Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany
Preface

During May 12–17, 2013, a seminar on “Information Visualization – Towards Multivariate Network Visualization” (no. 13201) took place at the International Conference and Research Center for Computer Science, Dagstuhl Castle, Germany. The center was initiated by the German government to promote computer science research at the international level. It seeks to foster dialog among the research community, advance academic education and professional development, and transfer knowledge between academia and industry.

Information visualization (InfoVis) is a research area that focuses on the use of visualization techniques to help people understand and analyze data as well as relations between data. While related fields such as scientific visualization involve the presentation of data that have some physical or geometric correspondence (for example, climate patterns, molecular formations, transport networks), InfoVis centers on abstract information without such correspondences, i.e., it is not possible to map this information into the physical world in most cases. Examples of such abstract data are symbolic, tabular, networked, hierarchical, or textual information sources—for example, genealogies, demographic data of a population, or financial trends.

The goal of this third Dagstuhl Seminar on Information Visualization was to bring together theoreticians and practitioners from InfoVis, HCI, and graph drawing with a special focus on multivariate network visualization, i.e., on graphs where the nodes and/or edges have additional (multidimensional) attributes. The integration of multivariate data into complex networks and their visual analysis is one of the big challenges not only in visualization, but also in many application areas. Thus, in order to support discussions related to the visualization of real-world data, we also invited researchers from selected application areas, especially bioinformatics, social sciences, and software engineering. The unique “Dagstuhl climate” ensured an open and undisturbed atmosphere to discuss the state-of-the-art, new directions, and open challenges of multivariate network visualization.

This book is the outcome of Dagstuhl Seminar no. 13201. It documents and extends the findings and discussions of the various sessions in detail. During
the last day of the seminar, the most important topics for publication were identified and assigned to interested participants. The resulting author groups worked together to write book chapters on the chosen topics.

We would like to thank all participants of the seminar for the lively discussions and contributions during the seminar as well as the scientific directorate of Dagstuhl Castle for giving us the possibility to organize this event. The abstracts and presentation slides can be found on the Dagstuhl website for this seminar.\footnote{http://www.dagstuhl.de/13201} There is an online document that reports on all activities during the seminar.\footnote{http://dx.doi.org/10.4230/DagRep.3.5.19} We are also grateful to all the authors for their valuable time and contributions to the book. Last but not least, the seminar and thereby this book would not have been possible without the great help of the staff of Dagstuhl Castle. We would like to acknowledge all of them for their assistance.

January 2014

Andreas Kerren
Helen C. Purchase
Matthew O. Ward
List of Contributors

James Abello
Rutgers University, DIMACS Center for Discrete Mathematics and Theoretical Computer Science, USA
abello@dimacs.rutgers.edu

Daniel Archambault
Swansea University, Department of Computer Science, UK
d.w.archambault@swansea.ac.uk

Katy Börner
Indiana University Bloomington, Department of Library and Information Science, USA
katy@indiana.edu

Stephan Diehl
University of Trier, Department of Computer Science, Germany
diehl@uni-trier.de

Tim Dwyer
Monash University Clayton, Caulfield School of Information Technology, Australia
tim.dwyer@monash.edu

Niklas Elmqvist
Purdue University, School of Electrical & Computer Engineering, USA
elm@purdue.edu

Jean-Daniel Fekete
INRIA, France
Jean-Daniel.Fekete@inria.fr
Liang Gou
IBM Research Almaden, USA
lgou@us.ibm.com

Hans Hagen
University of Kaiserslautern, Department of Computer Science, Germany
hagen@cs.uni-kl.de

Danny Holten
SynerScope, Eindhoven, The Netherlands
danny.holten@synerscope.com

Christophe Hurter
École Nationale de l’Aviation Civile, Interactive Computing Laboratory,
France
christophe.hurter@enac.fr

T.J. Jankun-Kelly
Mississippi State University, Department of Computer Science
and Engineering, USA
tjk@acm.org

Jessie Kennedy
Edinburgh Napier University, School of Computing, UK
j.kennedy@napier.ac.uk

Andreas Kerren
Linnaeus University Växjö, Department of Computer Science, Sweden
kerren@acm.org

Stephen Kobourov
University of Arizona, Department of Computer Science, USA
kobourov@cs.arizona.edu

Oliver Kohlbacher
University of Tübingen, Center for Bioinformatics,
Quantitative Biology Center, Department of Computer Science,
and Faculty of Medicine, Germany
oliver.kohlbacher@uni-tuebingen.de

Kwan-Liu Ma
University of California at Davis, Department of Computer Science, USA
ma@cs.ucdavis.edu
Silvia Miksch
Vienna University of Technology, Institute of Software Technology and Interactive Systems, Austria
miksch@ifs.tuwien.ac.at

Chris Muelder
University of California at Davis, Department of Computer Science, USA
cwmuelder@ucdavis.edu

Martin Nöllenburg
Karlsruhe Institute of Technology, Institute of Theoretical Informatics, Germany
noellenburg@kit.edu

A. Johannes Pretorius
University of Leeds, School of Computing, UK
a.j.pretorius@leeds.ac.uk

Helen C. Purchase
University of Glasgow, School of Computing Science, UK
hcp@dcs.gla.ac.uk

Jonathan C. Roberts
Bangor University, School of Computer Science, UK
j.c.roberts@bangor.ac.uk

Falk Schreiber
Martin Luther University Halle-Wittenberg, Institute of Computer Science, Germany; Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Germany; and Monash University Melbourne, Clayton School of Information Technology, Australia
schreibe@ipk-gatersleben.de

John T. Stasko
Georgia Institute of Technology, School of Interactive Computing, USA
stasko@cc.gatech.edu

Alexandru C. Telea
University of Groningen, Institute Johann Bernoulli, The Netherlands
a.c.telea@rug.nl
List of Contributors

Jarke J. van Wijk
Eindhoven University of Technology, Department of Mathematics and Computer Science, The Netherlands
vanwijk@win.tue.nl

Tatiana von Landesberger
Technische Universität Darmstadt, Department of Computer Science, Germany
tatiana.von-landesberger@gris.tu-darmstadt.de

Matthew O. Ward
Worcester Polytechnic Institute, Department of Computer Science, USA
matt@cs.wpi.edu

Chris Weaver
University of Oklahoma, School of Computer Science, USA
weaver@cs.ou.edu

Michael Wybrow
Caulfield School of Information Technology, Monash University Caulfield, Australia
Michael.Wybrow@monash.edu

Kai Xu
Middlesex University London, School of Science and Technology, UK
k.xu@mdx.ac.uk

Jing Yang
University of North Carolina at Charlotte, Computer Science Department, USA
Jing.Yang@uncc.edu

Dirk Zeckzer
Leipzig University, Institute of Computer Science, Germany
zeckzer@informatik.uni-leipzig.de

Michelle X. Zhou
IBM Research Almaden, USA
mzhou@us.ibm.com

Björn Zimmer
Linnaeus University Växjö, Department of Computer Science, Sweden
bjorn.zimmer@lnu.se
Contents

Preface ... V

List of Contributors ... VII

1 Introduction to Multivariate Network Visualization 1
 Andreas Kerren, Helen C. Purchase, Matthew O. Ward
 1.1 Multivariate Networks: Definitions and Terminology ... 2
 1.2 Existing Visualizations ... 3
 1.3 Outline of This Book .. 6
 References .. 7

Part I: Application Domains – Characteristics and Challenges

2 Multivariate Networks in Software Engineering 13
 Stephan Diehl, Alexandru C. Telea
 2.1 Aims and Scope .. 13
 2.1.1 History and Definitions 14
 2.1.2 Importance ... 14
 2.2 Data Characteristics .. 15
 2.2.1 Entities .. 15
 2.2.2 Relations ... 15
 2.2.3 Attributes .. 16
 2.2.4 Software as Multivariate Time-Dependent Graphs 17
 2.2.5 Reference Implementation 17
 2.2.6 Software Data vs. other InfoVis Domains 19
 2.3 Applications .. 21
 2.3.1 Structure Visualization 21
 2.3.2 Behavior Visualization 26
 2.3.3 Evolution Visualization 28
 2.4 Challenges and Future Directions 32
 References .. 34
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Scalability Considerations for Multivariate Graph Visualization</td>
<td>207</td>
</tr>
<tr>
<td>T.J. Jankun-Kelly, Tim Dwyer, Danny Holten,</td>
<td></td>
</tr>
<tr>
<td>Christophe Hurter, Martin Nöllenburg, Chris Weaver, Kai Xu</td>
<td></td>
</tr>
<tr>
<td>10.1 Limits of Visualization</td>
<td>208</td>
</tr>
<tr>
<td>10.1.1 Limits of Visual Acuity</td>
<td>208</td>
</tr>
<tr>
<td>10.1.2 Cognitive Limits</td>
<td>210</td>
</tr>
<tr>
<td>10.1.3 Leveraging the Graphics Card (GPU)</td>
<td>211</td>
</tr>
<tr>
<td>10.2 Design Strategies for Scalable Multivariate Graph Visualization</td>
<td>215</td>
</tr>
<tr>
<td>10.2.1 Data Transformation and Reduction</td>
<td>217</td>
</tr>
<tr>
<td>10.2.2 Visual Mapping</td>
<td>222</td>
</tr>
<tr>
<td>10.2.3 View Transformation</td>
<td>223</td>
</tr>
<tr>
<td>10.3 Studies on Scalability in Graph Visualization</td>
<td>224</td>
</tr>
<tr>
<td>10.3.1 Data Transformation and Reduction</td>
<td>224</td>
</tr>
<tr>
<td>10.3.2 Visual Mapping</td>
<td>225</td>
</tr>
<tr>
<td>10.3.3 Navigation and Interaction</td>
<td>227</td>
</tr>
<tr>
<td>10.4 Challenges and Future Directions</td>
<td>228</td>
</tr>
<tr>
<td>References</td>
<td>229</td>
</tr>
<tr>
<td>Author Index</td>
<td>237</td>
</tr>
</tbody>
</table>