
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
  
  

School of Mathematics and Systems Engineering 

 
Reports from MSI - Rapporter från MSI 

 
 
 
 

Dynamic and Static Approaches for 
Glyph-Based Visualization of Software 

Metrics 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 

Raja Majid Mehmood 

 
 
 
 
 
 
 

Dec 
2008 

 

MSI Report 08120 
Växjö University ISSN 1650-2647 
SE-351 95 VÄXJÖ ISRN VXU/MSI/DA/E/--08120/--SE 
 



ii 
 

Abstract 

 
This project presents the research on software visualization techniques. We will 
introduce the concepts of software visualization, software metrics and our 
proposed visualization techniques: Static Visualization (glyphs object with static 
texture) and Dynamic Visualization (glyphs object with moving object). Our 
intent to study the existing visualization techniques for visualization of software 
metrics and then proposed the new visualization approach that is more time 
efficient and easy to perceive by viewer. In this project, we focus on the practical 
aspects of visualization of multivariate dataset. This project also gives an 
implementation of proposed visualization techniques of software metrics. In this 
research based work, we have to compare practically the proposed visualization 
approaches. We will discuss the software development life cycle of our proposed 
visualization system, and we will also describe the complete software 
implementation of implemented software. 
 

Keywords: Software Visualization, Software Metrics, Glyphs, 2D Glyph-Based 
Grid, SWT, Static Visualization, Dynamic Visualization, Texture, Animated 
Software Metrics, Multivariate Dataset, Data Object. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



iii 
 

Acknowledgement 

 
First of all I am very thankful to my supervisor Dr. Andreas Kerren for 
introducing me to software visualization and for all the help along the way. I have 
a sincere thanks to Mr. Ilir Jusufi for the many discussions, advice and proof-
readings. Many thanks are also directed to my teacher Dr. Jonas Lundberg for 
great collaboration and many interesting discussions during my Master degree in 
Software Technology. Thanks as well to all of my colleagues and friends at Vaxjo 
University whose support through all the ups and downs has been so very much 
appreciated. Finally, I would like to thank my family for always supporting and 
encouraging me to make my studies possible. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



iv 
 

Table of Contents 

Abstract .......................................................................................................... ii 

Acknowledgement ......................................................................................... iii 

List of Figures ............................................................................................... vii 

List of Tables ................................................................................................ ix 

1. Introduction ........................................................................................... 1 

1.1. Background ....................................................................................... 1 

1.1.1. Software Visualization ................................................................ 1 

1.1.2. Software Metrics ......................................................................... 1 

1.1.3. Why Visualization Can Help ....................................................... 2 

1.1.4. Multivariate Dataset .................................................................... 3 

1.2. Problem Description .......................................................................... 3 

1.3. Goals ................................................................................................. 4 

1.4. Outline ............................................................................................... 5 

2. Visualization and Proposed Techniques ................................................. 6 

2.1. Related Work ..................................................................................... 6 

2.1.1. Textures ...................................................................................... 6 

2.1.2. Motion ........................................................................................ 8 

2.1.3. Glyphs ........................................................................................ 9 

2.2. Proposed Visualization Approaches ................................................... 9 

2.2.1. Static Approach ........................................................................ 11 

2.2.2. Dynamic Approach ................................................................... 12 

2.3. Summary ......................................................................................... 13 

3. Requirement Analysis and Design ....................................................... 14 

3.1. Methodology .................................................................................... 14 

3.1.1. Iterative and Incremental Process Model ................................... 14 

3.2. Requirements ................................................................................... 16 

3.2.1. Functional Requirements .......................................................... 16 

3.2.2. Non-Functional Requirements................................................... 19 

3.3. Use Cases ........................................................................................ 20 



v 
 

3.4. Use Case Diagram ........................................................................... 26 

3.5. Summary ......................................................................................... 27 

4. Visualization and Interaction Techniques ............................................ 28 

4.1. Visualization Techniques ................................................................. 28 

4.1.1. Static Visualization of Software Metrics ................................... 28 

4.1.2. Dynamic Visualization of Software Metrics .............................. 33 

4.2. User Interaction and System Dialogs ................................................ 36 

4.2.1. Main Controller Window .......................................................... 36 

4.2.2. Attribute Definition Window .................................................... 38 

4.2.3. Static Visualization in 2D-SFGrid ............................................. 39 

4.2.4. Dynamic Visualization in 2D-SFGrid ....................................... 41 

4.2.5. Display Settings ........................................................................ 42 

4.2.6. Data Set Slider .......................................................................... 48 

4.2.7. Attribute Comparison Slider ..................................................... 49 

4.2.8. View Information of Attribute................................................... 51 

4.2.9. View Full Qualified Name of Data Object ................................ 51 

4.3. Summary ......................................................................................... 51 

5. Comparison of Static and Dynamic Approaches .................................. 52 

5.1. Practical Comparison by Test Persons .............................................. 52 

5.2. Summary ......................................................................................... 55 

6. Conclusion .......................................................................................... 56 

6.1. Results ............................................................................................. 56 

6.1.1. Visualization Techniques .......................................................... 56 

6.1.2. Graphical Glyphs ...................................................................... 56 

6.1.3. Software Metrics ....................................................................... 57 

6.1.4. Comparison of static and dynamic visualization approaches ...... 57 

6.2. Future Work..................................................................................... 57 

7. Glossary .............................................................................................. 58 

8. References ........................................................................................... 59 

Appendix A: Implementation ........................................................................ 62 



vi 
 

A. 1. Visualization System Components ................................................ 62 

A. 2. Eclipse Development Environment ............................................... 62 

A. 3. SWT ............................................................................................. 63 

A. 4. Software Development ................................................................. 63 

A. 5. Class Diagram .............................................................................. 83 

 

 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 
 
 
 
 



vii 
 

List of Figures 

Figure 2.1. Motion of circle in Glyphs ............................................................. 8 

Figure 2.2. Static glyph or Vertical bar .......................................................... 11 

Figure 2.3. Graphical representation in 2D-Grid using static approach .......... 11 

Figure 2.4. Dynamic glyph with moving circle .............................................. 12 

Figure 2.5. Graphical representation using dynamic approach ....................... 13 

Figure 3.1. System Development Life cycle [53] ........................................... 14 

Figure 3.2. Overview of Iterative and Incremental Model [53] ...................... 15 

Figure 3.3. Use case for 2D-SFGrid Visualization System............................. 26 

Figure 4.1. Screenshot: Data Object (Static Software Metrics) ...................... 28 

Figure 4.2. (a): High Texture  (b): Low Texture .......................................... 29 

Figure 4.3. Screen Shot: Actual value with attribute information ................... 30 

Figure 4.4. (a): Borderless Glyph  (b): Glyph with Border .......................... 30 

Figure 4.5. Screenshot:  Sequence of Attributes ............................................ 31 

Figure 4.6. Screenshot: Placement of Texture in Glyphs................................ 31 

Figure 4.7. Screenshot: Calculated Texture Position in Glyphs ...................... 32 

Figure 4.8. Screenshot: Software Metrics in a Dynamic Display ................... 33 

Figure 4.9. Screenshot: Motion of Circle ....................................................... 34 

Figure 4.10. Screenshot: Get Delay Value ..................................................... 35 

Figure 4.11. Screenshot: Sequence of Attributes in Two Data Objects ........... 35 

Figure 4.12. Screenshot: Main Window Before Loading of a Dataset ............ 36 

Figure 4.13. Screenshot: DSN Dialog ............................................................ 37 

Figure 4.14. Screenshot: Main Controller After Loading of a Dataset ............ 37 

Figure 4.15. Screenshot: Attribute Definition Window .................................. 38 

Figure 4.16. Screenshot: Showing Clear All Operation.................................. 39 

Figure 4.17. Screenshot: Change the Attribute Color ..................................... 39 

Figure 4.18. Screenshot: Static Display of Software Metrics ......................... 40 

Figure 4.19. Screenshot: Dynamic Display of Software Metrics .................... 41 

Figure 4.20. Screenshot: Default View for Both Visualizations ..................... 42 

Figure 4.21. Screenshot: Sliding View .......................................................... 43 

Figure 4.22. Screenshot: Set Scrolling Option for Static Display ................... 43 

Figure 4.23. Screenshot: View the Software Metrics in 2D-SFGrid ............... 44 

Figure 4.24. Screenshot: Select Number of Glyphs for Dynamic Display ...... 44 

Figure 4.25. Screenshot: View the Effect in the Dynamic Display ................. 45 

Figure 4.26. Screenshot: Change the Texture Property in Display Settings .... 45 

Figure 4.27. Screenshot: Get Organized Textures in the Static Display ......... 46 

Figure 4.28. Screenshot: Change Texture Option in Display Setting .............. 46 

Figure 4.29. Screenshot: View Random Textures in the Static Display .......... 47 

Figure 4.30. Screenshot: Select Organized Texture with Placement Property 47 

Figure 4.31. Screenshot: View Results of Last Setting in Static Display ........ 48 

Figure 4.32. Screenshot: Operate Data Set Slider .......................................... 48 

Figure 4.33. Screenshot: Get Next Slide by Pressing the Slider’s Right End .. 49 

Figure 4.34. Screenshot: Data Objects at Initial Position ............................... 50 

Figure 4.35. Screenshot: Next Attribute show in All Data Object Composite 50 



viii 
 

Figure 4.36. Screenshot:  Information of Software Metrics by Mouse Click .. 51 

Figure 4.37. Screenshot: Get Full Qualified Name of Data Object ................. 51 

Figure 5.1. Comparison of rendering feature in both approaches ................... 53 

Figure 5.2. Case A: Comparison of perception property in both approaches .. 53 

Figure 5.3. Case B: Comparison of perception property in both approaches .. 54 

Figure 5.4. Comparison: Two different views in dynamic visualization ......... 54 
Figure A.1. Component Diagram: Visualization System ............................... 62 

Figure A.2. 2D-SFGrid: Class Design Diagram ............................................. 63 

Figure A.3. SFDisplaySettings: Class Design Diagram ................................. 65 

Figure A.4. MessageHandler: Class Design Diagram .................................... 67 

Figure A.5. ExcelFileControllor: Class Design Diagram ............................... 68 

Figure A.6. DynamicGlyph: Class Design Diagram ...................................... 69 

Figure A.7. DataSetSlider: Class Design Diagram ......................................... 70 

Figure A.8. DataSetManager: Class Design Diagram .................................... 71 

Figure A.9. DataObjectSlider: Class Design Diagram ................................... 73 

Figure A.10. DataObjectDetails: Class Design Diagram ................................ 74 

Figure A.11. ColorManager: Class Design Diagram ...................................... 76 

Figure A.12. AttributeValueData: Class Design Diagram .............................. 77 

Figure A.13. AttributeWindow: Class Design Diagram ................................. 79 

Figure A.14. AttributeManager: Class Design Diagram ................................. 80 

Figure A.15. AttributeComparisonSlider: Class Design Diagram .................. 82 

Figure A.16. StaticGlyph: Class Design Diagram .......................................... 83 

Figure A.17. Class Diagram: Dataset Loader ................................................. 84 

Figure A.18. Class Diagram: Visualization Process ....................................... 85 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 
 

List of Tables 

Table 1.1. Multivariate Dataset for software components ................................ 3 

Table 3.1. Functional requirements ............................................................... 18 

Table 3.2. Non-Functional requirements ....................................................... 19 

Table 3.3. Use Cases ..................................................................................... 26 

Table 4.1. Excel File Format ......................................................................... 36 

Table 4.2. Components of Static 2D-SFGrid ................................................. 41 

Table 4.3. Components of Dynamic 2D-SFGrid ............................................ 42 
Table A.1. SFGrid: Class Document ............................................................. 64 

Table A.2. SFDisplaySettings : Class Document ........................................... 66 

Table A.3. MessageHandler : Class Document .............................................. 67 

Table A.4. ExcelFileControllor: Class Document .......................................... 68 

Table A.5. DynamicGlyph: Class Document ................................................. 69 

Table A.6. DataSetSlider: Class Document ................................................... 70 

Table A.7. DataSetManager: Class Document ............................................... 72 

Table A.8. DataObjectSlider: Class Document .............................................. 73 

Table A.9. DataObjectDetails: Class Document ............................................ 75 

Table A.10. ColorManager: Class Document ................................................ 76 

Table A.11. AttributeValueData: Class Document ........................................ 78 

Table A.12. AttributesWindow: Class Document .......................................... 79 

Table A.13. AttributeManager: Class Document ........................................... 81 

Table A.14. AttributeComparisonSlider: Class Document ............................. 82 

Table A.15. StaticGlyph: Class Document .................................................... 83 

 
 
 
 
 
 
 
 



1 
 

1. Introduction 

Systems can contain a big amount of software entities linked together by different 
kinds of dependencies. Software visualization tools are used by software 
designers to raise the level of abstraction and reduce the amount of information to 
the one needed. Mostly these are stand-alone programs, which force the user to 
switch between different windows and contexts. The development of software 
visualization frameworks is a significant step to bring visualization tools in the 
forward engineering process [1], [2] and [3]. 

1.1. Background 

This section describes the background of our research. It includes a brief 
explanation of software visualization, software metrics, why we use visualization 
in computer science or other fields, and multivariate dataset. 

1.1.1. Software Visualization 

Software Visualization is concerned, among other things, with static or dynamic 
(animated) 2D or 3D [1] visual representations of information about software 
systems based on their structure, size, or behavior. Often, the information used for 
visualization is software metric data from measurement activities. Visualization is 
inherently not a method for software quality assurance but can be used to 
manually discover anomalies similar to the process of visual data mining [35]. 
The actual objectives of software visualizations are to support the understanding 
of software systems (i.e., its structure) and algorithms (e.g., by animating the 
behavior of sorting algorithms) [37] as well as the analysis of software systems 
and their anomalies (e.g., by showing classes with height coupling) [7], [35], [36]. 
Software Visualization uses graphical representation to show code, control flows, 
classes, data and dependencies among them. It exploits the human visual 
perception system in order to provide what’s lacking in a sequential, text-based 
representation. Therefore the programmer and software designer would have 
software visualization instead of lines of code displayed in a textual editor [3]. 

1.1.2. Software Metrics 

A software metric is a measure of some property of a piece of software or its 
specifications. Since quantitative methods have been proved so powerful in other 
sciences, computer science practitioners and theoreticians have worked hard to 
bring similar approaches to software development. Tom DeMarco stated, “You 
can’t control what you can't measure” [8]. 

There are many examples of software metrics: lines of code, cyclomatic 
complexity, function point analysis, bugs per line of code, code coverage, number 
of lines of customer requirements, number of classes and interfaces, Robert Cecil 
Martin’s software package metrics cohesion or coupling [8]. 



2 
 

Management methodologies, such as the Capability Maturity Model or ISO 
9000, have therefore focused more on process metrics which assist in monitoring 
and controlling the processes that produce the software [8]. 

Industrial experience suggests that the design of metrics will help certain kinds 
of behavior from the people being measured. The common phrase applied is “you 
get what you measure” (or “be careful what you wish for”) [2].  A simple example 
that is actually quite common is the cost-per-function-point metric applied in 
some software process improvement programs as an indicator of productivity [2]. 
The simplest way to achieve a lower cost-per-FP is to make a function points 
arbitrarily smaller. Since there is no standard way of measuring function points, 
the metric is wide open to gaming – that is, cheating [2]. 

One school of thought on metrics design suggests that metrics communicate 
the real intention behind the goal, and that people should do exactly what the 
metric tells them to do. This is a spin-off of test driven development, where 
developers are encouraged to write the code specifically to pass the test. If that is 
the wrong code, then they wrote the wrong test. In the metrics design process, 
gaming is a useful tool to test metrics and helps make them more robust, as well 
as for helping teams to more clearly and effectively articulate their real goals [8]. 

One way to avoid the “be careful what you wish for” trap is to apply a suite of 
metrics that balance out each other. In software projects, it’s advisable to have at 
least one metric for each of the following: schedule, size/complexity, cost, and 
quality [8].     

1.1.3. Why Visualization Can Help 

Visualization is an area that presents data in a visual form to facilitate rapid, 
effective, and meaningful analysis and interpretation. Example application 
domains include scientific simulations, land and satellite weather information, 
geographic information systems, and molecular biology [4]. Visualization is also 
used in more abstract settings, for example, software engineering, data mining, 
and network security. A key challenge is designing visualizations that are 
effective for the user’s data and analysis tasks [9]. 

The Software Visualization approach constructs visual representations that 
harness the strengths of the low-level human visual system. These perceptual 
visualizations display the data in ways that allow items of interest to capture the 
user’s focus of attention [4]. 

It is a very critical situation to analyze the large size of the average dataset. 
The desire to extract knowledge efficiently motivates the need for an effective 
visualization system. A dataset’s size is made up of three related properties:  

 

• Number of elements stored in the dataset 

• Number of attributes represented within the dataset 

• Range of values possible for each attribute 
 
 



3 
 

Visualization tools are used to visualize these properties with effective 
representation (easy to perceive by viewer). These properties are represented in 
visualization known as information content and it is a combination of following 
properties: 
 

• Number of elements 

• Number of attribute values per element 

• Range of different attribute values being visualized 
 
The new technique described in this project seeks to increase information 

content by focusing on the last two properties, dimensionality and range [6]. 

1.1.4. Multivariate Dataset 

In this thesis, a multivariate data object, d, is defined as d = {d1, d2, . . . , dN}, 
where di is a scalar and N is the number of attributes (N ≥ 2). A multivariate 
dataset [47] is then one comprising M data objects (instances of d), where M ≥ 2. 
The values of M and N vary widely depending on the application area. An 
illustration of a multivariate dataset containing shows five data items in table 1.1. 
 

Maintainability CMM_1_0_CBO CMM_1_0_CYC_Classes CMM_1_0_DAC 

0.049088 3 1 3 
0.17815 1 1 1 

0.322364 1 1 2 
0.117407 1 1 1 
0.117407 1 1 1 

Table 1.1. Multivariate Dataset for software components 

The objects here are software components where each is represented by a 
number of attributes (CMM_1_0_CBO, CMM_1_0_CYC_Classes, 
CMM_1_0_DA) which describe different properties of the five software 
components. Here multivariate dataset is represented in tabular way, where a data 
object (or simply an item) corresponds to a row and each attribute corresponds to 
a column, is common and the one used throughout this thesis. 

1.2. Problem Description 

A lot of data is produced due to the rapid advances in computer technology. 
Mainly, the data comes from statistical data gathering, automated measurements 
and simulations, and this will become the primary source for a large dataset, 
which contains a large number of items, variables and time steps. It is very 
difficult to display a huge number of attributes in a small graphical representation. 
Our intent is to construct a software metrics that is useful to display as much as 
possible attributes within small drawing canvas with high quality display and time 
efficiency. 



4 
 

In this thesis, we have to visualize the multivariate dataset, which contains 
either too many data objects or attributes for a visualization to be efficiently 
carried out using a propose techniques, is referred to as being large. Depending on 
the application area, efficient can have different meanings. In general, 
representations that enable efficient information visualization are those which 
convey information about data in a clear and interpretable way, and in a 
reasonable time. Therefore, we need to develop an effective (time efficient, low 
memory consumption, accuracy) approach to visualize software metrics for a 
large multivariate dataset. 

1.3. Goals 

This project aims to the development of visualization techniques for software 
metrics that allows viewers to visually analyze, explore, and compare a 
multivariate dataset. We will introduce a technique that visualizes the data along a 
traditional two dimensional space-filling grid.  We use “glyphs” (simple graphical 
objects) [39] that vary in color, placement, texture and motion properties to 
represent the attribute values contained in a data element. When shown together, 
the glyphs form visual patterns that support exploration, facilitate discovery of 
data characteristics, and highlight trends and exceptions. In the following, we 
identify four important goals for our research: 
 

• To design graphical glyphs that support flexibility in their placement and 
in their ability to represent multivariate datasets. 

• To implement a visualization technique that is user friendly and time 
efficient for a large multivariate dataset. 

• To display the attributes values using static texture and animation. 

• To focus on practical comparison for both approaches (static and dynamic) 
of visualization. 

 
Our intent is to display the intersection of multiple datasets, and also show the 

specific details about the structure of data objects. This information can be critical 
to understand how the original data objects are related to each other. To our best 
knowledge, the combination of multivariate display techniques, perception, and 
animation for direct comparison of different perspectives into a dataset is a useful 
and novel contribution to the field of software visualization. 

Our primary objective in this project is to design a graphical glyph that 
supports flexibility in its placement and in its ability to represent multivariate data 
objects. We focus to accommodate a high number of attributes by a small 
graphical representation and also try to display complete dataset in effective way. 

The main part of this project is to develop a software tool that can accept any 
type of multivariate data and represent it graphically. Our software is able to read 
the dataset from some external data source; it can also be a excel file. 

 



5 
 

1.4. Outline 

Chapter 2 describes previous research work related to visualization, software 
visualization and visualization of software metrics. This chapter also includes our 
proposed techniques for the visualization of software metrics. In Chapter 3, we 
describe the research and development methodology has been used in this project, 
also describe the analysis and design of the proposed system; it includes function and 
nonfunctional requirements, use cases, and class diagrams of our visualization 
system. In Chapter 4, we describe our implemented visualization techniques. This 
chapter also includes complete description of static and dynamic visualization 
approaches in our software. It contains detailed overview of our software interaction 
and utilities too. Chapter 5 is a comparison of both static and dynamic visualization 
approaches. In Chapter 6, we describe our conclusion and future work related to this 
research work. 

 



6 
 

2. Visualization and Proposed Techniques 

In this chapter, we will discuss relevant research related to our problem. We will 
present some information about the literature covering the different visualization 
techniques in general. Mainly, we have used a book of Colin Ware [40] that 
covers the many topics of information visualization (texture, glyph, animation). 
We will also propose our own approach to visualize the software metrics. 

2.1. Related Work 

We will discuss previous work in short that is directly related to our proposed 
techniques, and highlight areas where we may possibly able to offer 
improvements over existing methods. 

2.1.1. Textures 

Textures are used in many disciplines, like computer vision, human visual 
psychophysics, and computer graphics. Though, each filed has different types of 
problems: 
 

• texture segmentation and classification in computer vision. 

• modeling the low-level human visual system in psychophysics. 

• information display in computer graphics. 
 

All of these groups need proper methods for the texture patterns being 
classified, modeled, or displayed. A review of texture segmentation and feature 
extraction techniques [12] describes two general classes of texture representation: 

 

• statistical models use convolution filters other techniques to measure 
variance, inertia, entropy, or energy, and 

• perceptual models that identify underlying perceptual texture dimensions 
like contrast, size, regularity, and directionality. 

 
Here, texture studies focus on the perceptual features that make up a texture 

pattern. In our project, we express that we can use texture properties to assist in 
visualization, producing displays that allow users to fastly and correctly explore 
their data by analyzing the resulting texture patterns. 

Different methods have been used to identify and investigate the perceptual 
features inherent in a texture pattern. Julesz has conducted several psychophysical 
experiments to study how a texture's first, second, and third-order statistics affect 
discrimination in the low-level visual system [13], [14]. This led to the texton 
theory [15], which proposes that early vision detects three types of features: 

 

• elongated blobs with specific visual properties (like: hue, orientation, 
length). 

• ends of line segments, and  



7 
 

• crossing of line segments.  
 
Now, we will discuss several methods in computer graphics used to construct 

different textures. These texture patterns can perform different types of 
visualization tasks, like 

 

• representation of flow patterns 

• identifying spatially coherent regions in multi dimensional data 

• representing surface shape and extent, and 

• visualization of multivariate dataset. 
 
During this research, I have studied few texture base visualization techniques 

[16], [17], [18], [19], [20], [21], [22] and [23] that are helpful to construct the 
texture for our proposed visualization system. Schweitzer used rotated discs to 
display the shape and orientation of a 3D surface [16]. Grinstein et al. developed a 
visualization tool called EXVIS that uses “stick-men” glyphs to produce texture 
patterns that display spatial coherence in a multivariate dataset [17]. Ware and 
Knight used Gabor filters to construct texture patterns; attributes of current 
dataset are used to modify the size, orientation, and contrast of the Gabor 
elements during visualization process [18]. Turk and Banks described an iterated 
technique to place streamlines for visualization of two-dimensional vector fields 
[19]. Interrante visualized texture strokes to show three-dimensional shape and 
layered transparent surfaces show the depth [20]. Salisbury et al. used texturing 
methods to build up computer-generated pen-and-ink drawings that express a 
realistic sense of shape, depth, and orientation [21]. Finally, Laidlaw described 
two methods for visualizing a two-dimensional diffuse tensor image with seven 
different values at each spatial location [22]. The first method used ellipsoids to 
show individual tensor values. The second method used oil painting [23] 
technique to visualize all seven values simultaneously. 

After research on these existing texture based visualizations, we concluded a 
static texture in geometry object for our proposed static visualization. Although 
our method produces results that are glyph-like in appearance, but we differ from 
existing methods, both in how we construct our patterns, and in the end result that 
we generate. We introduce a texture pattern by collection of pixels, and this 
texture is placed within glyph object (geometry shape). The placement of pixels 
within texture pattern can be, 
 

• random texture 

• organized texture, 

• random texture with placement by relative dataset value 

• organized texture with placement by relative dataset value 
 
We introduced the two types of textures: one is random and other is organized. 

Random texture is placed anywhere in glyph object, but organized texture is 



8 
 

placed in glyph object with proper sequence. Our proposed texture pattern is used 
to represents the strength of an attribute value. Dense texture pattern shows the 
high attribute value and sparse texture pattern shows the low attribute value. You 
can find more explanation about our proposed texture patterns in Chapter 4. 

2.1.2. Motion 

Motion is a very useful visualization technique, like the animation of objects, dye, 
or glyphs to represent the direction and magnitude of a vector field (e.g., fluid 
flow visualization). As with other visualization properties like (color, shape, 
texture), our objective is to use the property of motion to get an effective (easy to 
perceive by viewer) visualization display. There are three common properties 
described in the perceptual literature: 
 

• flicker 

• direction of motion, and 

• velocity of motion. 
 

Flicker is used as a visualization technique to perceive the discrete on-off 
pattern of some object by the viewer. It is normally measured as the frequency of 
repetition F in cycles per second (cps). A common use of flicker research in 
computer graphics is the critical flicker frequency (CFF), the rate at which images 
must be redrawn to appear continuous [28], [29]. 

Direction and velocity of motion are also used to create an attractive 
(understandable) visualization display. Tynan and Sekuler describe that the 
viewers responded rapidly to view a target object in the periphery (border or side-
line) by 200-350 milliseconds, and 200 to 310 milliseconds for targets in the 
center of focus [30].  

After study of previous research work [28], [29], [30] and [31], we propose the 
dynamic visualization that show moving object with constant speed in specific 
direction. As concern in our visualization of software metrics, we focus to the last 
two properties of motion that is direction and velocity of a moving object. 

 
 
 
 
 
 
 
 
 

Figure 2.1. Motion of circle in Glyphs 

We can see in Figure 2.1, where circle (geometry object) is moving with 
constant speed in one direction, either left-right or right-left. Instantaneous 

Initial 

position 

Instantaneous 

velocity 
Final 

position 



9 
 

velocity shows the strength of attribute, high instantaneous velocity shows high 
value of attribute and low instantaneous velocity shows low value of attribute. 

2.1.3. Glyphs 

Glyphs are graphical objects used to visualize the data of any type. A glyph may 
have properties of orientation, scaling, translation, deformation, size, placement, 
and color, etc. These properties are used to represents the input data. Glyphs are 
influenced by attributes of the current dataset. Here, we will discuss several 
glyphs based visualization techniques. 

Chernoff developed iconic representation of the human face [24], [25]. The 
face elements like nose, eyes, eyebrows, mouth, and jowls are changed according 
to input data values. Foley and Ribarsky have created a visualization tool called 
Glyphmaker that is used to create visualization of multivariate datasets [26]. This 
tool uses a glyph editor and a glyph binder to create glyphs, to arrange them 
spatially, and to bind attributes to their visual properties. Levkowitz represented a 
visualization of colored squares to produce patterns to represent multivariate 
datasets [27].  

Glyphs are also suitable to visualize software metrics. These glyphs can be 
used to improve the visualization for a larger dataset, for example, scaling shows 
the attribute strength, or coloring to identify attribute. After analyzing different 
types of glyphs, we proposed two types of glyphs in this project, one with a static 
texture and another with moving object, and they are used to visualize the data of 
double type. These proposed glyphs will more describe in the following section. 

2.2. Proposed Visualization Approaches 

In this research thesis, we have studied many existing software visualization 
techniques to display a multivariate dataset. These visualization tools have used a 
different type of visualization features like, texture, animation, and flow 
visualization in 2D or 3D environment. Mainly I have chosen the latest software 
visualization tools like [32], [33], [34] and [38] have visualized the multivariate 
dataset. After research on existing visualization tools we have found some 
deficiencies: 
 

Display Complete Dataset 
As we found, almost all the visualization tools have displayed a complete dataset 
in single display. If the dataset contains few data objects than it is fine and it can 
be useful to visualize the dataset. But on other hand, this type of visualization is 
not suitable for large dataset, where number of data objects in thousands and 
millions. In our research, we have proposed a sliding technique to visualize the 
complete dataset, where dataset is divided in multiple slides and each slide can 
show set of data objects. User can view any slide in constant time O (1), and it 
shows the time efficiency of the software visualization tool. 
 
 



10 
 

Display Complete Data Object 
Similarly, we have found that existing visualization tools have displayed a 
complete data element or data objects in single appearance. This visualization 
technique is only worth full for low number of attributes. Our proposed technique 
enables to visualize the any number of attributes of data object; here we also used 
a slider technique to visualize the attributes of data object, where each slide 
contains the set of attributes. We have also introduced a scrolling option to 
visualize the attributes of data object, where user can view an attribute forward or 
backward by pressing the scroll bar. Here user also access any attribute of data 
object in constant time O (1). 
 

Texture 
As we discussed in above section 2.1.1, that many computer graphics researchers 
introduced different type of texture based techniques [16], [17], [18], [19], [20], 
[21], [22] and [23]. The existing tools are commonly used the texture having the 
properties of height, density, orientation, regularity, and placement. We analyzed 
that the texture pattern with many properties become more complex to perceive 
by viewer, and in these visualization techniques viewers have a difficulty to 
perceive the texture patterns. As we studied these techniques but we differ from 
existing methods, both in how we construct our patterns, and in the end result that 
we generate. Although, we have developed texture pattern contains only two 
properties: density and placement, and it is already discussed in section 2.1.1 with 
more details. 
 

Animation 
We studied many existing tools to visualize the software metrics. But there is only 
visualization tool [32] exist with property of animation. As we found that the 
animation is very complex to perceive in existing tools. Our propose animation to 
visualize the software metrics is very simple to perceive and easy to understand. 
There is a very smooth motion of object with constant speed and direction to 
show the strength of an attribute. 
 

3D Environment 
We analyzed 3D visualization [41], [42] is more complex and also expensive to 
render the resulting image or display. We concluded to construct the visualization 
tool for display of software metrics in 2D (two dimensional) environment. 
 

Here, we will describe two different approaches for the visualization of 
software metrics: one is static and another is dynamic. 

 
 
 
 
 



11 
 

2.2.1. Static Approach 

In this case, we use static objects (glyphs). 
 

 
 

 
 

Figure 2.2.  Static glyph or Vertical bar 

Above, Figure 2.2 shows the static glyph with a texture pattern. This shows 
the static display of software metrics. We can see the following graphical 
properties of glyph object (Figure 2.2): 
 

• shape (rectangle), 

• background color, 

• border, and 

• texture pattern 
 
In the graphical representation (Figure 2.3), we will use a proposed software 

metrics to create a sketch of complete multivariate dataset in single 
representation. We have a 2D grid that contains a number of 2D boxes, where 
each rectangular box in 2D grid represents a single data object. Each box contains 
a different number of vertical bars (glyph) with different color, texture and 
placement properties, where each glyph shows the attribute of current data object. 

 

 
 

 
 

 
 

   
  

 
 

      

     
 

  

 
 

      

    
 

   

 
 

      

Figure 2.3. Graphical representation in 2D-Grid using static approach 

2D space-

filling grid 

Dense 
Texture 

Sparse 
Texture 

Data object 



12 
 

In above Figure 2.3, we focus on three properties of glyph object; color 
represents the attribute itself. Here, texture represented by number of dots and it 
shows a representation of an attribute value, in above Figure 2.3, a dense texture 
(high number of dots) shows high value of that attribute, similarly in same Figure 
2.3 sparse texture (low number of dots) shows the low value of that attribute, we 
will discuss the property of texture in Section 4.1.1.b in more detail. The 
placement of the bar identifies the sequence of attribute in each data object. 

2.2.2. Dynamic Approach 

In this approach, we use glyphs (geometry objects) that have properties of color, 
placement, and animation. Here, we use the technique of moving objects, which 
allows the motion of circle in glyph object. The main focus of our approach is to 
animate the circle in glyph object with a specific speed (animation). The speed of 
a moving object represents value of an attribute. 

 
 
 
 

Figure 2.4. Dynamic glyph with moving circle 

Above, Figure 2.4 shows the dynamic glyph with a moving object. This shows 
the dynamic display of software metrics. We can see the following graphical 
properties of dynamic glyph object (Figure 2.4): 
 

• shape (Rectangle), 

• background color, 

• moving object, and 

• direction, either left or right 
 

In the following graphical representation (Figure 2.5), we will use the proposed 
dynamic software metrics (Figure 2.4) to visualize the complete multivariate 
dataset. We have a 2D grid that contains a number of 2D boxes, where each 
rectangular box represents a single data object. Each box contains a different 
number of horizontal bars (glyph) with different color, placement and animation 
(moving circle) properties, here each glyph is showing an attribute of current data 
object. In the following (Figure 2.5), we will focus on three properties of glyphs: 
 

• color represents the attribute, 

• animation shows attribute value, circle moves from left to right shows the 
positive value of attribute and similarly if circle moves from right to left 
shows the negative value of attribute, and 

• placement of circles show the organized arrangement of attributes for each 
data object 



13 
 

 

 

Figure 2.5. Graphical representation using dynamic approach 

2.3. Summary 

In this chapter, we studied different visualization techniques by different 
researchers. After detailed research of many visualization techniques of software 
metrics for multivariate dataset, we finalized our proposed techniques for 
visualization of software metrics in two-dimensional grid. At this point our idea is 
clear and now we are going to develop a proposed visualization tool for 
multivariate dataset. The next step is to analyze the requirements of proposed 
system and then we will design the proposed visualization tool. We will describe 
the requirement analysis and design in next chapter. That chapter also explains the 
software development methodology that will use in this project. Furthermore, the 
implementation of our proposed techniques will more describe in chapter 4. 

 

2D space-
filling grid 

Data object 

Above left and right arrows shows the direction of glyph object. 
 



14 
 

3. Requirement Analysis and Design 

This chapter includes the development methodology and requirements of our 
proposed system. Furthermore, we will describe the interaction between user and 
system through the Use Case diagram. 

3.1. Methodology 

In this section, we will describe the software development methodology which we 
have used in our research project. There are many software development 
methodologies. From them, we have chosen the Iterative and Incremental 
Development Methodology to develop software of high quality. 

3.1.1. Iterative and Incremental Process Model 

In an iterative and incremental lifecycle (Figure 3.1), the development proceeds as 
a series of iterations that evolve into the final system. Each iteration consists of 
the following process components: planning, requirements, analysis & design, 
implementation, testing and evaluation. The developers do not assume that all 
requirements are known at the beginning of the lifecycle; indeed change is 
anticipated throughout all phases [48]. 
 

 

Figure 3.1. System Development Life cycle [53] 

The Rational Objectory Process defines the control for an iterative and 
incremental lifecycle. It defines an extensive set of guidelines that address the 
technical aspects of software development focusing on requirements analysis and 
design [10]. This process is structured along two dimensions: 

 

• time and, 

• process 
 

 



15 
 

The Time dimension is structured as follow: 
 

• Inception: It is a specification of the project vision. In this phase, we have 
to focus on the actual problem, requirements gathering, and research work. 

• Elaboration: Planning the necessary activities and required resources; 
specifying the features and designing the architecture.  

• Construction: Building the product as a series of incremental iterations. 

• Transition: Supplying the product to the user community (manufacturing, 
delivering, and training).  

 

The Process dimension includes the following activities: 
 

• Project Management: It includes planning of project development, 
development cases, description and guidelines. 

• Requirements: Requirement specification of proposed system. 

• Analysis & design: Analyze and describe the main functionalities of the 
proposed system, and also design the system for implementation phase.  

• Implementation: Code generation and programming that will result in an 
executable system. 

• Test: Verification of the entire system. 

• Deployment: Deliver to end user in an operating environment. 
 
Each activity of the process component dimension is applied to the each phase 

of the time based dimension. Figure 3.2 shows how the process components are 
applied to each time based phase. 

Figure 3.2. Overview of Iterative and Incremental Model [53] 



16 
 

As we described the life cycle and the Rational Objectory Process of the 
Iterative and Incremental process model, we used the same development 
methodology in our research project. Similar to the proposed model, we 
 

• get the requirements at first,  

• analyze the old visualization research of software metrics, 

• design the architecture of proposed system, 

• develop the code, and 

• test the entire program 
 
All above steps are described in this report in detail. In the next section, we 

will define the requirement specification and use cases, which help us further to 
design the proposed system. 

3.2. Requirements 

A requirement specification helps us to define the scope and boundaries of the 
proposed system. It leads to a better understanding of overall system. There are 
two types of requirements: functional requirements and non-functional 
requirements. 

3.2.1. Functional Requirements 

This subsection describes the functional requirements of proposed system. It 
defines the main functions or components of a software system, and each of them 
includes the required function of the proposed system, its importance, and a brief 
description. 

 

FR-01 Define Data Source Name 

Importance Essential 

Description 
To setup a DSN (data source name) ODBC bridge for 
external data source (excel file) 

FR-02 Load Dataset 

Importance Essential 

Description 

To load the dataset FR-01 some external data source 
(Excel sheet, through configured JDBC-ODBC 
Bridge). At the same time, it constructs internal data 
structure of same dataset for further use. 

FR-03 Attribute Definition 

Importance Desirable 



17 
 

Description 
The default definition of attribute is constructed during 
the loading process of dataset. But a user has facility to 
update or change the definition of attributes. 

FR-04 Display Settings 

Importance Desirable 

Description 

This setting panel is setup in the start of main program. 
The user has access to change or update these settings 
for static and dynamic display of 2D-SFGrid. She/he 
has options of scrolling and sliding the attributes in 
each data object for both static and dynamic display. 

FR-05 Static Display 

Importance Essential 

Description 

This display gives us a static behavior of software 
metrics. In this display, each attribute is represented by 
glyph (geometry object, rectangle). Here, the texture on 
glyph shows the strength of attribute value, the glyph 
border shows the positive value of attribute, otherwise 
negative, the glyph background color represents the 
color of a specific attribute. 

FR-06 Dynamic Display 

Importance Essential 

Description 

The user can get the dynamic display of software 
metrics. In this display, software metrics contain 
properties of background color and motion of a glyph 
object. The background color represents the specific 
attribute, the speed of moving object shows the strength 
of attribute value, and the direction of moving object 
represents the positive or negative value of attribute 
(left to right motion shows a positive value of an 
attribute, right to left motion shows a negative value of 
an attribute). 

FR-07 Mouse Click on Glyphs 

Importance Desirable 



18 
 

Description 
The user can also get the complete information of any 
cell in data object, just by clicking the right mouse 
button on desired attribute. 

FR-08 Data Object Slider for Scrolling 

Importance Desirable 

Description 

This function enables the user to view all attribute 
values in each data object through slider bar. In this 
option, the user can view one attribute at same time to 
move the slider either forward or backward. 

FR-09 Data Object Slider for Sliding 

Importance Desirable 

Description 
This option enables the user to view attributes in set of 
slides for each data object. 

FR-10 View Different Number of Attributes 

Importance Desirable 

Description 
To view only selected attributes, user need to change 
the attribute definition, only select the desired attributes 
and save the attribute settings at the end. 

FR-11 Attributes Comparison Slider 

Importance Desirable 

Description 
To compare the attribute values in currently displaying 
data objects. 

FR-12 Data Set Slider 

Importance Desirable 

Description 

To view all data objects in dataset by scrolling the 
slider. This control displays all data objects in set of 
slides. By default, one slide may contain maximum 24 
data objects. 

Table 3.1. Functional requirements 



19 
 

3.2.2. Non-Functional Requirements 

These requirements are often described as usability, reliability, performance, and 
substitutability requirements. We will discuss non-functional requirements in this 
section together with their importance and a brief description. 

 

N-FR-01 Performance 

Importance Essential 

Description The system should work fast. 

N-FR-02 Efficient Display of 2D-SFGrid 

Importance Essential 

Description 
To compare the attribute values in currently displaying 
data objects. 

N-FR-03 Efficient Data structure 

Importance Essential 

Description Data structure must be efficient to get fast results. 

N-FR-04 Application Maintenance 

Importance Essential 

Description Application can be maintainable, well documented. 

N-FR-05 Application Scalability 

Importance Desirable 

Description 
The system should be scalable. It should be helpful for 
developers to add the new features and functionalities. 

N-FR-06 Platform Independent 

Importance Desirable 

Description The system should work on all computer machines. 

Table 3.2. Non-Functional requirements 



20 
 

3.3. Use Cases 

In this section, we will describe the use cases of our proposed system. This 
technique is used in system development to retrieve the functional requirements 
of a system. Use cases describe the interaction between a primary actor (external 
user) and the system itself, represented as a sequence of simple steps. Actor may 
be end users, hardware devices or other systems. Each use case is a complete 
series of events, and it is described from reference of the actor [11]. 

 
 

UC-01 Configure DSN 

Goal To make a JDBC-ODBC connection 

Pre-Condition 
The system must have JDBC and ODBC drivers and 
also have data source (excel file). 

Post-Condition Connection established. 

Triggered Event  The user needs to configure the Administrative tools. 

Description This help us to load the dataset from excel file. 

UC-02 Execute the Application 

Goal To visualize the software metrics 

Pre-Condition JVM (Java Virtual Machine) must be installed. 

Post-Condition The Main Controller window will open. 

Triggered Event  The user opens the executable file (.jar). 

Description 
The user runs the executable program and application 
will come up with Main Controller window, where user 
can control the application completely. 

UC-03 Load Dataset 

Goal 
To load the dataset from external source and construct 
the data structure for further use. 

Pre-Condition 
DSN (JDBC-ODBC bridge) must be configured of 
external data source (excel file). 



21 
 

Post-Condition All other application controls will be enabled. 

Triggering Event  
The user clicks the button (Load Data Set) in Main 

Controller window. 

Description 

This is very first step for the user to get visualization of 
a software metrics. This is performed only once in an 
entire program. When user clicks this button, he/she 
will get the complete dataset from external data source 
into the current running application. During this loading 
process program also constructs internal data structure 
for further use. 

UC-04 Open the Attribute Definition Window 

Goal To view or change the attributes details. 

Pre-Condition Dataset must be loaded. 

Post-Condition 

The user can view the complete details of all attributes 
of dataset. Also he/she can change the color of any 
attribute. Here, the user can select or deselect the 
attributes in further visualization. 

Triggering Event  

Open the Attribute Definition window by clicking the 
mouse button in Main Controller window. 
View all the attributes by scrolling the slider bar by just 
pressing the mouse left button. 
Select or Deselect the attributes by pressing the mouse 
button on the check boxes. 

Description 

This window shows the complete detail of each 
attribute. It includes a color rectangle, RGB color code, 
name, maximum positive value, minimum positive 
value, maximum negative value, minimum negative 
value of each attribute of dataset. 

UC-05 Open Static Display of Software Metrics 

Goal To view the software metrics with static texture. 

Pre-Condition Dataset must be loaded. 

Post-Condition 
2D-SFGrid window will open, that shows the software 
metrics with static texture. 



22 
 

Triggering Event  
The user clicks the button (Static Display) in Main 

Controller window. 

Description 

This 2D-SFGrid window shows the software metrics 
with static texture, which helps the user for analyzing 
the contents of dataset. Here, texture on the glyph 
shows the strength of an attribute value, the glyph 
border shows the positive value of an attribute, 
otherwise negative, and the glyph background color 
represents the color of a specific attribute. 

UC-06 Open Dynamic Display of Software Metrics 

Goal View the software metrics with motion of glyph object. 

Pre-Condition Dataset must be loaded. 

Post-Condition 
The 2D-SFGrid window will open, that shows the 
software metrics with moving glyph objects. 

Triggering Event  
The user clicks the button (Dynamic Display) in Main 

Controller window. 

Description 

The 2D-SFGrid window shows the software metrics 
with dynamic behavior, which helps the user for 
analyzing the contents of dataset. In this display, 
software metrics contains properties of a background 
color and a motion of glyph object. Background color 
represents a specific attribute, speed of a moving object 
shows the strength of a attribute value, and direction of 
a moving object represents the positive or negative 
value of an attribute (left to right motion shows a 
positive value of an attribute, right to left motion shows 
a negative value of an attribute). 

UC-07 Visualize the Attributes Detail 

Goal To get the information of specific software metrics. 

Pre-Condition 2D space-filling grid must be open. 

Post-Condition The user can see the tooltip text. 

Triggering Event  
The user clicks the left mouse button on desired glyph 
object to view the detail of that attribute. 



23 
 

Description 

Here, user can view the name, maximum positive 
value, minimum positive value, maximum negative 
value, minimum negative value, actual value and 
texture value (property of texture only use in static 
display of software metrics. High texture value shows 
that, the actual value is close to maximum value of this 
attribute and vice versa) or delay value (property of 
delay only use in dynamic display of software metrics. 
High delay value shows the actual value is close to 
minimum value of this attribute and vice versa) of an 
attribute. 

UC-08 Sliding the Data Object 

Goal To view the all attributes values in data object. 

Pre-Condition Must have some attributes and data objects in dataset. 

Post-Condition 
The user can view different attributes values of same 
data object. 

Triggering Event  
Mouse left click event is triggered to move the data 
object slider. 

Description 

In this case, the user can view the set of glyph objects 
in each slide, and he/she can move the slider either 
forward (next set of attributes) or backward (previous 
set of attributes) direction to view either next set of 
attributes or previous set of attributes respectively. 

UC-09 Scrolling the Data Object 

Goal To view the all attributes values in data object. 

Pre-Condition Must have some attributes and data objects in dataset. 

Post-Condition 
The user can view different attribute values of same 
data object. 

Triggering Event  
To view the all attributes values of any data object by 
scrolling the slider bar in Data object Composite. 

Description 

The user can view the set of glyphs in each slide, and 
he/she can move the slider either forward (next 
attribute) or backward (previous attribute) direction to 
view either next or previous attribute respectively. 



24 
 

UC-10 Sliding the Dataset 

Goal To view the all data objects in dataset. 

Pre-Condition Must have some data objects in dataset. 

Post-Condition The user can view the other data objects in dataset. 

Triggering Event  
To view the different data objects by scrolling the 
bottom slider bar in 2D-SFGrid window. 

Description 

The user can view the set of data objects in each slide 
(each slide contains maximum of 24 data objects), and 
he/she can move the slider to either forward (next set of 
data objects) or backward (previous set of data objects) 
direction to view either next set of data objects or 
previous set of data objects respectively. 

UC-11 Comparing the Values of Data Objects 

Goal 
To compare all the attributes values of currently 
displayed data objects. 

Pre-Condition Must have a normalized dataset. 

Post-Condition 
The user can visualize same attributes in currently 
displayed data objects. 

Triggering Event  
The mouse left button is clicked, and it changes the 
attributes in all displayed data objects. 

Description 
To compare all the attributes values of currently 
displayed data objects by scrolling the slider bar at the 
top of 2D-SFGrid window. 

UC-12 Mouse Over on Data Object Name 

Goal To view the full qualified name of data object. 

Pre-Condition Must have some data object. 

Post-Condition To see the full qualified name of this data object. 

Triggering Event  Tooltip comes up on mouse over. 



25 
 

Description 
The user can get the Full Qualified Name of any data 
object by just moving the mouse on the rectangle of 
Data Object Name in Data Object Composite. 

UC-13 View or Update the Display Settings 

Goal To facilitate the user to change as he/she wants. 

Pre-Condition Dataset must be loaded. 

Post-Condition Display Settings window comes up. 

Triggering Event  
The user clicks the left mouse button on Display 

Settings button in Main Controller window. 

Description 

The user can view or change 2D-SFGrid display 
settings in Display Setting panel. This panel contains 
two parts: one is Static Display and other is Dynamic 

Display. 

UC-14 Update the Static Display Settings 

Goal To change the default display settings of Static Display. 

Pre-Condition Dataset must be loaded. 

Post-Condition 
Information message comes up to confirm these 
settings applied successfully. 

Triggering Event  
Selection events triggered, when user change the 
attributes display settings. 

Description 

Here, the user has few choices to select different types 
of texture techniques. He/she also has another property; 
he/she can select only one option of data object 
attributes display by either scrolling or sliding. The user 
can realize these changes in Static Display. 

UC-15 Update the Dynamic Display Settings 

Goal Change the default display setting of Dynamic Display. 

Pre-Condition Dataset must be loaded. 

Post-Condition Information message comes up to confirm these 



26 
 

settings applied successfully. 

Triggering Event  
Selection events triggered, when user change the 
attributes display settings. 

Description 

In this case, the user has a facility to change the display 
properties of Dynamic Display window. 
One property is Attributes View Option that allows the 
user to select by either scrolling or sliding. Other 
property is Number of Attributes; here user can select 
any number from option list, and this will affect the 
number of glyphs will display in each Data Object 

Composite. User can realize these changes in Dynamic 

Display window. 

Table 3.3. Use Cases 

3.4. Use Case Diagram 

 

 

Figure 3.3. Use case for 2D-SFGrid Visualization System 



27 
 

3.5. Summary 

In this chapter, we defined the functional and nonfunctional requirements which 
help us in the design of the use cases. We included use case diagram that shows 
the interaction of user with the system. In the next chapter, we will discuss the 
implemented visualization and interaction techniques in our proposed system. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



28 
 

4. Visualization and Interaction Techniques 

In this chapter, we will describe the visualization techniques for software metrics 
implemented in our application (2D-SFGrid). As we proposed, two visualization 
techniques: one with static textures and another with moving object in glyphs. 
This chapter also includes explanations of interaction techniques used in this 
application. 

4.1. Visualization Techniques 

It is very difficult to accommodate a huge dataset in small graphical 
representation. Here, we have used a two-dimensional grid to visualize the data 
objects and their attributes. 

4.1.1. Static Visualization of Software Metrics 

In this visualization, we define a visual representation of software metrics with 
following graphical properties, 
 

a) background Color, 
b) texture, 
c) border, 
d) sequence of attributes, 
e) placement of texture. 
 
In the following screenshot (Figure 4.1), we see a data object 

“DefinitionTable” and their attributes. There are many glyph objects (inside 
rectangles); each glyph represents one attribute of the data object.  

 

 

Figure 4.1. Screenshot: Data Object (Static Software Metrics) 

In Figure 4.1, each glyph object corresponds to one attribute with the 
properties of background color, texture, border, sequence of attributes, and 
placement of texture. 

 
 



29 
 

a) Background Color 
This property identifies an attribute itself, and is used to differentiate the attributes 
in the data object. In the above Figure 4.1, we can see that the background color 
of all glyph objects represents the attributes of the data object. We also see few 
glyphs in Figure 4.1 with black background (without texture), which do not have 
the properties of proposed software metrics. These glyph objects show that there 
are no more attributes in the data object, and thus they are presented as a blank 
glyph objects. 

 

b) Texture 
This property is used to represent the value of an attribute. Perhaps, high density 
texture represents a high attribute value and a low density texture represents a low 
attribute value. Texture is calculated through scaling of actual attribute value. 
Figure 4.1 shows that many glyphs have the property of texture, where each glyph 
texture shows the scaled value of each attribute in that data object. The following 
Figures 4.2 presents different textures for the same attribute. Figure 4.2 (a) shows 
the actual attribute value is close to highest attribute value. And in Figure 4.2 (b), 
the actual attribute value is close to the lowest attribute value. 
 

   

Figure 4.2. (a): High Texture  (b): Low Texture 

Texture Value? 

 
We will use the following properties to calculate the texture value: 
 
Ma  =>  Max Attribute Value 
Mi =>  Min Attribute Value 
N =>  Number of Parts 
A => Attribute Texture Value 
Aa => Actual Attribute Value 
I => Interval or Partial Differential 
 
 I  = (Ma - Mi) / N  
A = (Aa - Mi) / I ……………………… Formulas 4.1 (For Positive Values) 

 
 I  = (|Mi| - |Ma|) / N  
A = (|Mi| - |Aa|) / I ……………………… Formulas 4.2 (For Negative Values) 

 
All attribute properties can be seen in Figure 4.3, where its actual value is 6.0. 

As the value is positive, we use Formula 4.1.  



30 
 

 

Figure 4.3. Screen Shot: Actual value with attribute information 

Now, we will calculate the texture value, 
 

A = attribute_texture_value=? 

 
Consider the values from the above screenshot (Figure 4.3), where 
actual_attribute_value=6.0, and use them as input values for Formulas 4.1. 
 
 I  = (10.0-1.0)/100 => 0.09 
A = (6.0-1.0)/0.09 
A = 55.5555555556 => 56 
 
The calculated texture value is used to display the texture by 56 dots in the 

glyph rectangle. 
 

c) Border 
In Figure 4.1, we can see glyphs with a border property. The Border of a glyph 
object shows the positive value of attribute, and if attribute value is negative than 
the glyph object will be borderless. As we can see in Figure 4.1, there is one 
glyph object without border, which is presented in the following Figure 4.4 (a). 

 

   

Figure 4.4. (a): Borderless Glyph  (b): Glyph with Border  

The above glyphs object (Figure 4.4 (b)) has a border, that present the positive 
value of attribute. 

 



31 
 

d) Sequence of Attributes 
This property of software metrics enables to show the attributes in proper order. 
As we can see in the following Figure 4.3, where all attributes of both data objects 
have same placement sequence. This property helps to user to compare the same 
attribute in different data objects. 

 

 

Figure 4.5. Screenshot:  Sequence of Attributes 

e) Placement of Texture 
The position of a texture in a glyph represents the relative value of an attribute in 
the dataset. In the following, we are going to explain, how to place the texture (set 
of dots) in the glyph. As we can see in the screenshot above (Figure 4.4), the 
texture is placed on the same position in all glyphs. 
 

 

Figure 4.6. Screenshot: Placement of Texture in Glyphs 

Placement of 
texture close 

to lowest 
positive value 

of dataset 

Placement of 
texture close 

to highest 
positive value 

of dataset 



32 
 

In Figure 4.6, however the placement of textures is different in all glyphs and it 
shows the position of attribute’s value in dataset. Here, we will explain the 
placement of texture in more detail. 

 

How to Find Out the Position for a Texture in Glyphs? 
 
We will compute the position of a texture for glyph objects with the help of the 
following formulas: 

 
I = (MaD - MiD) / N 
Tp = (Aa – MiD ) / I …...………….. Formulas 4.3 (For Positive Values) 

 
I = (|MiD| - |MaD|) / N 
Tp = (|MiD| - |Aa|) / I ......………….. Formulas 4.4 (For Negative Values) 

 
In Formula 4.3 and 4.4, we have some variables like 
 

• MaD, maximum value in dataset. 

• MiD, minimum value in dataset. 

• N, scaling size or difference of range i.e. 10 for positive value, and 11 for 
negative value. 

• Aa, current value of attribute in current data object. 

• I, is used for interval, or it can be a partial differential. 

• Tp, is location of texture placement. 
 

 

Figure 4.7. Screenshot: Calculated Texture Position in Glyphs 

 
 
 
 

Calculated 
texture 
position 



33 
 

Here, we are only interested to calculate the texture position in glyph: 
 
Tp = texture_placement=? 

 

Consider the values from above screenshot (Figure 4.7), and compute the Tp 
with the help of Formula 4.3, 
 
I = (178.0-0.0)/10 => 17.8 
Tp = (178.0-0.0)/17.8 
Tp = 10.0 
 
Hence, we calculated texture position “Tp” is exactly same as in the above 

screenshot (Figure 4.7). 

4.1.2. Dynamic Visualization of Software Metrics 

In our second visualization technique, we define software metrics with the 
following properties: 

 
a) Background Color 
b)  Animation 
c)  Sequence of Attributes 
 
The following screenshot shows a data object “AST_term” and its attributes. 

As we can see, there are many glyph objects and each glyph contains one moving 
object (circle). As before, each glyph represents one attribute of the current data 
object. 

 
 
 
 
 
 
 
 
 
 

Figure 4.8. Screenshot: Software Metrics in a Dynamic Display 

a) Background Color 
This property identifies the attribute and is used to differentiate the attributes in a 
data object. In the above Figure 4.8, we can see that the background color of all 
glyph objects represents the attributes of a data object. 
 
 

Attribute 

Background 
Color 

Animated circle 



34 
 

b) Animation 
The moving object (circle) in each rectangular box (Figure 4.8) is used to generate 
the animation property of software metrics, and it represents the value of an 
attribute. In the following Figure 4.9, we have two rectangular boxes: each 
represents one attribute of the data object. The moving objects in these rectangles 
have a different direction. If the circle is moving from right to left (Figure 4.9 (a)), 
then this shows the negative value of the attribute. Similarly, we see in Figure 4.9 
(b), where circle is moving from left to right that the value of the attribute is 
positive. 

 

    
 
(a): R-L Motion of Circle   (b): L-R Motion of Circle 

Figure 4.9. Screenshot: Motion of Circle 

The speed of moving object shows the actual value of an attribute, i.e., higher 
speed represents higher attribute value and vice versa. 

Here, we need to calculate the delay value against the actual value of the 
attribute: The delay value shows the speed of a moving object, and it must be 
between 0-100 (delay value is used to control the multi threading operation, and 
default range (0-100) of delay is useful for smooth animation of objects). A high 
delay shows low speed of a moving object and a low delay shows high speed of a 
moving object. Now, I describe the formula to compute the delay value against 
the actual value of an attribute. 

 

Delay Value? 
 
 I = (Ma – Mi) / N 
Ad  = N - (Aa - Mi) / I ……………..  Formulas 4.5 (For Positive Value) 
 
 I = (|Mi| - |Ma|) / N 
Ad = N - (|Mi| - |Aa|) / I ……………..  Formulas 4.6 (For Negative Value) 
 
In above Formula 4.5 and 4.6: we have different variables like, 

• Ma, maximum value of this attribute in dataset 

• Mi, maximum value of this attribute in dataset 

• N, range size or difference of range, i.e., (0-100) => 100 

• Aa, current value of attribute in current data object 

• I, is used as a interval 

• Ad, is a Attribute delay value for moving object. 
 
In the following Figure 4.10, we can see the complete information of the 

attribute with its actual value. 



35 
 

 

Figure 4.10. Screenshot: Get Delay Value 

We see that the actual value is exactly equals to the lowest value of attribute. 
As we know the range of delay value is 0 to 100, we can imagine that the delay 
value should be 100 in this case. Let’s go to compute stepwise: 

Consider values from above screenshot (Figure 4.10), here Aa = -111.0; put 
required values into Formula 4.6. 

 
I = (-1*(-111)-(-1)*-1)/100 => 1.1 => 1 
Ad = 100-(-1*(-111)-(-111)*-1)/1; 
Ad = 100-0 => 100 
 
The above value 100 shows the delay time of a moving object from one state to 

another state. The delay value is different than the texture value, because this is 
used to control the speed of moving object, i.e., a high delay presents s low 
attribute value and a low delay value presents a high attribute value. 

 

c) Sequence of Attributes 
This property of software metrics enables to show the attributes in a proper order. 
As we can see in the following Figure 4.11, all attributes of both data objects have 
the same placement sequence. This property helps the user to compare the same 
attributes of different data objects. 
 

Figure 4.11. Screenshot: Sequence of Attributes in Two Data Objects 



36 
 

4.2. User Interaction and System Dialogs 

In this section, we will discuss possible interaction techniques for users; these 
techniques allow the user to analyze a large dataset and also facilitate him/her to 
visualize software metrics through static and dynamic display. We also describe 
few important controls of application in the following sections. 

4.2.1. Main Controller Window 

This is the main interface for users to operate with the complete application. As 
we can see, the Load Data SET button enables the user to enter the DSN (Data 
Source Name) and excel sheet number. 

 

 

Figure 4.12. Screenshot: Main Window Before Loading of a Dataset 

a) Excel File Format 
We used a excel file system as an input source. Our application can only allow the 
following file format. 

 

 

Table 4.1. Excel File Format 



37 
 

Above Table 4.1 shows a multivariate dataset. Here, each cell in top row 
represents the name of each column. All other rows in this table represent the data 
objects of the dataset. First column is Full Qualified Name and second column is 
Actual Name of each data object respectively. After that all columns represent the 
attributes of that data object, and data type of attribute’s value is double. 

To proceed further, it is necessary to configure first, the DSN (Data Source 
Name) Bridge in the administrative tools of operating system. 

 
b) DSN Input Dialog 
Here, users have options to enter the desired DSN and excel sheet name, and then 
to proceed by pressing the OK button. 

 

 

Figure 4.13. Screenshot: DSN Dialog 

After pressing the OK button, we will get the following screenshot, where 
other controls are enabled, and now a user can access these controls easily. 

 

 

Figure 4.14. Screenshot: Main Controller After Loading of a Dataset 

 
 
 
 
 
 



38 
 

4.2.2. Attribute Definition Window 

We can get the following visual interface (Figure 4.15) by pressing the Attribute 

Definition button (Figure 4.14). This window gives the complete information of 
all attributes of a dataset. The user has an option to choose only desired attributes 
by selecting the respective check boxes. 
 

 

Figure 4.15. Screenshot: Attribute Definition Window 

The user also has the option to select or deselect all visible attributes by 
pressing the Select All or Clear All buttons (Figure 4.15). In Figure 4.16, the user 
unselects all the attributes at once by pressing the Clear All button. 

 



39 
 

 

Figure 4.16. Screenshot: Showing Clear All Operation 

If user wants to view same settings in the visualization window (2D-SFGrid), 
then he/she must save these changes by pressing the Save button. The user also 
has an option to change the color of an attribute by pressing the mouse button on 
the color of that attribute. If a user presses the button, the color dialog will come 
up, as we can see in the following Figure 4.17. 

 

 

Figure 4.17. Screenshot: Change the Attribute Color 

4.2.3. Static Visualization in 2D-SFGrid 

The user can get static visualization of software metrics by pressing the Static 

Display button (Figure 4.14). 
 



40 
 

 
 
 

 
 
 

Figure 4.18. Screenshot: Static Display of Software Metrics 

In this window (see Figure 4.18), the user has different types of controls for the 
visualization of software metrics. We will describe above Figure 4.18 as follows, 

 

Controls Description 

Data Set Composite 2D Grid with green background (one in window). 

Data Object Composite 

Placed 24 Data Object Composites in one Data Set 
Composite, this grid has a grey background. Each 
represents one data object of a dataset. 

Glyphs  Placed 24 glyphs in each data object composite. 

Data Set Slider 

Attribute Comparison Slider Data Object Name Data Set Composite 

Data Object Slider 
Data Object 
Composite Glyphs 



41 
 

Attribute Slider Bar Placed at top of the window. 

Data Object Slider Bar 
Placed at bottom of each Data Object Composite 
(inner grid with grey background). 

Data Set Slider Bar Placed at bottom of the window. 

Data Object Name 
Place at top of each Data Object Composite, this is 
a Label control with yellow background. 

Table 4.2. Components of Static 2D-SFGrid 

4.2.4. Dynamic Visualization in 2D-SFGrid 

The user can get the dynamic visualization of software metrics by pressing the 
Dynamic Display button (Figure 4.14). 

 
 
 
 

 
 
 
 

Figure 4.19. Screenshot: Dynamic Display of Software Metrics 

Data Set 
Slider 

Attribute Comparison 
Slider 

Data Object 
Name 

Data Set 
Composite 

Data Object 
Slider 

Data Object 
Composite Glyphs 



42 
 

As in above screenshot, we have different types of controls for the 
visualization. Here, we will describe these controls, 

 

Controls Description 

Data Set Composite 2D Grid with green background (one in window). 

Data Object Composite 
Placed 24 Data Object Composites in one Data Set 
Composite, this grids have grey background. 

Glyphs  

Placed in each data object composite, by default 
each Data Object composite contains 6 Glyphs, 
user can change this setting in Display Setting 
Panel. 

Attribute Slider Bar Placed at top of the window. 

Data Object Slider Bar 
Placed vertically at right of each Data Object 
Composite (inner grid with grey background). 

Data Set Slider Bar Placed at bottom of the window. 

Data Object Name 
Place at top of each Data Object Composite, this is 
a Label control with yellow background. 

Table 4.3. Components of Dynamic 2D-SFGrid 

4.2.5. Display Settings 

In our application, the user also has an option to change the default settings; here 
we will discuss these settings practically. 

Figure 4.20. Screenshot: Default View for Both Visualizations 



43 
 

a) Sliding 
By default, this option is active. User can get the sliding option to view the 
different attributes of same data object. 

 

  
(a)     (b) 

Figure 4.21. Screenshot: Sliding View 

Here, we can see in Figure 4.21 (a), that shows the first slide of attributes (max 
24 in each slide). By pressing the slider bar, we can see in Figure 4.21 (b) the next 
slide will come with two more attributes. In Figure 4.21 (b), the slider bar shows 
the last slide (set of attributes), and there are no more attributes in this data object. 

 
b) Scrolling 
If user wants to view only one attribute forward or backward in same data object, 
then he/she needs to select the scrolling option from SF-Grid Display Settings, 
and save these settings by pressing the Save (Figure 4.22) button. 

 

 

Figure 4.22. Screenshot: Set Scrolling Option for Static Display 

Figure 4.23 (a) shows the initial state of scrolling. In the Figure 4.22 (b), we 
can see the next attribute by pressing the slider bar to the right hand side. 



44 
 

 

   
 
 
 

 
(a)      (b) 

Figure 4.23. Screenshot: View the Software Metrics in 2D-SFGrid 

As we see in Figure 4.22 (b), a new attribute comes at the end (at 24th position 
in grid), and all old attributes are moved one step backward. 

 

c) Glyphs in Data Object Composite 
This option is only available in dynamic display of software metrics. It enables 
the user to view a desired number of Glyphs objects in Data Object Composite. 
 

 

Figure 4.24. Screenshot: Select Number of Glyphs for Dynamic Display 

In Figure 4.24, the user selects “9” for number of glyphs to display. In the 
following Figure 4.25, that each Data Object Composite shows the nine glyphs. 

 

Next Attribute 



45 
 

 

Figure 4.25. Screenshot: View the Effect in the Dynamic Display 

d) Texture Choices 
By selecting this option, the user can get the organized glyphs texture without the 
property of Placement (see section 4.1.1). 

 

Figure 4.26. Screenshot: Change the Texture Property in Display Settings 

In the following Figure 4.27, we see that the textures are organized with a 
fixed placement (all textures start from the zero location in the glyphs). 



46 
 

Figure 4.27. Screenshot: Get Organized Textures in the Static Display 

We also have an option of a random texture without the property of Placement. 

 

Figure 4.28. Screenshot: Change Texture Option in Display Setting 

Figure 4.29 shows random textures in all glyphs objects. Both techniques give 
the same meanings in different ways. 

 



47 
 

 

Figure 4.29. Screenshot: View Random Textures in the Static Display 

If the user wants to view software metrics with the feature of Placement, then 
he/she needs to select the option Organized Texture with Scaled Positioning from 
the option list (Figure 4.30). 

Figure 4.30. Screenshot: Select Organized Texture with Placement Property 



48 
 

We can get the following display (Figure 4.31) by selecting the above option. 
All glyphs objects (rectangles) contain a Texture at different positions. 

 

Figure 4.31. Screenshot: View Results of Last Setting in Static Display 

4.2.6. Data Set Slider 

 

Figure 4.32. Screenshot: Operate Data Set Slider 



49 
 

It helps, to scroll the data objects forward or backward. As we can see the slider 
bar at bottom of following Figure 4.32, let see if user press right end of slider. 

Here, we can see in the next slide (Figure 4.33), where 2D-SFGrid shows the 
next set of Data Objects. This slide (Figure 4.33) shows only three Data Objects, 
and rest of Data Object Composites displayed as blank. This shows that there are 
no more Data Objects in current Dataset. 

 

 

Figure 4.33. Screenshot: Get Next Slide by Pressing the Slider’s Right End 

4.2.7. Attribute Comparison Slider 

This control is placed at the top of 2D-SFGrid. If user wants to compare the same 
attributes in different Data Objects, he/she has the option to move the slider 
forward or backward to view next or previous attributes in different Data Objects 

Composites. 
In the following Figure 4.34, the Attribute Comparison Slider is at start 

position, and all Data Objects are also at initial position. 
 
 
 
 
 
 



50 
 

Figure 4.34. Screenshot: Data Objects at Initial Position 

When a user moves the Attribute Comparison Slider to the right, the next 
attribute comes up in all Data Objects Composites (Figure 4.35). 

 

Figure 4.35. Screenshot: Next Attribute show in All Data Object Composite 



51 
 

4.2.8. View Information of Attribute 

The user can get the complete information of the desired software metrics just by 
pressing the left mouse button on a glyph. We can see the information of attribute 
(CMM_1_0_CBO) in the following figure (Figure 4.36) 
 

 

Figure 4.36. Screenshot:  Information of Software Metrics by Mouse Click 

4.2.9. View Full Qualified Name of Data Object 

The user has also the option to get the Full Qualified Name of the desired Data 

Object; he/she needs to move the mouse over on Data Object Name (Figure 4.37). 
 

 

Figure 4.37. Screenshot: Get Full Qualified Name of Data Object 

4.3. Summary 

In this chapter, we have explained the different visualization and interaction 
techniques that we have been proposed in Section 2.2. We also described in all 
properties of both static and dynamic visualization techniques. We have discussed 
all interaction techniques that are linked with functional requirements (Table 3.1) 
of chapter 3. Next chapter is all about Comparison of our proposed visualization 
approaches. 

 



52 
 

5. Comparison of Static and Dynamic Approaches 

In this chapter, we will discuss practical results of both visualization approaches 
(static and dynamic). This section involves practical comparison; we will analyze 
the performance of both approaches through direct physical interaction. We will 
explain the performance comparison of our developed software (2D-SFGrid) by 
its major functions. Our developed software program (2D-SFGrid) is a 
visualization tool used to visualize the software metrics by two different 
approaches, 
 

• Static Visualization 

• Dynamic Visualization 
 

Both approaches are used to visualize software metrics for multivariate 
datasets. We have used the same data structure for both visualization techniques. 
The user can load a complete dataset once in the program. Then, the program 
builds a common data structure at loading time. When the dataset is loaded 
completely, then the user can use the same dataset several times for different type 
of visualizations (static and dynamic). Therefore, the time complexity of the 
dataset loading process is the same for both visualization approaches. It depends 
on the size of the dataset, and it is linear in O (D), where D is the number of data 
objects in the dataset. 

5.1. Practical Comparison by Test Persons 

Here, we have used a different approach to analyze our visualization tool (2D-

SFGrid). Our main focus in this comparison test is perception and better 
understanding of software metrics. As the 2D-SFGrid is a visualization tool for 
multivariate datasets, we should also analyze the performance of our system by 
direct human interaction. In this case, I have chosen three friends of mine from 
the group of Software Technology, MSI, Vaxjo University to compare the 
visualization performance of both approaches. They have analyzed both 
visualization techniques, and finally all of them agreed that the dynamic 
visualization is easy to perceive and better to understand than static visualization. 
They also recommend that dynamic display is only suitable for low number of 
attributes of data object. Here, we will discuss some scenarios in both approaches. 
 

Compare Rendering feature in the both approaches 
Here, we compare the rendering of software metrics in both visualization 
approaches. We will use the two different screenshots from both visualizations. 
 



53 
 

   
(a). Static approach   (b). Dynamic approach 

Figure 5.1. Comparison of rendering feature in both approaches 

In Figure 5.1 (a) and (b), we have two different visualization results through both 
visualization approaches respectively. Our dynamic approach used an animation 
of moving object within glyph object. This cause a system performance problem, 
it is difficult to execute and manage all threads at same time. We examine that the 
dynamic approach cause the rendering problem by visualizing the more number 
of attributes and animation result is not reliable in this case. 

On the other hand, we have a static approach, where software metrics is 
displayed by static glyph, and there are no runtime active threads for animation. 
We analyzed that, this approach is not affected by visualizing more number of 
attributes. Comparatively a static approach utilizes low system resources than 
dynamic approach, and it is better choice for the user to visualize more number of 
attributes rather than dynamic approach. 
 

Compare property of Perception in both approaches 
Perception is our main objective in this research work. We can see the 
visualization results of both approaches in the following Figure 5.2. 
 

   
(a). Static approach   (b). Dynamic approach 

Figure 5.2. Case A: Comparison of perception property in both approaches 

We can examine that the dynamic approach is easily perceive than static 
approach, but above Figure 5.2 shown that number of attributes are not same. 



54 
 

Now we change the scenario, and visualize the more number of attributes in 
dynamic approach same like static approach. 
 

   
(a). Static approach   (b). Dynamic approach 

Figure 5.3. Case B: Comparison of perception property in both approaches 

 
We can see in above Figure 5.3, where attributes are almost same in both 
approaches. In Figure 5.3 (b), shows more moving objects in a dynamic approach. 
It is very difficult to perceive some information from this dense animation and 
also very difficult to compare the same attribute in different data objects. After 
comparison of visualization results (Figure 5.3) from both approaches, we 
conclude that the results in static approach are more perceivable than dynamic 
approach. 
 

Properties of Rendering and Perception in the dynamic visualization 
We used a moving object in the dynamic visualization approach that creates an 
animation feature in glyphs objects. This approach is very fast and perceivable 
quickly for a low number of attributes. But, if we want to see more attributes in 
the same display then the number of moving objects are increased and the height 
of glyphs are decreased: this leads a performance and understanding problem for 
viewer. 
 

   
(a)     (b) 

Figure 5.4. Comparison: Two different views in dynamic visualization 



55 
 

As we can see in Figure 5.1 (a) and (b), where six and eighteen glyphs objects 
are shown respectively in two different data object composites. These dynamic 
visualization results show that the user can better perceive the software metrics in 
Figure 5.1 (a) than those in Figure 5.1 (b). 

The test persons also agreed that the static visualization is better for displaying 
more glyphs in a 2D grid. The static visualization is very fast in rendering the 
display of software metrics in a 2D grid with low utilization of resources, and this 
is suitable for slow machines (processors). 

5.2. Summary 

This chapter is all about the performance comparison of both visualization (static 
and dynamic) approaches. We have analyzed the performance of both techniques 
by practical comparisons. The next chapter concludes of our work. 
 
 



56 
 

6. Conclusion 

Our intent in this thesis was to research and develop visualization techniques to 
visualize software metrics. In this chapter, we will discuss our achievement of this 
research project. We will also explain future work that is related to our proposed 
visualization techniques. 

6.1. Results 

In this thesis, we have presented two approaches for visualization of software 
metrics, i.e., a multivariate dataset is the main input of these visualizations. Both 
visualization techniques are useful in different perspectives. We have introduced a 
2D space-filling grid for the visualization of software metrics, and it is used for 
both visualizations (static and dynamic). Our approach for the visualization of 
software metrics is different from other visualization systems. Normally, other 
visualization tools like [32], [33], and [34] have visualized the complete dataset at 
once in visualization display. We introduced a sliding technique to visualize the 
complete dataset rather than zooming technique. Each slide contains a set of data 
objects, the user can access any slide (set of data objects) of dataset in constant 
time O (D), where D is number of data objects. These results have shown the 
better performance (rendering and data access) of our proposed visualization than 
other existing visualization techniques. Here we will describe the solution of our 
defined goals in this project. 

6.1.1. Visualization Techniques 

A very first goal of this project was to implement a visualization technique that is 
user friendly and time efficient for a large dataset. We developed a visualization 
of software metrics using a 2D grid. As in Chapter 2, we discussed previous 
visualization work for multivariate datasets. In our study, we found a research 
work related to visualization of software metrics through static texture, and we 
were decided to develop a static visualization tool for software metrics.  

Similarly, we also found some research work related to motion of objects to 
represents the software metrics. After analysis on previous research work of both 
static texture and motion of glyphs, we have decided to develop both visualization 
techniques (static and dynamic) for the same multivariate dataset. 

As we introduced a sliding technique to visualize the dataset and data object 
with in 2D-Grid. This technique makes user friendly and time efficient access to 
get the any data object or attribute value in constant time O (1). 

6.1.2. Graphical Glyphs 

As a very important goal in this project, we defined graphical glyphs objects that 
support flexibility in their placement and in their ability to represent multivariate 
datasets. The complete discussion of this goal is already mentioned in Chapter 2, 
where we discuss previous research on glyphs objects, and also describe the 
proposed glyphs objects for this visualization project. The practical solution of 



57 
 

graphical glyph was described in Chapter 5, where each glyph object represents 
an attribute value of a data object. 

6.1.3. Software Metrics 

As we discussed software metrics in Chapter 1, it represents the measurement of a 
software component or its specification. In this project, we constructed two types 
of software metrics visualization: one is static and other is dynamic. Both type of 
software metrics are used to represents the attributes values using static texture 
and animation respectively. A static software metrics has used the glyphs object 
with static texture and on other hand; we have used a glyph object with moving 
object for dynamic software metrics. 

6.1.4. Comparison of static and dynamic visualization approaches 

As a last goal of this project, our focus is on practical comparison of our both 
visualization approaches. Practically, loading process time of dataset in both 
visualization approaches is same, but dynamic approach is more expensive than 
static approach, because in the dynamic approach, motion of object within glyphs 
is continuously in process. On other hand in static approach, all glyphs objects are 
loaded at once in start with static texture. 

As we know the processing of dynamic approach is more expensive than static, 
but we have focused on the perception performance of visualization. We have 
already discussed the detail comparison of both approaches in chapter 5, where 
we concluded that the perception of dynamic visualization is more effective and 
better understandable than static visualization. But dynamic visualization is only 
useful for low number of glyphs objects in each data object. On other side texture 
based or static visualization technique is more convenient to display large number 
of glyphs in Data Object Composite. 

6.2. Future Work 

This thesis presented two different techniques for displaying software metrics in a 
2D space-filling grid. After the completion of this project, we conclude with the 
following future work: 
 

• To load large datasets into the program memory faster than now. 

• Improve the data structure to accommodate the dataset. 

• Introduce the zooming feature in our visualization application. 

• Visualize the complete dataset in single display. 

• Extend to flexible displays, especially for large screens, projectors etc. 

• Our intent to further research on both approaches to visualize the complete 
multivariate dataset in a single display. It can be controlled by zooming 
and scrolling options. 



58 
 

7. Glossary 

 
2D 
2D-SFGrid: 
API: 
AWT: 
EMF: 
GEF: 
GUI: 
IDE: 
JDK: 
JDT: 
LWS: 
MVC: 
OMT: 
OOSE: 
PDE: 
SDK: 
SWT: 
UML: 
JVM: 
 

2 Dimension 
2 Dimensional Space-Filling Grids 
Application Programming Interface  
Abstract Window Toolkit  
Eclipse Model Framework  
Graphical Editing Framework  
Graphic User Interface  
Integrated Development Environment  
Java Development Kit  
Java Development Tools  
Light Weight System  
Model-View-Controller  
Object Modeling Technique  
Object-Oriented Software Engineering  
Plug-in Development Environment (PDE)  
Software Development Kit  
Standard Widgets Toolkit  
Unified Modeling Language  
Java Virtual Machine 
 



59 
 

8. References 

 
[1]  DeMarco, Tom. Controlling Software Projects: Management, 

Measurement and Estimation. ISBN 0-13-171711-1.   
[2]  Douglas Hubbard, The IT Measurement Inversion CIO Magazine, 1999. 
[3]  Diehl, S. (2002). Software Visualization. International Seminar. Revised 

Papers (LNCS Vol. 2269), Dagstuhl Castle, Germany, 20-25 May 2001 
(Dagstuhl Seminar Proceedings). 

[4]  Visualizing Multidimensional Query Results Using Animation, Amit P. 
Sawanta and Christopher G. Healey, North Carolina State University, 
Department of Computer Science, Raleigh, NC, USA. 

[5]  Keim, D. A. (2002). Information visualization and visual data mining. 
IEEE Transactions on Visualization and Computer Graphics, USA * vol 8 
(Jan. March 2002), no 1, p 1 8, 67 refs. 

[6]  Visualization Handbook (Hardcover) by Charles D. Hansen, Chris 
Johnson, Academic Press (June, 2004). 

[7]  Wikipedia. en.wikipedia.org/wiki/Software_visualization, 2008. 
[8]  Wikipedia. en.wikipedia.org/wiki/Software_metric, 2008. 
[9]  Andreas Kerren, Achim Ebert, and Jörg Meyer (Eds.). Human-Centered  

Visualization Environments. Volume 4417 of Lecture Notes in Computer 
Science (LNCS) Tutorial, Springer, 2007. 

[10]  Rational Software Corporation. The Objectory Process--Introduction, 
1996. 

[11]  Aurum A. Cox, K. and Jeffery. An experiment in inspecting the quality of 

usecase descriptions. Journal of Research and Practice in Information 
Technology, 36(4):211–229, 2004. 

[12]  Reed, T. R., and Hans Du Buf, J. M. A review of recent texture 
segmentation and feature extraction techniques. CVGIP: Image 

Understanding 57, 3 (1993), 359-372. 
[13]  Julesz, B. Textons, the elements of texture perception, and their 

interactions. Nature 290 (1981), 91-97. 
[14]  Julesz, B. A theory of preattentive texture discrimination based on first-

order statistics of textons. Biological Cybernetics 41 (1981), 131-138. 
[15]  Julesz, B. A brief outline of the texton theory of human vision. Trends in 

Neuroscience 7, 2 (1984), 41-45. 
[16]  Schweitzer, D. Artificial texturing: An aid to surface visualization. 

Computer Graphics (SIGGRAPH 83 Conference Proceedings) 17, 3 
(1983), 23-29. 

[17]  Grinstein, G., Pickett, R., and Williams, M. EXVIS: An exploratory data 
visualization environment. In Proceedings Graphics Interface '89 

(London, Canada, 1989), pp. 254-261. 
[18]  Ware, C., and Knight, W. Using visual texture for information display. 

ACM Transactions on Graphics 14, 1 (1995), 3-20. 



60 
 

[19]  Turk, G., and Banks, D. Image-guided streamline placement. In 
SIGGRAPH 96 Conference Proceedings (New Orleans, Louisiana, 1996), 
H. Rushmeier, Ed., pp. 453-460. 

[20]  Interrante, V. Illustrating surface shape in volume data via principle 
direction-driven 3d line integral convolution. In SIGGRAPH 97 

Conference Proceedings (Los Angeles, California, 1997), T. Whitted, Ed., 
pp. 109-116. 

[21]  Salisbury, M., Wong, M. T., Hughes, J. F., and Salesin, D. H. Orientable 
textures for image-based pen-and-ink illustration. In SIGGRAPH 97 

Conference Proceedings (Los Angeles, California, 1997), T. Whitted, Ed., 
pp. 401-406. 

[22]  Laidlaw, D. H., Ahrens, E. T., Kremers, D., Avalos, M. J., Jacobs, R. E., 
and Readhead, C. Visualizing diffusion tensor images of the mouse spinal 
cord. In Proceedings Visualization 98 (Research Triangle Park, North 
Carolina, 1998), pp. 127-134. 

[23]  Meier, B. J. Painterly rendering for animation. In SIGGRAPH 96 

Conference Proceedings (New Orleans, Louisiana, 1996), H. Rushmeier, 
Ed., pp. 477-484. 

[24]  Bruckner, L. A. On Chernoff faces. In Graphical Representation of 

Multivariate Data, P. C. C. Wang, Ed. Academic Press, New York, New 
York, 1978, pp. 93-121. 

[25]  Chernoff, H. The use of faces to represent points in k-dimensional space 
graphically. Journal of the American Statistical Association 68, 342 
(1973), 361-367. 

[26]  Foley, J., and Ribarsky, W. Next-generation data visualization tools. In 
Scienti_c Visualization: Advances and Challenges, L. Rosenblum, Ed. 
Academic Press, San Diego, California, 1994, pp. 103-127. 

[27]  Levkowitz, H. Color icons: Merging color and texture perception for 
integrated visualization of multiple parameters. In Proceedings 

Visualization '91 (San Diego, California, 1991), pp. 164-170. 
[28]  Brown, J. L. Flicker and intermittent stimulation. Vision and Visual 

Perception, C. H. Graham, Ed. John Wiley & Sons, New York, New 
York, 1965, pp. 251–320. 

[29]  Meier, B. J. Painterly rendering for animation. SIGGRAPH 96 Conference 

Proceedings (New Orleans, Louisiana, 1996), pp. 477–484. 
[30]  Tynan, P. D. and Sekuler, R. Motion processing in peripheral vision: 

Reaction time and perceived velocity. Vision Research 22,1 (1982), 61-68. 
[31]  A. J. van Doorn and J. J. Koenderink. Temporal properties of the visual 

detectability of moving spatial white noise. Experimental Brain Research, 
45:179–188, 1982. 

[32]  Huber, D. E. and Healey, C. G. "Visualizing Data with Motion." In 
Proceedings IEEE Visualization 2005 (Minneapolis, Minnesota), pp. 527-
534. 



61 
 

[33]  Healey, C. G. and Enns, J. T. "Large Datasets at a Glance: Combining 
Textures and Colors in Scientific Visualization." IEEE Transactions on 
Visualization and Computer Graphics 5, 2, (1999), 145-167. 

[34]  Healey, C. G. and Enns, J. T. "Building Perceptual Textures to Visualize 
Multidimensional Datasets." In Proceedings IEEE Visualization '98 
(Research Triangle Park, North Carolina, 1998), pp. 111-118. 

[35]  Stephan Diehl (Stephan Diehl, editor. Software Visualization, Springer 
State-of-the-Art Survey LNCS 2269. Springer Verlag, 2002.) 

[36]  J. T. Stasko, J. Domingue, M. H. Brown, and B. A. Price. Software 

Visualization. MIT Press, 1998. 
[37]  Algorithm Animation - Chapter Introduction. A. Kerren and J. T. Stasko. 

Software Visualization, volume 2269 of LNCS State-of-the-Art Survey, 
pages 1-15. Springer, 2002. 

[38]  Sawant, A. P. and Healey, C. G. "Visualizing Multidimensional Query 
Results Using Animation." To appear in Proceedings Visualization and 

Data Analysis 2008 (San Jose, California) 
[39]  Matthew O. Ward , A taxonomy of glyph placement strategies for 

multidimensional data visualization, ISSN:1473-8716, 2002 
[40]  Colin Ware, Information Visualization, Perception for design, 2002. 
[41]  Liu, G., Enns, J. T., and Healey, C. G. "Sensitivity to 3D Orientation in 

Textured Surfaces." In Psychonomics 2000 Poster Session #599 (New 
Orleans, Louisiana, 2000). 

[42]  St. Amant, R., Healey, C. G., Riedl, M., Kocherlakota, S., Pegram, D. A., 
and Torhola, M. "Intelligent Visualization in a Planning System." In 
Proceedings Intelligent User Interfaces 2001 (Santa Fe, New Mexico, 
2001), pp. 153-160. 

[43]  Steve Northover, Mike Wilson. SWT: The Standard Widget Toolkit. 
Addison-Wesley Professional; 1 edition (Jul 8 2004). 

[44]  Sherry Shavor et al., The Java Developer’s Guide to Eclipse, Addison-
Wesley, 2003. 

[45]  Berthold Daum, Eclipse 2 for Java Developers, Wiley, 2003. 
[46]  Erich Gamma and Kent Beck, Contributing to Eclipse, Addison-Wesley, 

2003. 
[47]  H. Hinterberger. Data Density: A Powerful Abstraction to Manage and 

Analyze Multivariate Data. PhD thesis, Informatik-Dissertationen ETH, 
Zurich, 1987. No. 4. 

[48]  Ivar Jacobson and James Rumbaugh. The Unified Software Development 

Process. Prentice Hall, 1999. ISBN 978-0-201-57169-1. 
[49]  http://www.eclipse.org/ [accessed 15 April 2008]. 
[50]  http://www.eclipse.org/swt/ [accessed 27 April 2008]. 
[51]  http://www.java.com/en/download/index.jsp [accessed 15 April 2008]. 
[52]  http://www.soyatec.com/euml2/installation/ [accessed 22 June 2008] 
[53]  http://en.wikipedia.org/wiki/Iterative_and_incremental_development 

[accessed 27 July 2008] 



62 
 

Appendix A: Implementation 

In this chapter, we will describe implementation aspects of our visualization 
system (2D-SFGrid). This chapter includes brief description of, major 
components of our developed software, platform and environment in which codes 
are written, and the tools are used in software development. 

A. 1. Visualization System Components 

In this section, we will discuss some major components of our implemented 
visualization system. In the following Figure A.1, we can see the main 
components linked with visualization system. 
 
 

 

Figure A.1. Component Diagram: Visualization System 

We have used a SWT (Standard Widget Toolkit) toolkit in our visualization 
system for graphical purposes. JAVA core API’s are used as a main language of 
our software development. External Data Source is main source of data for our 
software; we have used an Excel database as an input source (dataset) for our 
developed visualization tool (2D-SFGrid). 

A. 2. Eclipse Development Environment 

We used Eclipse environment in the development of this project. Eclipse is an 
open source community. Its projects are focused on building an open development 
platform comprised of extensible frameworks, tools and runtimes for building, 
developing and managing software across the life style [44], [45]. The Eclipse 
Foundation is a not-for-profit, member supported corporation that helps cultivate 
both an open source community and an ecosystem of complementary products 
and services [46]. 

Eclipse is available via eclipse main website [49]. For using, Eclipse Java 
runtime environment (JRE) is needed (Java 1.6 JRE recommended) [51]. We also 
used an eclipse plug-in [52] to create the UML diagrams. 



63 
 

A. 3. SWT 

The Standard Widget Toolkit (SWT) is a graphical widget toolkit use for the Java 
platform. It was originally developed by IBM systems but now Eclipse 
Foundation is maintained for Eclipse IDE. It is a substitute to the AWT and 
Swing Java GUI toolkits provided by Sun Microsystems as part of the Java 
Platform, Standard Edition J2SE [43]. 

SWT is written completely in Java. It is very useful to display GUI elements, 
the SWT implementation accesses the native GUI libraries of the operating 
system using JNI (Java Native Interface) in a way that is similar to those 
programs written using operating system required APIs. Programs that call SWT 
are portable, but the implementation of the toolkit, despite the fact that it is 
written in Java, is unique for each platform [43]. SWT development toolkit is 
available for free download on eclipse main website in SWT section [50]. 

A. 4. Software Development 

All codes are programmed in Eclipse programming environment. Java has been 
chosen for programming language. This project is comprised of a number of 
classes and interfaces, 

 

 

Figure A.2. 2D-SFGrid: Class Design Diagram 

spacefillinggrid  
Class SFGrid 
java.lang.Object 

  spacefillinggrid.SFGrid 

 
public class SFGrid 

extends java.lang.Object 

This class provides 2D space-filling grid display that shows the dynamic and 
static behavior of glyph objects, and shows the visualization of dataset. 

 



64 
 

Field Summary 
protected 

 java.util.BitSet 
attributesBitSet: 
contains the status of all attributes either true or false, 
depends on user selection in Attribute Definition 
Window, by default all true 

protected 

  Slider 
dataSetSlider: 
dataset slider, setup horizontally at the bottom of SF-
Grid window 

protected 

  boolean 
dynamicGlyph  
property of dynamic glyph is true on user selection 
otherwise false 

protected 

 SFDisplaySettings 
sfDisplaySettings  
display settings selected by user 

protected  boolean staticGlyph  
property of static glyph is true on user selection 
otherwise false 

(package private) 

 int 
windowHeight  
default height of SF-Grid window 

(package private) 

 int 
windowWidth  
default width of SF-Grid window 

Constructor Summary 
SFGrid(int approachValue, SFDisplaySettings sfDSettings)  
default constructor, needs approach value either static (1) or dynamic (2) and 
instance of SFDisplaySettings 

Method Summary 
 void create2DGridDynamic(Shell shell)  

  
 void create2DGridStatic(Shell shell)  

create and setup 2D static grid environment, glyphs 
created as a static display 

protected 

  boolean 
updateGlyphsBox(Composite glyphsComposite, 

Label objectLabel, int dataObjectNumber, 

int innerSliderPosition, 

int topSliderPosition, int boxSize)  
this protected method, only use internally. 

Table A.1. SFGrid: Class Document 

 



65 
 

 

Figure A.3. SFDisplaySettings: Class Design Diagram 

spacefillinggrid  
Class SFDisplaySettings 
java.lang.Object 

  spacefillinggrid.SFDisplaySettings 

 
public class SFDisplaySettings 

extends java.lang.Object 

This class contains functionality to control the 2D Space-Filling grid display 
settings. This component gives a visual interface to user; user can set setting for 
both static and dynamic 2D-SFGrid windows. 

Field Summary 
private 

  int 
dynamicAttributesNo  
for total number of dynamic attributes of data object to be 
displayed in SF-Grid window 

private 

 int 
dynamicAttributesViewOption  
for sliding (1) or scrolling (0) options in SF-Grid window, 
by default scrolling is set for dynamic view 

private 

  int 
staticAttributesNo  
for total number of static attributes of data object to be 
displayed in SF-Grid window 

private 

  int 
staticAttributesViewOption  
for sliding (1) or scrolling (0) options in SF-Grid window, 
by default scrolling is set for static view 

private 

  int 
staticTextureOption  
this is a texture property, by default it is 0 (for organized 
texture) 



66 
 

Constructor Summary 
SFDisplaySettings()  
default constructor 
SFDisplaySettings(SFDisplaySettings displaySettings)  
this is one argument constructor, this constructor receive last saved display 
settings. 

Method Summary 
 int getDynamicAttributesNo()  

to get the number of glyphs, that user want to display in each 
data object composite in dynamic grid 

 int getDynamicAttributesViewOption()  
to get the dynamic view option either scrolling or sliding 

 int getStaticAttributesNo()  
to get the number of glyphs to display in each data object 
composite in static grid 

 int getStaticAttributesViewOption()  
to get the settings by user, either scrolling or sliding to view 
the more attributes in data object composite 

 int getStaticTextureOption()  
to send the texture option, this value help to 

 void setupControls(SFDisplaySettings savedSetting, 

Shell shell)  
to setup the controls properly, it provides the user interaction 
by selection boxes and buttons 

Table A.2. SFDisplaySettings : Class Document 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



67 
 

 

Figure A.4. MessageHandler: Class Design Diagram 

spacefillinggrid  
Class MessageHandler 
java.lang.Object 

  java.lang.Throwable 

      spacefillinggrid.MessageHandler 

All Implemented Interfaces:  
java.io.Serializable 

 
public class MessageHandler 

extends java.lang.Throwable 

Use for exception handling, report error message using dialog window  

Field Summary 
private 

static long 
serialVersionUID 

Constructor Summary 
MessageHandler()  
  

Method Summary 
static void show(java.lang.Exception e, 

java.lang.String msgType, java.lang.String msg)  
  

static void show(java.lang.String msgType, 

java.lang.String msg)  
  

Table A.3. MessageHandler : Class Document 

 
 



68 
 

 

Figure A.5. ExcelFileControllor: Class Design Diagram 

spacefillinggrid  
Class ExcelFileControllor 
java.lang.Object 

  spacefillinggrid.ExcelFileControllor 

 
public class ExcelFileControllor 

extends java.lang.Object 

This class have link with excel data base through DSN Bridge. We used DSN 
name: matrices_xls by default. 

Field Summary 
private 

 java.sql.Connection 
con  
connection object, use to get the connection 
through ODBC connection 

static java.lang.Str

ing 
DATABASE_URL  
set DSN name, same name use as DSN name or 
alias 

private 

static java.lang.String 
DRIVER_NAME  
driver for JDBC and ODBC connection 

Constructor Summary 
ExcelFileControllor() 
default constructor 

Method Summary 
 java.sql.ResultSet getResultSet(java.lang.String sqlQuery)  

  

Table A.4. ExcelFileControllor: Class Document 

 



69 
 

 

Figure A.6. DynamicGlyph: Class Design Diagram 

spacefillinggrid  
Class DynamicGlyph 
java.lang.Object 

  spacefillinggrid.DynamicGlyph 

 
public class DynamicGlyph 

extends java.lang.Object 

This class generates the dynamic glyphs, each glyph object represent one attribute 
of data object. This class uses the internal data structure to display the information 
of each attribute. 

Field Summary 
private 

  int 
ATTRIBUTES_DISPLAY_AREA  
display area of all attributes for each data object composite 

private 

 Canvas 
can  
rectangle, shows the attribute 

private 

  int 
glyphHeight  
height of each attribute glyph object 

private 

  int 
INTERVAL  
delay time of circle object motion of each attribute 

private 

final int 
NOA  
number of attributes to display  

private 

  int 
value  
used for position of moving circle in glyph (rectangular box) 

Constructor Summary 
DynamicGlyph(Composite composite, int noOfAttributes)  
constructor, initialize and start the motion of object 

Method Summary 
 void createGlyph()  

this method create and manage the glyph object. 

Table A.5. DynamicGlyph: Class Document 



70 
 

 

Figure A.7. DataSetSlider: Class Design Diagram 

spacefillinggrid  
Class DataSetSlider 
java.lang.Object 

  spacefillinggrid.DataSetSlider 

 
public class DataSetSlider 

extends java.lang.Object 

This class creates and manages the horizontal slider to control the dataset. it 
comes at the bottom of SF grid window  

Field Summary 
private 

  int 
currentPosition  
to access the current position of slider 

private 

 SFGrid 
sfGrid  
sfGrid object of SFGrid, to access the main window display 

private 

 Slider 
topSlider  
SWT slider control, placed at bottom of SFGrid window 

Constructor Summary 
DataSetSlider(SFGrid sf)  
one parameter Constructor, initialize the current position of slider control 

Method Summary 
 Slider put(Shell shell)  

this method create and manage the slider control. 

Table A.6. DataSetSlider: Class Document 

 



71 
 

 

Figure A.8. DataSetManager: Class Design Diagram 

spacefillinggrid  
Class DataSetManager 
java.lang.Object 

  spacefillinggrid.DataSetManager 

 
public class DataSetManager 

extends java.lang.Object 

This class is used to load the dataset, and construct some tricky data structure for 
further use for visualization of software metrics in 2D space-filling grid.  

Field Summary 
private 

static java.util.Map<ja

va.lang.String,Attribut

eManager> 

attMngrMap  
map contains the records of all attributes by key 
(name of attribute) 

private 

static java.util.List<j

ava.lang.String> 

attributeList  
contains list of attributes names 

static java.util.BitSet attributesBitSet  
bit set object, use for attributes to set true or false 
have public access 

private 

 static int 

 

attributeSize  
size of attributes in dataset 



72 
 

private 

static java.util.Map<ja

va.lang.Integer,DataObj

ectDetails> 

dataSetMap  
map contains the records of all data object by key 
value (number start from zero) 

static java.lang.Double maxNegAttributeValue  
  

static java.lang.Double maxPosAttributeValue  
load the dataset into internal data structure, takes 
time in loading, it depends on size of dataset 

static java.lang.Double minNegAttributeValue  
  

static java.lang.Double minPosAttributeValue  
  

private 

 static int 
objectSize  
size of dataset, total number of records or data 
objects in dataset 

protected 

 

static java.lang.String 

sheetNo  
sheet number of excel files, final access, constant 

Constructor Summary 
DataSetManager() 

default constructor 

Method Summary 
static AttributeMana

ger 
getAttributeDefinition(java.lang.String 

key)  
 key is attribute name, it returns the object that 
contains the definition of attribute 

static java.util.Lis

t<java.lang.String> 
getAttributeList()  
return list of attributes 

static int getAttributeSize()  
return the size of attributes, total number of 
attributes in data object  

static DataObjectDet

ails 
getDataObjectDetails(int key)  
key is number of data object (start from zero), and 
returns the object that contains the definition of 
data object  

static int getObjectSize()  
return number of data objects in current dataset 

 void manageDataSet(Button b)  
load the dataset into internal data structure, takes 
time in loading, it depends on size of dataset 

Table A.7. DataSetManager: Class Document 

 
 



73 
 

 

Figure A.9. DataObjectSlider: Class Design Diagram 

spacefillinggrid  
Class DataObjectSlider 
java.lang.Object 

  spacefillinggrid.DataObjectSlider 

 
public class DataObjectSlider 

extends java.lang.Object 

This class create and manage the horizontal slider for each record (data object) of 
dataset.  

Field Summary 
private 

  int 
currentPosition  
to access the current position of slider 

private 

  int 
dataObjectNumber  
dataObjectNumber unique number for each data object 

private 

 Slider 
glyphSlider  
slider object, use to view the all attribute values by scrolling 
the slider 

private 

 SFGrid 
sfGrid  
sfGrid object of SFGrid, to access the main window display 

Constructor Summary 
DataObjectSlider(SFGrid sfGrid, int dataObjectNumber)  

two parameter Constructor, initialize the current position of slider control 

Method Summary 
 void put(Composite composite)  

this method use to add the slider object for each data object 
in SFGrid window, this also includes the controller for slider 
position by user interaction 

Table A.8. DataObjectSlider: Class Document 

 



74 
 

 

Figure A.10. DataObjectDetails: Class Design Diagram 

spacefillinggrid  
Class DataObjectDetails 
java.lang.Object 

  spacefillinggrid.DataObjectDetails 

 
public class DataObjectDetails 

extends java.lang.Object 

This class contains the details of each data object  

Field Summary 
private 

 java.util.List<AttributeV

alueData> 

attributeList  
this list contains the value of all attributes in 
this data object 

private 

  java.lang.String 
name  
name of data object 

private 

  java.lang.String 
qualifiedname  
qualified name of data object 

Constructor Summary 
DataObjectDetails(java.lang.String name, 

java.lang.String qualifiedname)  
two parameter constructor, initialize the name and qualified name of data object 

Method Summary 
 void addAll(java.util.List<AttributeValueData> av

dList)  
to add the all attributes values of this data object into 
list 

 AttributeValueDa

ta 
get(int index)  
to get the specified value of attribute by passing the 
index of the list 

 java.util.List<A get(int fromIndex, int toIndex)  



75 
 

ttributeValueData> to get the sublist of attributes values of this data object 
 java.lang.String getObjectName()  

to get the name of data object 
 java.lang.String getObjectQualifiedName()  

to get the qualified name of data object 

Table A.9. DataObjectDetails: Class Document 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



76 
 

 

Figure A.11. ColorManager: Class Design Diagram 

spacefillinggrid  
Class ColorManager 
java.lang.Object 

  spacefillinggrid.ColorManager 

 
public class ColorManager 

extends java.lang.Object 

This class is, to generate the color code for each attribute, and it is manage by 
Map, we can also access the color of each attribute directly by calling getColor(). 

Field Summary 
private 

static java.util.Map<java.

lang.String,Color> 

attributesColorMap  
contains set of attributes along their colors 
code 

Constructor Summary 
ColorManager()  
default constructor 

Method Summary 
static void createColorMap(java.util.List<java.la

ng.String> attributesSet)  
get the attributes list from MainControllor 
class, and generate the unique color code for 
each attribute 

static Color getColor(java.lang.String attribute)  
to get the color of attribute 

static boolean searchColor(RGB rgb)  
to searching of color, found or not 

static java.lang.String updateAttributesColor(Color oldAttrib

uteColor, Color newAttributeColor)  
update color definition in ColorManager 

Table A.10. ColorManager: Class Document 



77 
 

 

Figure A.12. AttributeValueData: Class Design Diagram 

spacefillinggrid  
Class AttributeValueData 
java.lang.Object 

  spacefillinggrid.AttributeValueData 

 
public class AttributeValueData 

extends java.lang.Object 

 
This class contains the value of attribute, means the value of each cell have one 

{AttributeValueData} object, also defines the texture (0-100, 0 show minimum 
attribute value and 100 shows maximum attribute value) and delay (0-100, 0 show 
maximum attribute value and 100 shows minimum attribute value) values by 
actual attribute value, also contains the {AttributeManager} object. 

This class also have two properties of each attribute, one is Texture and 
another is Delay, Texture: is combination of pixels and used to show the strength 
of attribute's actual value, Delay: the delay value shows the delay time of glyph 
object from on state to another state during motion, the delay value is different 
than texture value, this is use to control the speed of glyphs, high delay present 
low actual attribute value and low delay value present high actual attribute value. 

 

Field Summary 
private 

 AttributeManager 
am  
keep the definition of attribute, its color, name, value's 
range 

private 

 java.lang.Double 
attributeValue  
value of attribute in data object 

private 

 java.lang.Integer 
delay  
this value is calculated through SCALING technique, 
this is between from 0-100 

private 

 java.lang.Integer 
textureValue  
it is calculated texture value through SCALING 



78 
 

technique, this value is between from 0-100, the value is 
used to present the strength of actual value 

Constructor Summary 
AttributeValueData(AttributeManager am, 

java.lang.Double attributeValue)  
default constructor, needs the object of AttributeManager and attribute value 

Method Summary 
 AttributeManager getAttributeDetail()  

to get attribute definition of this value 
 java.lang.Double getAttributeValue()  

to get actual attribute value 
 java.lang.Integer getDelayValue()  

to get the delay value, for dynamic display 
 java.lang.Integer getTextureValue()  

to get the texture value, for static display 
 void setTextureNdDelayValue()  

set the texture and delay values against original value 

Table A.11. AttributeValueData: Class Document 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



79 
 

 

Figure A.13. AttributeWindow: Class Design Diagram 

spacefillinggrid  
Class AttributesWindow 
java.lang.Object 

  spacefillinggrid.AttributesWindow 

 
public class AttributesWindow 

extends java.lang.Object 

This class provides the definition of all attributes in dataset, this class also 
facilitates the user to view and update the settings of attributes  

Field Summary 
private 

 java.util.BitSet 
bitSet  
BitSet, this hold the status of attributes, either true or 
false 

private 

int 
currentPosition  
control and access the current position of slider control 

Constructor Summary 
AttributesWindow() 

default constructor, create a instance of AttributeWindow 

Method Summary 
 void openWindow()  

initialize the attribute BitSet, also set the current position 
of slider, open the attributes definition window, this 
method contains the layout and display of controls in 
attribute window 

private 

void 
updatComposites(Slider sld)  
private method, use to update the information of visual 
controls 

Table A.12. AttributesWindow: Class Document 

 



80 
 

 

Figure A.14. AttributeManager: Class Design Diagram 

spacefillinggrid  
Class AttributeManager 
java.lang.Object 

  spacefillinggrid.AttributeManager 

 
public class AttributeManager 

extends java.lang.Object 

This class use to create a one object for each attribute that contains the properties 
of attribute like, name, color, positive and negative range of values  

Field Summary 
private 

Color 
attributeColor  
unique color for each attribute 

private 

 java.lang.String 
attributeName  
unique name of the attribute 

private 

 java.lang.Double 
maxNegValue  
maximum negative value of this attribute 

private 

 java.lang.Double 
maxPosValue  
maximum positive value of this attribute 

private 

 java.lang.Double 
minNegValue  
minimum negative value of this attribute 

private minPosValue  



81 
 

 java.lang.Double minimum positive value of this attribute 

Constructor Summary 
AttributeManager(Color attributeColor, 

java.lang.String attributeName)  
two parameter constructor, attribute color and its name 

Method Summary 
 Color getAttributeColor()  

this method can use to get the attribute color 
java.lang.String getAttributeName()  

to get the name of this attribute 
java.lang.Double getMaxNegValue()  

to get the maximum negative value of attribute 
java.lang.Double getMaxPosValue()  

to get the maximum positive value of attribute 
java.lang.Double getMinNegValue()  

to get the minimum negative value of attribute 
java.lang.Double getMinPosValue()  

to get the minimum positive value of attribute 
 void setMaxNegValue(double maxNegValue)  

useful to display the texture and speed of glyph objects 
 void setMaxPosValue(double maxPosValue)  

useful to display the texture and speed of glyph objects 
 void setMinNegValue(double minNegValue)  

useful to display the texture and speed of glyph objects 
 void setMinPosValue(double minPosValue)  

useful to display the texture and speed of glyph objects 
 void updateAttributeColor(Color attributeColor)  

to update the new color in attribute definition 

Table A.13. AttributeManager: Class Document 

 
 
 
 
 
 
 
 
 
 



82 
 

 

Figure A.15. AttributeComparisonSlider: Class Design Diagram 

spacefillinggrid  
Class AttributeComparisonSlider 
java.lang.Object 

  spacefillinggrid.AttributeComparisonSlider 

 
public class AttributeComparisonSlider 

extends java.lang.Object 

This class contains a functionality of comparison slider; it is top slider in 2D-
SFGrid window, to facilitate the user to view all the attributes of displaying 
objects by scrolling the slider.  

Field Summary 
private  int currentPosition  

to access the current position of slider 
private 

 SFGrid 
sfGrid  
sfGrid object of SFGrid, to access the functionalities of 2D 
Space-Filling Grid 

private 

 Slider 
topSlider  
it is SWT slider control 

Constructor Summary 
AttributeComparisonSlider(SFGrid sfGrid) 
default constructor, needs a instance of SFGrid 

Method Summary 
 void put(Shell shell)  

to put the slider object into 2D-SFGrid window 

Table A.14. AttributeComparisonSlider: Class Document 

 



83 
 

 

Figure A.16. StaticGlyph: Class Design Diagram 

spacefillinggrid  
Class StaticGlyph 
java.lang.Object 

  spacefillinggrid.StaticGlyph 

 
public class StaticGlyph 

extends java.lang.Object 

This class generates the static glyphs, each glyph object represent one attribute 
value in data object. This use the internal data structure to display the information 
of each attribute.  

Field Summary 
private 

 SFGrid 
sfGrid  
 

Constructor Summary 
StaticGlyph(SFGrid sfGrid)  
default constructor, needs instance of SFGrid 

Method Summary 
 void createGlyph(Composite composite)  

this method create and manage the glyph object, it use the 
canvas control, put in Composite control with other glyph 
objects. 

private  int getTexturePostion(AttributeValueData avd)  
  

Table A.15. StaticGlyph: Class Document 

A. 5. Class Diagram 

Class diagram defines as a static structure diagram in the Unified Modeling 
Language (UML), which describes the structure of a proposed system by showing 
the system's classes, their attributes (properties and methods), and the 
relationships between the classes. 

 
 



84 
 

 

Figure A.17. Class Diagram: Dataset Loader 



85 
 

 
 

Figure A.18. Class Diagram: Visualization Process 



 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 

Matematiska och systemtekniska institutionen 
SE-351 95 Växjö 

 
Tel. +46 (0)470 70 80 00, fax +46 (0)470 840 04 

http://www.vxu.se/msi/ 

 


