
Treecube+3D-ViSOM: Combinational Visualization Tool for Browsing 3D
Multimedia Data

Seiji Okajima and Yoshihiro Okada

Graduate School of Information Science and Electrical Engineering, Kyushu University
744 Motooka, Nishi-ku, Fukuoka, 819-0395, JAPAN

{seiji.okajima, okada}@i.kyushu-u.ac.jp

Abstract

This paper proposes a new visualization tool for
browsing 3D multimedia data. This is realized as a
combinational visualization tool of Treecube and 3D-
ViSOM which are both proposed by the same research
group of the authors. Treecube is a visualization tool for
hierarchical information developed as a 3D extension from
a 2D visualization tool, Treemap proposed by Ben
Shneiderman, et. al. in 1992. Treecube is useful for
browsing 3D multimedia data stored in a file system
because the file system has a hierarchical structure.
However, if many data exist in one directory, it is not easy
for the user to find his/her required data from it. On the
other hand, 3D-ViSOM is a 3D-SOM (Self Organizing
Map) based visualization tool for browsing 3D multimedia
data. Using the 3D-SOM layout, similar feature data are
located in the same area and it is easy for the user to find
his/her required data by the browsing. Since 3D-ViSOM
can solve the problem Treecube has, the authors propose a
combinational visualization tool of Treecube and 3D-
ViSOM in this paper.

Keywords: Visualization, Browser, Multimedia, 3D-
SOM, Treecube, 3D-ViSOM

1. Introduction

In this paper, we propose a new visualization tool for
browsing 3D multimedia data, which is realized as a
combinational visualization tool of Treecube [1,2] and
3D-ViSOM [3]. Recent advances in hardware technologies
have made it possible to create 3D images in real time
even using a standard PC and 3D CG has become very
common in game and movie industries. As a result, many
polygonal models and motion data have been created and
stored. 3D CG creators and designers need any tools that
help them to easily find their required polygonal models
and motion data. This fact motivated us to propose a new
visualization tool called Treecube for browsing 3D
multimedia data originally stored in a file system.

Our Treecube is derived from a 2D visualization tool
called Treemap [4] proposed by Ben Shneiderman, et al in
1992. Treemap visualizes hierarchical information.
Generally, hierarchical information is represented as a tree
structure. Treemap hierarchically lays out each node as a
bounding box, whose size is the same as the specific
weight or attribute value given to the node. Practically, a
lot of tree-structured data exist and the size of such data is
going to be greater and greater. Such a huge size of tree-
structured data needs an efficient visualization tool. As a
result, Treemap has become one of the very useful
visualization tools. However, layout algorithms Treemap
has are all 2D. Therefore, we have developed a 3D
visualization tool, Treecube by extending the 2D layout
algorithms of Treemap. This tool is useful for browsing
3D multimedia data, i.e., 2D images, 3D polygonal
models, motion data etc., originally stored in a file system
because it can automatically lay out them in a specified,
restricted 3D space. However, if there are many 3D
multimedia data in one directory, it is difficult for the user
to find his/her required data efficiently even using
Treecube. So, in this paper, we propose a combinational
visualization tool of Treecube and 3D-ViSOM because
3D-ViSOM can solve the above problem of Treecube.

Our 3D-ViSOM is a 3D-SOM (Self Organizing Map)
based visualization tool for browsing 3D multimedia data.
Using the 3D-SOM layout, similar feature data are located
in the same area and it becomes easy for the user to find
his/her required data by the browsing. Fortunately, both
visualization tools Treecube and 3D-ViSOM are realized
using IntelligentBox [5], which is a component-based 3D
graphics software development system and it is easy to
combine them. Hence we developed a combinational
visualization tool of Treecube and 3D-ViSM. In this paper,
we show its usefulness as a browser for 3D multimedia data.

The remainder of this paper is organized as follows:

Section 2 introduces our Treecube visualization tool.
Especially we explain its layout algorithms and interfaces.
Section 3 introduces our 3D-ViSOM visualization tool.
Especially, we explain feature vectors for each type of 3D
multimedia data input for 3D-SOM. Section 4 shows our

11th International Conference Information Visualization (IV'07)
0-7695-2900-3/07 $20.00 © 2007

Authorized licensed use limited to: VAXJO UNIVERSITY. Downloaded on February 11, 2009 at 11:40 from IEEE Xplore. Restrictions apply.

proposed combinational visualization tool of Treecube
and 3D-ViSOM for browsing 3D multimedia data. Finally
Section 5 concludes the paper.

2. Treecube Visualization Tool

For Treemap, besides the original layout algorithm
called slice-and-dice, there are several extentions, i.e.,
squarified Treemap [6], ordered Treemap [7] and strip
Treemap [8]. Moreover, quantum Treemap [8] is a
quantization version of these extensions. We have
extended 2D versions of layout algorithms of slice-and-
dice, ordered, strip and quantum Treemap to their 3D
counterparts. In this section, we explain the outline of
those Treecube layout algorithms. For the details of
Treecube layout algorithms, see the paper [1].

2.1 Slice-and-dice Treecube

The slice-and-dice Treecube algorithm creates a layout
where the bounding box of each item (node/leaf) is
located in the simple linear order. The algorithm divides a
rectangular solid along x, y and z direction and
recursively. Figure 1 (left) shows a layout example
generated by the slice-and-dice Treecube algorithm. The
system visualizes the file and subdirectory structure of a
certain directory of a file system. Most bounding boxes
shown in the figure are so thin that it is difficult to put 3D
multimedia objects in them. This is the same negative
feature as that of the slice-and-dice Treemap algorithm.
The aspect ratio of each bounding box should be close to
one for the visual efficiency.

2.2 Ordered Treecube

The ordered Treecube algorithm divides a rectangular
solid based on a concept of “pivot”. The pivot node is
selected from a node list by a certain criteria. And the
remaining nodes are laid out in order to make the pivot
into a cubic shape. Figure 1 (center) shows another
screen shot of the layout generated using the ordered
Treecube algorithm. Although there are still some thin

bounding boxes but most bounding boxes have a near
cubic shape in comparison with those of Figure 1 (left).
The ordered Treecube algorithm is apt to generate lower
aspect ratio-bounding boxes rather than the slice-and-dice
Treecube algorithm. This means that the ordered
Treecube algorithm is suitable for the visualization of 3D
multimedia data rather than the slice-and-dice Treecube
algorithm.

2.3 Strip Treecube

The strip Treecube algorithm once divides a given
rectangular solid into a set of flat solids called “slice”, and
moreover divides each slice into a set of slender solids
called “strip”. Each node of a node list is put in the
corresponding of strips and its shape is varied into a cubic
shape with keeping the order of a hierarchical structure.
In Figure 1 (right), the strip Treecube algorithm generates
the almost same number of lower aspect ratio-bounding
boxes as that of the ordered Treecube algorithm. The
strip Treecube algorithm arranges given data simply in a
certain direction, so the order of data is almost preserved
in comparison with ordered Treecube layout.

2.4 Quantum Treecube algorithms

As mentioned above, bounding boxes generated by the
Treecube layout algorithms have arbitrary aspect ratios.
As extensions of Treemaps, quantum Treemaps [8] were
proposed to visualize fixed size objects such as 2D images
grouped together into semantic categories. Similarly, we
extended our Treecubes to lay out categorized 3D objects,
i.e., polygonal models, motion data and 2D images. Our
quantum Treecube algorithm generates the layout of
multiple fixed size 3D objects. For this, it is necessary to
change the size of a rectangular solid in order to make its
width, height and depth be integer multiples of the given
3D object size. In other words, a bounding box has a grid
of cells in the inside of itself, in each of which each fixed
size 3D object is located. Even if there are empty cells in
a box, all objects can be laid out sufficiently in the box.
However, it may occur undesirably that the volume of a

Fig. 1: Treecube layout algorithms: slice-and-dice (left), ordered (center) and strip Treecube (right).

11th International Conference Information Visualization (IV'07)
0-7695-2900-3/07 $20.00 © 2007

Authorized licensed use limited to: VAXJO UNIVERSITY. Downloaded on February 11, 2009 at 11:40 from IEEE Xplore. Restrictions apply.

box quite differs from the total amount of the volumes of
objects laid out in the box. For instance, when you want
to lay out 50 objects that have)111(×× size into a
bounding box whose size is)100100100(×× , the box
resized becomes completely different from the original
shape. For avoiding this problem, we use a relative ratio
of the width, height and depth of a given rectangular solid
instead of their absolute values. Then it is possible to
keep out from the drastic deformation of a bounding box
by making the number of objects laid out along each x-, y-
and z-direction match to the size specified by the user.

2.5 Browsing 3D multimedia data by Treecube

We developed an actual visualization tool for browsing
3D multimedia data, e.g., 2D images, 3D polygonal
models, motion data and so on. The Treecube algorithms
demonstrated in Figure 1 automatically lay out 3D objects
into a specific, restricted 3D area. Figure 2 shows the
screen shot of an actual visualization tool that displays 3D
multimedia data laid out by the quantum strip Treecube
algorithm. Actually this visualization tool is developed
using IntelligentBox [5]. As IntelligentBox is a
component ware and provides various functionalities as
software components called boxes, a file selection
functionality for choosing a directory of a file system and
an input functionality for entering several parameters
necessary for Treecube layout algorithms are implemented
as composite boxes. We implemented interactive
interfaces and introduced them into the visualization tool
for browsing 3D multimedia objects and finding required
objects efficiently. Next sub-section introduces such
interfaces and explains their functionalities.

2.6 Interactive Interfaces of Treecube

This sub-section treats interfaces implemented to
enhance the ability of Treecube as an interactive
visualization tool for 3D multimedia data.

2.6.1 Interactive manipulations
There are standard operations for the translation and

rotation of an eye position and for the zoom in/out. Using
these operations, it is possible to rotate an entire Treecube
and to make it larger/smaller interactively.

There are some particular operations as follows. Figure
3 (a) and (b) show hierarchical information example and
its Treecube layout respectively. When the user wants to
rotate a leaf node object in the hierarchical information,
e.g., one car model, the mouse click and drag operation on
that object enables it. When the user wants to extract an
intermediate node in the hierarchical information, e.g.,
“Car” group, the mouse click operation on that box
enables it as shown in Figure 3 (C). It will become easier
to see objects inside of that box. Moreover, if the user
selects and clicks on a bounding box with pushing a
certain key, the system will regenerate a Treecube layout
whose root is the selected bounding box. Reversely, if the
user clicks on the same bounding box again with pushing
the same key, the system will display the previous layout.
As shown in Figure 4, we can browse objects in a

Fig. 3: Example of extraction operation.

Helico

Airplanes

Bike

Car

Vehicles

(a) Hierarchical information example

pick out

(b) Layout of “Vehicles” (c) Extraction of “Car” group

Fig. 2: Quantum strip Treecube algorithm.

11th International Conference Information Visualization (IV'07)
0-7695-2900-3/07 $20.00 © 2007

Authorized licensed use limited to: VAXJO UNIVERSITY. Downloaded on February 11, 2009 at 11:40 from IEEE Xplore. Restrictions apply.

hierarchical structure of 3D multimedia data by the
operations like the backward/forward of Internet browser.

2.6.2 Cutting plane interface
Treecube is a 3D visualization tool and it has the

occlusion problem. In our Treecube, many leaf node
objects are put inside of a restricted 3D rectangular solid
space and it is hard to see the objects behind other objects.
To solve this problem, we introduced a particular interface
called “cutting plane”. As shown in Figure 5, the objects
before a cutting plane are automatically hidden by the
system, and then the objects behind the plane can be seen
easily. Its manipulation is very simple. The user only
changes the distance of a cutting plane from the eye
position because the plane is automatically directed
towards the eye point. The user can also change the
visibility of a cutting plane by a mouse-click operation on
the plane.

As explained in this section, our Treecube visualization
tool is useful for browsing 3D multimedia data. However,
as previously explained, if there are too many data in one
directory of a file system, it is hard for the user to find
his/her required data even using Treecube. To solve this
problem, another visualization tool called 3D-ViSOM is

available and them we combined its functionality into
Treecube visualization tool. In the next section, we
introduce our 3D-ViSOM visualization tool.

3. 3D-ViSOM Visualization Tool

SOM proposed by T. Kohonen [9] is one of the neural
network algorithms. Usually SOM maps high
dimensional data records that have more than two
attributes onto a 2-dimensional space by analyzing them
using their feature vectors. This is called 2D-SOM. In
addition to 2D-SOM, there are 1D-SOM and 3D-SOM
can perform 1D and 3D mapping respectively. We
consider that it is natural to use 3D-SOM for the
visualization of 3D multimedia data and we developed
3D-SOM based visualization tool using IntelligentBox. In
the following sub-sections, we explain which features of
3D multimedia data, i.e., polygonal models, motions and
2D images, are used for the 3D-SOM layout.

3.1 Feature vector for polygonal model data

We chose shape distribution [10] as the feature vector
of polygonal models for the 3D-SOM layout. This
information is originally proposed to be used as similarity

Fig. 4: Backward/forward operations for browsing hierarchical information.

Move the focus to selected node Move the focus to previous

Fig. 5: Control the visibility of 3D objects using a cutting plane.

(a) Without a cutting plane (b) With a cutting plane

Cutting plane: Cutting region

11th International Conference Information Visualization (IV'07)
0-7695-2900-3/07 $20.00 © 2007

Authorized licensed use limited to: VAXJO UNIVERSITY. Downloaded on February 11, 2009 at 11:40 from IEEE Xplore. Restrictions apply.

measure for the polygonal model search. Shape
distribution data is obtained by the sampling of distances
between two random points on the surface of a polygonal
model. This data is represented as one histogram and we
use this histogram as the feature vector of the polygonal
model. Figure 6 (a) shows a 3D visualization example of
our polygonal model database including 280 models
categorized into 14 classes, i.e., Robot, Human, Chair,
Sofa, Table, Plant, Door, Car, Glass, Fruit, Pot, Tire, Fish
and Head. Similar shaped models are located closely to
each other so it is easy to find required polygonal models
associatively.

3.2 Feature vector for motion data

We chose feature information obtained by the space
division quantization method [11] used as similarity
measure for the motion data search. This information
means how long each joint exists in each divided region
of a 3D space in a complete motion. See the paper [11]
for its detail. This information is represented as one set of
histograms and we use this set as the feature vector of the
motion. Figure 6 (b) shows a 3D visualization example of
our motion database including 61 motions categorized

into 7 classes, i.e., Kick, Sit, Walk, Throw, Jump, Tumble
and Arise. In this case, there is another particular
component of IntelligentBox called MotionBox that has
functionalities to read a motion file and to display it as its
skeleton animation. In the same way as the case of
polygonal model data visualization, similar motions are
located closely to each other so it is possible to find
required motions visually and interactively.

3.3 Feature vector for 2D image data

As for 2D images, we use Hue component of HSV
color as the feature information. The feature vector can
be obtained as the probability distribution of Hue
intensities over a whole image. Figure 6 (c) shows a 3D
layout example of our 2D image database including 164
images categorized into 10 classes, i.e., Cat, Dog, Flower,
Airplane, Mountain, Sky, Water, Space, Squirrel and
Animal.

3.4 Hierarchical browsing of 3D multimedia data

If there are a huge number of data, it is impossible to
display and browse them. To deal with this problem, 3D-
ViSOM system employs a hierarchical display mechanism.

Fig. 6: 3D-SOM layouts of polygonal models (a), motion data (b) and 2D image data (c) respectively.

Fig. 7: (a) Treecube visualization of many 3D multimedia data, and (b) 3D-ViSOM layout of motion data.

11th International Conference Information Visualization (IV'07)
0-7695-2900-3/07 $20.00 © 2007

Authorized licensed use limited to: VAXJO UNIVERSITY. Downloaded on February 11, 2009 at 11:40 from IEEE Xplore. Restrictions apply.

If there are too many data in a small region to see and to
access a target object, the system displays only one
average, center position data as the representative of those
data. When the user selects the average data, the system
displays all of the data included in that region by the 3D-
SOM layout.

4. Treecube+3D-ViSOM Visualization Tool

Finally, this section shows Treecube+3D-ViSOM
visualization tool. Figure 7 (a) show an actual Treecube
visualization tool for displaying many 3D multimedia data
stored in a file system. If there are too many data in one
directory, the user can not find his/her required data. For
example, the left lower part of Treecube in Figure 7 (a)
includes many motion data existing in one directory. In
the case like this, using 3D-ViSOM, the user can obtain
3D-SOM layout of those motion data as shown in Figure
7 (b). Similar motion data come to be located in the same
area so that the user can find his/her required motion data
more easily. As explained in previous sections, Treecube
and 3D-ViSOM are both one particular component of
IntelligentBox and it is possible to combine them together
easily. By combining them, our Treecube comes to have
another advantage of 3D-SOM based visualization tool
and it became more and more useful for browsing 3D
multimedia data.

5. Concluding Remarks

In this paper, we proposed a new visualization tool for

browsing 3D multimedia data. This tool is realized by
combining our already proposed two visualization tools,
Treecube and 3D-ViSOM. Originally these visualization
tools are developed as individual components of
IntelligentBox and it is possible to combine them easily so
we developed a combined tool of them. The Treecube
algorithms automatically lay out 3D objects, which are
originally stored in a file system, in a specified, restricted
3D space. This paper explained these layout algorithms of
Treecube and showed that this tool is useful for browsing
3D multimedia data. However, if there are too many data in
one directory, even using Treecube, it is difficult for the
user to find his/her required data rapidly. This problem of
Treecube was possible to be compensated by using 3D-
SOM layout mechanism of 3D-ViSOM. So, we introduced
3D-ViSOM visualization mechanism into Treecube
visualization tool. As a result, our Treecube combined with
3D-ViSOM became more powerful visualization tool for
browsing 3D multimedia data.

As future works, we have to introduce more practical
interfaces into Treecub+3D-ViSOM visualization tool for
more efficient browsing of 3D multimedia data. We also

have to check the usefulness of our visualization tool by
consulting actual users who use it.

References

[1] Tanaka, Y., Okada, Y. and Niijima, K. : Treecube:

Visualization Tool for Browsing 3D Multimedia data,
Proc. of 7th International Conference on Information
Visualization (IV03), IEEE CS Press, pp. 427-432,
London UK, July 2003.

[2] Tanaka, Y., Okada, Y. and Niijima, K. : Interactive
Interfaces of Treecube for Browsing 3D Multimedia
Data, Proc. of ACM The 7th International Working
Conference on Advanced Visual Interfaces (AVI 2004),
pp. , 298-302, Gallipoli, Italy, May 2004.

[3] Notsu, H., Fukutake, H., Okada, Y., Niijima, K. : 3D-
ViSOM: 3D Visualization Tool Based on SOM Using
IntelligentBox, Proceedings Compendium of IEEE
Visualization 2005 and Information Visualization 2005,
pp. 37-38, Minneapolis, MN USA, October, 2005.

[4] Shneiderman, B., Tree Visualization With Treemaps: A
2-D Space-Filling Approach. ACM Transactions on
Graphics, 11(1), pp.92-99, 1992.

[5] Okada, Y. and Tanaka, Y., “IntelligentBox: A
Constructive Visual Software Development System for
Interactive 3D Graphic Applications,” Proc. of Computer
Animation '95, IEEE CS Press, pp.114-125, 1995.

[6] Buls, M., Huizing, K., & van Wijk, J.J., Squarified
Treemaps. Proc. of Joint Eurographics and IEEE TCVG
Symposium on Visualization (TCVG 2000) IEEE Press,
pp. 33-42, 2000.

[7] Shneiderman, B., & Wattenberg, M., Ordered Treemap
Layouts. Proc. of IEEE Information Visualization
(InfoVis 2001) IEEE Press, pp. 73-78, 2001.

[8] Bederson, B.B, Shneiderman, B. & Wattenberg, M.,
Ordered and Quantum Treemaps: Making Effective Use
of 2D Space to Display Hierarchies. ACM Transactions
on Graphics, 21(4), pp. 833-854, 2002.

[9] Kohonen, T. : “SELF-ORGANIZING MAPS”, Springer-
Verlag Japan, 1996.

[10] Osada, R, et. al.: Matching 3D Models with Shape
Distributions, Shape Modeling International, May 2001.

[11] Etou, H., Okada, Y. and Niijima, K. : Feature Preserving
Motion Compression Based on Hierarchical Curve
Simplification, CD-ROM Proc. of The 2004 IEEE
International Conference on Multimedia and Expo
(ICME2004), Taipei, Taiwan, June 2004.

11th International Conference Information Visualization (IV'07)
0-7695-2900-3/07 $20.00 © 2007

Authorized licensed use limited to: VAXJO UNIVERSITY. Downloaded on February 11, 2009 at 11:40 from IEEE Xplore. Restrictions apply.

