantics of the spatial variable is crucial. For other types of data,
such as node-link graphs, one could argue that spatially arrangements
can be re-organized, and while we agree that this can be the case there
are also times when a particular layout is beneficial for a task, and spa-
tial re-organization can interfere with one’s mental model [16]. There-
fore, in Bubble Sets, we respect the spatial rights of the primary vi-
sualized relation and do not disturb it when displaying the secondary
set relations. Our approach uses implicit surfaces to create continu-
ous and dynamic hulls which highlight set relations without requiring
layout adjustments to existing visualizations. Heuristic optimizations
allow for set boundaries to be calculated at interactive speeds and to
guarantee set continuity while minimizing overlap. The Bubble Set
approach to set visualization can readily be applied over any existing
visualization, be it spatially explicit or spatially assigned.

In the following section we advocate for careful consideration of
spatial rights when visualizing multiple relations and review the re-
lated work using spatial rights as a means to differentiate between the
types of visualizations that contain both connection and set relations.
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Then we outline our algorithmic approach to determining and render-
ing set boundaries, and illustrate our technique with four case studies.

2 BACKGROUND

We use the common set definition: a collection of unordered items,
possibly empty, with no repeated values. This includes Freiler et al.’s
definition of set membership by set-type attribute [11]. Also, we in-
clude sets that are defined implicitly by relationships amongst mem-
bers (a group of friends), sets which share data attribute values (all
cars with air conditioning), and sets which are arbitrarily specified
(personally-selected).

One approach to set visualization is to consider the set relation as
primary and create a spatial layout according to set membership [11].
In this situation spatial proximity within sets can be achieved. Another
approach is to spatially adjust or re-cluster a given visualization to
bring set members into closer proximity, making it possible to visually
group them with a convex hull. Since both of the above approaches
result in spatially clustered set members, visually containing them in
convex hulls can be effective [8, 13, 17]. Convex hulls are fast to
calculate and well-suited to cohesive clusters which are separated from
neighbouring groups. However, if the layout contains items that are
not set members but are within the set region spatially, these items
appear within the convex region determined by set members, thus will
appear to be set members. This is seen in ScatterDice [9] when scatter
plot axes change after sets are defined with the lasso tool.

Additionally, in some spatially assigned layouts, such as scatter
plots, and in other data representations, such as maps, the seman-
tics of the layout preclude spatial re-positioning. In these situations
use of convex hulls to encircle set members is not effective. Here
set membership is sometimes indicated through discontinuous set out-
lines and/or the use of colour and symbols. To provide a method that
can visually contain set members within an outline, we calculate a
polymorph hull which can have convex and concave regions. This
hull can avoid including items which are not set members, except in
very dense arrangements where a human would also have difficulty
manually drawing the enclosure. We use implicit surfaces similar to
those used by Watanabe et al. [22] and apply them to create contigu-
ous multi-set visualizations over multi-relational information visual-
izations. The requirement for more complex hull outlines to support
set visualization within many different types of visual representations
is closely tied to the spatial semantics and the concept of spatial rights.

2.1 Spatial Rights
Since research into how we perceive visualizations indicates that the
spatial positioning of data items may be the most salient of the possible
visual encodings such as position, colour, shape, etc. [3, 21], it may
well be important to preserve positioning of data items while providing
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Fig. 1: Rows — Set relations over statistical plots (top row) and node-link graphs (bottom row). Columns — (a) Simultaneous spatial rights: set membership is
based on proximity in layout. (b) Spatial rights for the connection relation: set members indicated through common item colour. (c) Hybrid spatial rights: layout
based on connection relation is adjusted to bring set members into closer proximity. (d) Spatial rights for set relation: layout brings set members into a tight
cluster, obscuring the structure of the connection relation. (e–f) Spatial rights for attribute-based layouts and connection relations: the set relation is drawn atop
existing layouts using either the traditional convex hull (e) or Bubble Sets (implicit surfaces) (f).

set membership visual containers. We refer to this concept of granting
primacy to the particular aspect of the data on which the layout is based
as spatial rights [7].

Social network data exemplify the different types of relations we
consider. These sorts of rich data sources are important to understand-
ing organizations, online culture, and computer-based collaboration.
A connection relation may be that friends are directly connected to
one another, or that supervisors are connected to their direct reports
in a management hierarchy. A set relation could be defined in several
ways: based on graph characteristics such as cliques of closely con-
nected friends, based on demographic information such as occupation
or level of education, or arbitrarily determined, for example, by an an-
alyst. Set relations are sometimes called categorical relations, where
all items sharing a value for a categorical data attribute comprise a set.
Finally, additional ordered and quantitative attributes may be present,
and could be used to annotate or position the visual items, such as ar-
ranging by date of birth or annual income. With these data, it is likely
most intuitive to provide a layout based on the connectedness informa-
tion, as that is the ‘network’ in social network analysis. In this case, it
may not be possible or desirable to adjust the layout to maximize set
contiguity or density. Doing so may disrupt the meaning provided by
the connection-based layout. Traditional set visualization techniques
will not be adequate, and our approach may be more applicable.

Traditionally, either the connection relation or the set relation is af-
forded primacy, and the spatial layout of a visualization is based on
that relation. There is a trade-off in design — optimized layouts for
connections may lead to unclear sets; optimized layouts for sets may
lead to confusing edge crossings and a loss of visible structure. An
alternative is to design a coordinated view system, in which one view
is based on the set relation, and the other is based on the connection
relation. However, in this work we will restrict ourselves to tightly
coupled relations in a single-view visualization. Our implicit surface
solution clarifies set membership while not disrupting information-
carrying layouts based on connection relations and ordered attributes.
We will explore the related work by defining five configurations of
spatial rights and giving examples from the literature where possible.
Figure 1 illustrates this discussion by showing in diagrams different
ways to indicate set membership in scatterplots and on tree layouts.

Simultaneous Spatial Rights: If a dataset contains one set relation
and one connection relation, it may be spatialized based on either. One
may desire contiguous, compact clusters to represent sets, or one may
wish to design a layout to minimize overlap of edges in the connection
relation. These two goals are not always mutually exclusive. In some

cases, set membership is a direct function of the connectedness charac-
teristics of a graph, or even the spatial proximity resulting from a lay-
out based on graph structure. In these cases the desired layout can be
created based on the connection relation, and sets will appear closely
clustered and contiguous, giving both spatial rights. Figure Figure 1a
shows a scatter plot (top) and a tree (bottom) where each set’s spa-
tial proximity allows for bounding by a convex hull. Examples of this
include the friend clusters in Vizster [13] or spatially-determined ag-
gregates in level-of-detail visualizations [1]. Our investigation of the
design space of multi-relationship visualizations reveals that assigning
simultaneous spatial rights is not always possible.

Hybrid Spatial Rights: The set relation may be pre-determined by
data characteristics or set membership may be arbitrarily selected by
an analyst. In these cases the layout may be adjusted to bring set mem-
bers closer together. In this condition, the connection relation and set
relation share spatial rights in a hybrid layout. However, reorganizing
a layout to create more continuous and denser sets may have serious
consequences for the readability of the primary connection relation.
For example, nodes in a tree may have a meaningful order which reor-
ganization may disrupt. In Figure 1b for both the tree and scatterplots
set membership is discontinuous and is indicated by node colouring.
In Figure 1c the tree from Figure 1b is re-organized to provide set
proximity, however, this re-organization would destroy meaning in the
scatterplot. While we do not know of examples which explicitly cre-
ate a hybrid layout for set and connection relations, Phan et al. [18]
report a hybrid layout based on hierarchical clustering and adjusted to
provide node separation. Dwyer et al. [8] use a hybrid layout tech-
nique to provide for fast calculation of large-scale overviews which
are adjusted in detailed views for higher-quality layout.

Spatial Rights for Set Relations: When the set relation is the pri-
mary relation, it can be assigned spatial rights. Items are then arranged
to maximize set separation, continuity, and density. Connection rela-
tions are drawn atop this layout (Figure 1d), however, this approach
does not apply to scatterplots. We do not know of any research that
affords primary spatial rights to a set relation while drawing a connec-
tion relation atop. The closest analogues are approaches using multiple
connection relations, such as using hierarchical data to lay a treemap
out, then drawing additional connection relations atop [10].

Spatial Rights for Connection Relation: When the connection re-
lation is the primary relation, it is best to assign it spatial rights. When
set membership is not based on the connection relation, but rather on
an unrelated data attribute, or even interactive selection, common visu-
alization techniques such as convex hulls are not sufficient (Figure 1e).
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Visualizing set relations for data items in a predetermined visual layout
is often difficult due to spatial discontinuities, and set overlaps. Set-
membership ambiguities can be introduced by the use of convex hull
algorithms. Noting set membership with another visual encoding such
as symbols or colours on the data items is helpful but lacks the clar-
ity of a single enclosure. Indicating set membership with ‘bubbles’
— contours that tightly wrap set members — has been attempted in
the past, however, this approach only offered continuous set member-
ship enclosure for proximal groupings [14, 22]. Byelas and Telea [6]
provide connected set enclosure visualizations for UML using outer
skeleton construction and handle incorrectly included items by second
pass cutouts. In this work, we introduce an efficient implementation
of implicit surfaces which allows for contiguous sets to be drawn over
arbitrary layouts, while reducing set membership ambiguity problems
using interactive highlighting (Figure 1f).

Data explicit Spatial Rights: With some data types such as maps
the spatial rights are explicit in the data semantics. Here set member-
ships can exist across multiple distances such as the sets of all capitol
cities or the cities with populations over a million. With this type of
data spatial re-organizing is not an option and solutions such our ap-
proach diagrammed in Figure 1f are essential.

2.2 Implicit Surfaces
While implicit surfaces have been previously used to illustrate set re-
lations over graphical objects [14, 22], in both works, the set relation
is defined by the spatial proximity of graphical objects — increasing
an item’s distance from the set centroid removes the item from the set;
pushing an item toward the set centroid adds it. As we aim to main-
tain the visualization of set membership for any spatial relationship
between set members, dragging an item away from a set centroid will
not remove it from the set. Thus we provide alternative interaction
techniques to modify set membership. Watanabe et al. [22] provide
no option for set members existing across long distances. Heine and
Scheuermann [14] allow for a single set to be divided into multiple
subgroups separated by distances by using bubbles of the same colour.
They do not detect an isocontour, rather using pixel-based shading to
display sets. Thus rich interaction with the set is not possible. In our
work, we maintain a continuous and connected contour around all set
members irrespective of distance or spatial organization.

3 INTERACTIVE BUBBLE SETS

Our approach arose from observing curved and complex boundaries
hand-drawn by people to indicate set relations (Section 4). To simu-
late these natural-looking boundaries, our method requires: (a) all set
members to be enclosed, (b) non-members to be excluded, (c) where
non-members occur within boundaries, visual and interactive hints to
clarify membership, (d) rendering to allow for interactive adjustment.

Implicit surfaces, more accurately called ‘contours’ in 2D, are well
suited to address these requirements [4]. In this section we will de-
scribe our version of implicit contours (‘bubbles’) and the heuristics
we employ to fulfill the requirements and create accurate and aesthet-
ically pleasing bubbles around set members. An implicit surface is
simply a contour such that the energy E(x,y) = c where c is a constant
potential value. We consider the display space to be a grid upon which
we calculate potential ‘energy’ values for each cell (pixel). When the
potential energy function is continuous, continuous contours are guar-
anteed. However, there may be more than one separate contour in
the potential grid. Contours are defined by the presence of items on
the grid. An item is an object that may or may not be a set member.
For each pixel the potential energy is the sum of influences of nearby
items, as a function of distance:

spixel = { j| j ∈ items,distance j,pixel < R1} (1)

energy(pixel) = ∑
i∈spixel

wi(R1−distancei,pixel)2/(R1−R0)2 (2)

where R0 is the distance at which energy is 1, R1 is the distance at
which energy reaches 0, w is the weight assigned to the item, items

Algorithm 1 Determining a Bubble Set Boundary

given items with positions
for all sets s ∈ S do

find centroid c of s
for all items i ∈ s, order ascending by distance to c do

find optimal neighbour j ∈ s
find best route from i to j
for all cells (pixel or pixel group) within R1 of i do

add potential due to i
add potential due to nearest virtual edge i→ j
subtract potential due to nearby non-set members k 6∈ s

end for
end for
repeat

perform marching squares to discover isopotential contour s̄
reduce threshold

until ∀i ∈ s, isocontour s̄ contains(i)
draw cardinal splines using every Nth point on the contour

end for
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Fig. 2: The order of connecting set members with virtual edges affects the
generated shape. Left-to-right, top-to-bottom connection generates a snake-
like virtual edge configuration (left), while connecting from the centroid (black
circle) outward generates a more blobby shape (right).

is the set of all items in the space, and spixel is the set of influencing
items within R1 of the pixel. An isolated point item, then, will have a
circular isopotential contour at radius R0 and an energy field extent of
R1. As items are often not points, but rather shapes such as rectangles,
we use Euclidean distance to the nearest point on the shape surface.
Inside shapes we assign distance = 0. As the energy function reaches
its root at R1, only items within R1 of a pixel are included in the energy
calculation and will have a non-zero effect. After calculating energy
values for all grid cells, we use a 2D version of Marching Cubes [15] to
trace the contour. As described in the following sections, we adapted
this general method with additional steps to ensure sets are connected
and contain all set members, while excluding items not in the set. The
simplified algorithm for calculating bubble boundaries is described in
Algorithm 1.

3.1 Surface Routing
We generate virtual edges, which are routed around obstacles to allow
set surfaces to ‘flow’ in an aesthetically pleasing way while avoiding
overlaps with nodes and maintaining set connectivity. For each set,
we first define an active region as the rectangular bounding box which
includes all set members, increased on all sides by a buffer of R1. Only
items in the active region can be close enough to set members to affect
the bubble creation. Therefore, for speed purposes, items and pixels
outside the active region are not included in the energy calculations.

There are two options for routing the bubble surface. First, if struc-
tural edges (edges that are part of the data) are included, the bubble
surface should follow them. For example, if a set over a node-link
graph includes both nodes and edges, we simply use these items to
calculate the bubble surface. However, as discussed previously, set
relations may not have any dependence on a connection relation in
the data. In these cases, we ignore any edge structure in the visu-
alization and determine bubble routing based on the constraint that
bubbles must, where possible, avoid overlapping or including non-set
members within the bubble boundary. To achieve this, we route the
bubble surface around items which should not be enclosed using an
invisible backbone of edges that connect set members while avoiding
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Fig. 3: Contour connectedness is assured through virtual edges which add to
the energy distribution for the set. (l-r): A virtual edge passing through a node
is detected. A new control point is created at a corner of the obstacle’s bound-
ing box and the test repeated. As the test fails, the diagonally opposite corner
is then used and no obstacle is found. Additional control points are created at
the corners to route edge around the obstacle. The final set of virtual edges
contributes to the energy calculation, allowing the set contour to avoid the ob-
stacles and remain connected. Far right: the configurations for creating virtual
nodes with Algorithm 2.

non-included items. This backbone is initialized by iterating through
set members and connecting them to an optimal already visited mem-
ber of the same set using a straight line between item centers. The
optimal neighbour joptimal for node i is selected to minimize the func-
tion cost( j) = distance(i, j) ∗ obstacles(i, j) where obstacles(i, j) is
the count of non-set members on the direct path between i and j. This
function balances a preference for close connections with the simplic-
ity of straighter paths. We start this operation with the item nearest
the set centroid and proceed outward. This encourages ‘blob’ shapes
rather than ‘snake’ shapes (Figure 2). This process ensures all set
members are connected.

Extending the edge routing algorithm of flow maps [18], we then
test all non-set members within the active region for intersection with
the virtual edges. If an intersection is found, we split the edge and
route it around the blocking node by creating a new control point off-
set from one of the node corners and connecting the original edge end-
points to this control point, creating 2 virtual edges. We place the
control point R1 away from the corner to provide for a buffer around
the blocking item. If the creation of the new control point initially
fails, we iteratively try routing around other corners of the obstacle
and reducing the buffer. This process, detailed in Figure 3 and Al-
gorithm 2, is repeated for the new segments until an iteration limit
is reached or no intersections are found. This method does not work
for the case where a set member’s bounds are completely contained
within a non-set member (see scatter plot case study). Our algorithm
is O(KN(N + HW )) for K sets, N items, and a pixel field of H by W ,
however heuristics such as restricting energy calculations to the active
region around an item reduce the average case considerably.

3.2 Energy Calculation

To calculate the potential field, several techniques are employed to
gain speed. First, the display space is divided into square pixel groups
which are treated as a single pixel. While this lowers the resolution
of the surface calculation, the visual artifacts introduced are minimal,
and it actually has the effect of smoothing the bubble surface. We
dynamically adjust the pixel group size to provide interactivity when
items are dragged (pixel group 9× 9) and higher quality rendering
when the scene is static (pixel group 3×3).

The potential field is calculated for each set in sequence. Nodes and
edges (both structural and virtual) in the set are given a positive weight
of 1. Negative energy influences result in the implicit surface being
pushed away from items not included in the set. Nodes not included in
the set are weighted −0.8. Non-set edges are usually given a weight
of 0, as bubbles will not be able to avoid edge crossings, and energy
reductions at edge crossings can cause surface discontinuities. The

Algorithm 2 Route virtual edges around obstacles (see Figure 3).

while ∃ virtual edge lk,m which intersects obstacle do
n← null, swap← false
while (n = null∨n intersects obstacle)∧ (buffer > 0) do

if lk,m intersects adjacent edges of obstacle bounds then
add virtual node n at corner of adjacent edges

else
if Area(A)≤ Area(B) then

if i > j then
add virtual node n at (swap ? c1 : c3)+buffer

else
add virtual node n at (swap ? c2 : c4)+buffer

end if
else

if i > j then
add virtual node n at (swap ? c3 : c1)+buffer

else
add virtual node n at (swap ? c4 : c2)+buffer

end if
end if

end if
if swap then

reduce buffer
end if
swap←¬swap

end while
split virtual edge into lk,n and ln,m
reset buffer

end while

energy contribution of visual items is also dependent on R0, and R1 —
these parameters must be tuned for a particular application depending
on the size and spacing of items, and the bubble margins desired.

For a given set, we first calculate the positive energy influences for
each pixel group in the active region. That is, for all set members
and virtual edge sets, we calculate energy contributions for all pixel
groups within R1 of the item. For a given pixel group and virtual
edge set (route between two nodes), only the edge segment closest to
the pixel group contributes energy. This avoids overly large positive
energy values near segment connection points, which would lead to
bulges in the final surface. Next, for pixel groups with total energy
greater than zero, we add the negative influence of entities which are
not in the set. As regions of zero or negative energy will never be part
of the isocontour, we do not calculate negative energy contributions
unless the pixel group already has a positive energy. This provides a
significant reduction in the time required to fill the energy surface of
the active region. A visualization of the energy field underlying a set
is shown in Figure 4.

3.3 Contour Discovery
We used a 2D version of Marching Cubes [15] to discover an isocon-
tour for each set. After discovering the isocontour, we check all set
members to ensure their centers are within the contour enclosure. If
they are not, this indicates a disconnection. In this case, we iteratively
reduce the potential threshold by a factor al pha, repeating marching
squares until all members are included. In very dense layouts, it may
be necessary for the set contour to pass through items which are not
included in the set, for example if items are adjacent without space
for routing around. In practice, such situations would be difficult for
a person to draw — if no space is available for the set to route around
an obstacle, our algorithm will eventually go through it. The marching
squares step is fast to repeat O(H +W ) for an active region of H by
W pixel groups. If, however, after N iterations the set is still discon-
nected, we manipulate the energy field, a slower process (O(HWK)
for K items in the active region). We increase the positive weights by
a factor β , decrease the negative weights by a factor γ and recalculate
the potential field, followed by another iteration of marching squares.
We repeat the energy manipulation for N additional iterations or until
the set boundary encloses all member items.
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Fig. 4: Visualization of potential energy field for a single set. At left, with pixel group = 1 for high quality rendering, at right with pixel group = 9 for interactive
animation. Non-member items and additional sets are faded in the background. Red areas indicate positive potential, blue areas are negative potential. Note the
visible bends in the virtual edges route in the center and far left, an effect of the routing algorithm. The isocontour is shown as a solid brown boundary.

Negative energy contributions serve to ‘push’ the set boundary
away from non-set members near the contour boundary. Surface rout-
ing attempts to work the boundary around obstacles, but when a dense
set encloses a non-set member, the algorithm may fail to exclude that
item. If a non-set member is discovered within the contour, we high-
light it with a white border. It would also be possible to create a hole
using an iteration of marching squares beginning at the center of the
non-set member and working outward to discover an interior contour.
We leave this for future work and use highlighting and interactivity to
clarify such occurrences.

To render the surface we use cardinal splines, using every Lth point
on the surface discovered by marching squares as a control point.
The selection of L involves a trade-off between smoothing and pre-
cision, and is dependent also on the pixel group size. We lean toward
smoother surfaces and select L = 10 in the examples that follow. We
colour the interiors of the surfaces with a transparent version of the
border colour to more clearly indicate the extent of the set region.

3.4 Interaction

Interactions such as adding items to sets, removing items from sets,
creating new sets and moving items within sets are provided. Since
proximity does not determine set membership, we use moded interac-
tion. First a set is made active with a right-click, then individual items
can be added or removed by clicking them. When complete, the set
is deactivated and its new contents are fixed. Depending on the ap-
plication requirements, it is also possible to select and move an entire
set by clicking on the set background. Our requirement for surface
calculation and rendering at interactive speeds is met, as discussed, by
defining active regions, pixel groupings, and only calculating negative
influence for pixels with energy greater than zero. Sets are rendered
from largest to smallest to facilitate picking, ensuring smaller sets are
not completely covered. After the initial rendering, we only recalcu-
late the contours for sets with changing configurations. Specifically,
for any moved item i, we only recalculate the surfaces for sets s ∈ S
if i is in the active region of s. The speed gain of this heuristic is
dependent on the density of the display space and the number of sets.

We cannot guarantee that non-set member items will be excluded
from the set boundary in all cases. The use of surface routing and neg-
ative energy influences minimizes this occurrence, but it remains pos-
sible depending on the density of the graph and the particular layout
of items. To clarify set membership, we visually separate overlapping
or enclosed non-set items from the set using a white border (e. g., the
gold item overlapping the green set near the center of Figure 9). Ad-
ditionally, when a set member or set boundary is under the mouse, all
non-set member items are faded out (made partially transparent).

4 CASE STUDIES

To demonstrate the flexibility of our technique, we have applied it
to visualize set relations over several visualizations for which spatial

rights are given to the existing layout that contains the set members.
Our examples include maintaining spatial rights for the connection re-
lation in the machine translation parse trees, hybrid spatial rights in the
timeline visualization, explicit spatial rights in the map example, and
ordered spatial rights in the scatterplot. Our isocontour surface calcu-
lation and rendering was implemented in Java as an extension to the
prefuse toolkit [12]. The case studies are prefuse-based visualizations
using isocontour surfaces to display set relations.

4.1 Machine Translation Parse Trees
As a first example, we have developed a visualization for statistical
machine translation data. The task of our translation researcher col-
laborators is to examine the outputs of the translation system in order
to discover any problems in the training data that lead to translation er-
rors. Their technique generates translations by translating segments of
a source sentence into fragments of a linguistic parse tree in the target
language. The collection of possible parse fragments is then assem-
bled to create a complete parse tree. The translated sentence is read
from the leaves through in-order traversal.

This statistical syntax-based machine translation system operates
with two probability models: a translation model and a language
model. The translation model assigns probabilities that a given sen-
tence segment will translate to a particular parse tree fragment. The
language model assigns likelihoods that the candidate translation is a
valid sentence in the target language. The two models combine to re-
sult in an overall score assigned to a translation candidate. The task of
the researchers is to diagnose translation problems that are most often
the result of invalid translation pairs in the translation model’s training
data. To do this, analysts examine hundreds of translation examples,
manually tracing problems in the translation back to the source seg-
ment and target parse tree fragment pair that caused the problem.

The observed computational linguistic researchers’ diagnostic pro-
cess consists of two steps: first, review an entire (printed) parse tree for
problems, second, if problems are found, scan through several pages
of tree fragment-translation pairs to discover problem sources. In their
process, there was no way to see which nodes in the visualized parse
tree consisted of a set or fragment. However, when sketching on their
print-outs, analysts often drew bubbles around problematic tree frag-
ments in the parse. The data for the visualization consisted of a con-
nection relation (parse tree) and a set relation indicating which tree
fragments were a unit of translation. We assigned spatial rights to the
connection relation, laying out the parse tree with an improved version
of Reingold and Tilford’s layout [5]. The set relations are not deter-
mined by proximity in the parse tree, but rather specified by the way
in which the tree is constructed from fragments. However, the set rela-
tion is not completely independent of tree structure — individual sets
are guaranteed to be connected through tree edges. Thus, the structural
edges rather than our virtual edges are used for surface routing.

Our set visualization approach is well-suited to reveal the tree frag-
ments directly on the output parse tree. Set background hue is selected
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Fig. 5: An example translation parse tree from Chinese to English. Bubble colour indicates the type of translation rule, increasing bubble opacity indicates a
higher probability score. Edges indicate correspondence between sets of the English parse tree and Chinese words.

Fig. 6: Different surface drawing techniques: (a) Blue convex hull includes
non-set members within the boundary, (b) Bubble Set does not.

based on the category of the fragment (a classification important to the
analysts), and the background transparency is based on the confidence
score assigned to the set by the translation algorithm (darker is more
confident) (Figure 5). Traditional methods such as convex hulls would
not suit this application, as they are unable to exclude non-set mem-
bers (Figure 6). As part of a tool for analyzing translation models, our
visualization allows translation researchers to review translation parse
trees for problems and annotate discoveries directly on the visualiza-
tion, without the need for lengthy tables of translation tree fragments.
We are planning to deploy the system for a longitudinal case study.

4.2 Research Articles Timeline

Spatial tools to organize personal archives of PDF documents have
been reported, including the Dynapad tool which provides both
clumped (set-based) and timeline (attribute-value-based) layouts [2].
However, Dynapad is not able to display the set relation when the
PDF article icons are displayed in the timeline formation. Combined
timeline and set views of the research literature are used for personal
information organization, and for communicating an organization ap-
plied to a set of articles [20, p. 23]. Several people were involved
with the discussion about which articles belonged in each set, and the
groupings were revised several times. Inspired by this activity and the
manually-created sketches [20], we provide an automatic creation of

similar visualizations as a tool to support collaborative discussion and
categorization of research articles (Figure 7).

In our prototype implementation, we use the data from [20]: a col-
lection of 60 research articles in the area of visualizing communication
patterns. We manually collected characteristic images and abstracts
from the electronic documents, but document thumbnails could eas-
ily be generated using the PDF icon generation method of [2]. The
layout used in this example provides hybrid spatial rights: the ini-
tial layout places article icons on a timeline according to the year of
publication. The layout is then adjusted to improve density of the pre-
determined set memberships using a force-directed layout algorithm,
restricted to movement on the y-axis. Forces draw items that share at
least one set toward one another and repel members of other sets. This
layout mechanism provides for dense sets with minimal interference
from other sets. However, in years where many articles appear on the
timeline, interference cannot be avoided. In these cases, the surface
routing algorithm creates an invisible structure of edges to route the
set surfaces around obstacles.

Interactive movement of items along the y-axis allows for creation
of customized views. Set membership is specified in the dataset, but
can be changed at run time. To aid interactive classification of arti-
cles, the data can be queried for additional details, such as a larger im-
age or the abstract, by clicking (desktop) or tapping (interactive table-
top) a document icon. The set boundary expands to contain the en-
larged item, and a force-directed algorithm moves neighbouring items
to maintain partial visibility (Figure 8).

4.3 Sets over Geographical Maps
Grouping items over spatially explicit data, such as geographical
maps, is especially challenging for a convex hull approach. Maps com-
monly have widely dispersed sets, such as cities, rail stations, or lakes.
In cartography, these categorical sets are usually identified by coloured
or iconographic symbols. However, due to the distance between sym-
bols, the visual interference of other map features, and their relatively
small size, it is unlikely that sets of similar symbols are perceptually
associated quickly. Consider a scenario in which a health-care job-
seeker is selecting a hotel close to transit and interview sites. Bubble
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a b

Fig. 7: Grouping research articles on a timeline. (a) Manually-created sketch (courtesy Tat [20]). (b) Bubble Sets visualization.

Fig. 8: Items can be expanded to reveal a larger image or the article’s abstract.
The boundary moves to accommodate the larger item, and other items move
along the y-axis to remain visible and selectable.

Sets of hotels, subway entrances, and medical clinics (Figure 9) may
help them find a hotel that is central to several medical clinics and near
a subway entrance.

4.4 Sets over Scatterplots
Scatterplots have clearly defined spatiality due to the numerical posi-
tioning of items. We add Bubble Sets to a reimplementation of the well
known GapMinder Trendalyzer [19]. This scatterplot shows fertility
rate against life expectancy and is animated over time. Data points
represent countries, sized by population. Colour (and set member-
ship) is defined by the continent. The grouping of the sub-Saharan
Africa countries, highlighted in Figure 10, reveals that while most of
the countries in this set had high fertility rates and low life expectan-
cies in 1985, there are two outliers, Mauritius and Reunion, which are
islands in the Indian Ocean. As the data set includes data for many

years, and since Bubbles Sets are calculated at interactive rates, the
temporal changes can be convincingly shown through animation.

5 DISCUSSION AND FUTURE WORK

We have presented Bubble Sets, a method for automatically drawing
set membership groups over existing visualizations with different de-
grees of requirements for primary spatial rights. In contrast to other
overlaid containment set visualizations, Bubble Sets maximizes set
membership inclusion and minimizes inclusion of non-set members.
In fact, Bubble Sets can guarantee that all set members will be within
one container, as opposed to the more common multiple disjoint con-
tainers. While Bubble Sets cannot guarantee non-set member exclu-
sion, the routing algorithm minimizes these occurrences.

Within our isocontour approach we have implemented several
heuristics to reduce surface calculation and rendering time, such as
grouping pixels for potential calculations and restricting the regions in
which items influence the potential field. The current implementation
works without noticeable lag (items can be dragged and the surface
follows) for our examples (order of 100 nodes, 10–20 sets). For ex-
ample, it takes on average 105ms to calculate the virtual edge set, fill
the energy field, find the contour, and render the Sub-Saharan Africa
set in a window size 1920 × 1200 pixels. That set has 48 items and
the entire scatter plot has 196 points. The majority of this time is
spent creating the virtual edge set. An incremental approach, using
A∗ search as in [23] may provide improvements in speed and stability.
As the number of items, the screen resolution, or the number of sets
increases, so will the rendering time. Additional techniques, such as
grouping close items into larger pseudo-nodes, and caching the energy
field values between frames may increase the capacity of the system.
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Fig. 9: Sets of geographically-defined items in lower Manhattan, showing ho-
tels (orange), subway stations (brown), and medical clinics (purple). Medical
clinics are noticably absent on the West side, and there is a cluster of clinics and
hotels near transit in the Northeast corner.

Fig. 10: A scatterplot of fertility rate by life expectancy by country. Hovering
on a set member causes all non-members and other sets to be made transparent,
clarifying set membership. Here, enclosure eases discovery of the outliers in the
upper left, as well as giving a general impression about the spatial distribution
of the set.
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