SAMBA Animation Designer’s Package
John T. Stasko

Georgia Institute of Technology
stasko@cc.gatech.edu

This document describes the Samba program which provides an interpreted, interactive ani-
mation front-end to POLKA. Samba simply reads an ascii file, one command per line, in order to
acquire its directions for creating an animation. This is beneficial because you can have the output
of any program, be it Pascal, C, Modula-2, etc., drive an animation. I have used this tool in an
undergraduate algorithms class. In addition to implementing an algorithm, students can develop
an animation of it just by judiciously placing print statements into their program.

Animations developed with this system will be carried out in windows with a real-valued co-
ordinate system that originally runs from 0.0 to 1.0 from left-to-right and from 0.0 to 1.0 from
bottom-to-top. Note, however, that the coordinate system is infinite in all directions. You will
create and place graphical objects within the coordinate system, and then move them, change their
color, visibility, fill, etc., in order to depict the operations and actions of a computer algorithm.

The format for the individual commands is described later. You can run this program interac-
tively by piping the output of your program to it, e.g.,

% yourprog | samba

If the textual output of your program was saved to a file (perhaps even on another computer
system), you can simply have Samba read that file as input via a command line argument, e.g.,

% samba outfile

By using this method, you will be able to run your animation repeatedly without exiting Samba.

In order to build an algorithm animation, you need to augment your implementation of the
algorithm under study by a set of output (e.g., printf, writeln, cout) statements. The statements
should be placed in the program at the appropriate positions to provide a trace or depiction of
what your program is doing.

Below we summarize the different commands that exist within the system. If there’s a command
you would like added, just ask. We are always looking to improve the system. To begin this section,
we describe the commands in general.

Each command begins with a unique one word string. Make sure that you spell the strings
correctly. Each graphical object that you create should be designated by a unique string id. You
will need to use that id in subsequent commands that move, color, alter, etc., the object. In
essence, the id is a handle onto the object. Most of the commands and their parameters should be
self-explanatory. Arguments named steps and centered are of integer type. Arguments named
xpos, ypos, xsize, ysize, radius, lx, by, rx, ty arereal or floating point numbers. Make
sure that they include a decimal point (typing 0 instead of 0.0 will cause an error). The argument
fillval should be one of the following strings: outline, half or solid. The argument widthval
should be one of the following strings: thin, medthick, or thick. The parameter colorval can
be any color string name from the file /usr/1ib/X11/rgb.txt (one word, no blanks allowed).

Note that any line with a per cent character (%) in column 1 is interpreted as an instructional
comment—no command is carried out.

If you have used the Animator for the XTango system, you will find that the Samba system is
very similar. In fact, Samba has been designed to be backward compatible with XTango Animator



Samba doc 2

trace files. Samba simply adds new features to the base XTango Animator. What are these
features? For one, all objects can be referred to by arbitrary string identifiers, instead of only
integers. Samba also provides the option of multiple Views. In other words, users may have several
animation windows open and running at one time, all with their own graphical objects and events.
Samba also provides for explicit concurrency of animation events. Blocks of commands can be
defined so that they all begin at the same point in time. The events need not end at the same time.
Also, some additional objects have been added, which are detailed below.

Samba will print warning messages if you try to do erroneous actions like reuse an 1D, try to
delete or move an invalid 1D, and so on. You can turn these warnings off by using the -O command
line flag.

comment A trailing string
This command simply prints out any text following the “comment” identifier to the shell in
which the animator was invoked.

viewdef id <xsize> <ysize>

This command defines a single view. It must be used to create multiple new views in an
animation. The xsize and ysize parameters are optional specifications for the size of the window
in pixels. View definitions must precede all other commands in a trace file (except for %). If no
view definitions are found, then Samba will create default Samba view and perform all subsequent
animation actions in it.

view id

This command sets the current view in which objects will be created or manipulated. That
is, all trailing animation actions occur in this view until another view command is found. Note
that objects are bound to the the view that was active at the time of their creation. Trying to
manipulate objects from a particular view while another view is active will result in an error. The
bottom line is: Change the view with this command before creating an object to put in that view,
and change to that view to manipulate the object.

{

Begin a block of concurrent commands. All commands in the block will start at the same time
index. Nesting of blocks are not allowed, but referencing different views within one block is allowed.

}

End a block of concurrent commands. Every { must have a matching }, and nesting is not
allowed.

bg colorval
Change the background to the given color. The default starter is white.

coords 1x by rx ty

Change the displayed coordinates (real valued) to the given values. You can use repeated
applications of this command to achieve interesting panning or zooming effects in an animation
view.

delay steps



Samba doc 3

Generate the given number of animation frames with no changes in them.

line id xpos ypos xsize ysize colorval widthval
Create a line with one endpoint at the given position and of the given size.

pointline id xposl yposl xpos2 ypos2 colorval widthval
This creates a line like the 1ine command except that you provide the two endpoints of the
line here rather than the line’s size.

rectangle id xpos ypos xsize ysize colorval fillval
Create a rectangle with lower left corner at the given position and of the given size (size must
be positive).

circle id xpos ypos radius colorval fillval
Create a circle centered at the given position.

triangle id vix vly v2x v2y v3x v3y colorval fillval

Create a triangle whose three vertices are located at the given three coordinates. Note that
triangles are moved (for move, jump, and exchange commands) relative to the center of their
bounding box.

polygon id numsides colorval fillval xpos ypos vxl vyl ... vx7 vy7
Create a polygon starting at (xpos, ypos) with up to seven other vertices specified by (vxl,
vyl) ... (vX7, vy7). Specify any number of sides between three and eight with numsides.

text i1d xpos ypos centered colorval string

Create text with lower left corner at the given position if centered is 0. If centered is 1, the
position arguments denote the place where the center of the text is put. The text string is allowed
to have blank spaces included in it but you should make sure it includes at least one non-blank
character.

bigtext id xpos ypos centered colorval string
This works just like the text command except that this text is in a much larger font.

flextext id xpos ypos centered colorval fontname string
This is the flexible text command, and it works just like the text command except that you
can explicitly specify the font (string name) that you want to use. Any valid X11 font is allowable.

set id num idl id2 ...

Create a set of already existing objects that can be manipulated as a group through a new
ID. Specify the number of items in the set with the num parameter, and list the identifiers of the
member objects in a space-delimited list. All manipulations of the set object affect the members of
the set as well. All objects in the set must be in the same view. The set acts like a mathematical
set, so duplicate identifiers in id1 on will be ignored.

move 1d xpos ypos
Smoothly move, via a sequence of intermediate steps, the object with the given id to the



Samba doc 4

specified position.

moverelative id xdelta ydelta
Smoothly move, via a sequence of intermediate steps, the object with the given id by the given
relative distance.

moveto id id
Smoothly move, via a sequence of intermediate steps, the object with the first id to the current
position of the object with the second id.

jump id xpos ypos
Move the object with the given id to the designated position in a one frame jump.

jumprelative id xdelta ydelta
Move the object with the given id by the provided relative distance in one jump.

jumpto id id
Move the object with the given id to the current position of the object with the second id in a
one frame jump.

color id colorval
Change the color of the object with the given id to the specified color value.

alter id newstring
Change the string presented for the given text object to newstring.

delete id
Permanently remove the object with the given id from the display, and remove any association
of this id number with the object.

fill id fillval
Change the object with the given id to the designated fill value. This has no effect on lines
and text.

width id widthval
Change the width value of the line with the given id to the designated fill value. This will not
work with any other graphic object.

vis id
Toggle the visibility of the object with the given id.

lower id
Push the object with the given id backward to the viewing plane farthest from the viewer.

raise id
Pop the object with the given id forward to the viewing plane closest to the viewer.



Samba doc 5

exchangepos id id
Make the two objects specified by the given ids smoothly exchange positions.

switchpos id id
Make the two objects specified by the given ids exchange positions in one instantaneous jump.

swapid id id
Exchange the ids used to designate the two given objects.

The next three pages illustrate three sample input files to Samba. The first shows basic features
(from the old xtango animator), the second illustrates some new Samba commands (basic ones)
and the third illustrates multiple views and explicit concurrency.

Acknowledgments

Irwin Coleman did a great job in helping to implement Samba. Without his assistance, the package
would not be available.



Samba doc

% This example illustrates the more basic commands

% Note that it uses only integers as IDs, but in general,

% arbitrary character strings can be used

comment This i1s a sample animation script

circle 1 0.8 0.8 0.1 red half

line 2 0.1 0.1 0.2 0.2 green thin

rectangle 3 0.1 0.9 0.1 0.1 blue solid

text 4 0.0 0.0 0 black Hello

text 5 0.5 0.5 1 black ReallongStringandThenSomeAndEvenMore
circle 6 0.3 0.3 0.2 wheat solid

triangle 7 0.5 1.0 0.6 0.8 0.4 0.9 cyan solid

bigtext 8 0.2 0.2 0 black Some Big Text

moveto 1 6

moverelative 3 0.05 -0.4

jumprelative 4 0.4 0.4

raise 1

lower 1

color 6 blue
move 3 0.5 0.5
jump 3 0.9 0.9
jumpto 3 6
raise 3

£fill 3 half
£fill 3 outline
£fill 3 half
vis 3

vis 3

vis 6

delete 8

line 200 0.9 O
bigtext 8 0.6
flextext 88 O

.2 0.0 0.6 black thick
0.
4
rectangle 12 0.7
3
3
3
3

2 0 DeepPink More Big Text
0.3 0 magenta 8x13bold Flex Text 8x13bold
0.7 0.1 0.1 green solid
exchangepos 12

exchangepos 12

exchangepos 12

exchangepos 12

switchpos 12 3

circle 99 0.8 0.8 0.15 black outline

exchangepos 1 99

bg pink

bg LemonChiffon2

coords -0.5 -0.5 1.5 1.5



Samba doc

% This example illustrates features not in xtango’s animator

% Add a polygon
polygon polyl 4 purple solid 0.1 0.0 0.5 0.5 0.7 0.5 0.5 0.1 0.0 0.0

% Add a pointline
pointline liner 0.2 0.8 0.7 0.8 blue thin

% Add some text
text 12 0.6 0.6 1 black A text string

% Move the line down
move liner 0.08 0.3

% Change the polygon’s color to cyan
color polyl cyan

% Make the line thicker
width liner thick

% Change the text string
alter 12 Has just changed

% Make a set out of the polygon and line
set newset 2 polyl liner

% Move them together
moverelative newset 0.3 0.3



Samba doc

% A simple animation for advanced feature demonstration.
% Initialize the views

viewdef MainView 600 600

viewdef SecondView 400 400

% Start animation

comment Switch to MainView.

view MainView

comment Draw a line there.

line thinblackline 0.2 0.2 0.5 0.0 black thin
comment Switch to the SecondView.

view SecondView

comment Draw a rectangle here.

rectangle redrectangle 0.5 0.5 0.3 0.2 red half

view MainView

comment Let’s move the rectangle and the line at the same time.
{

view SecondView

move redrectangle 0.3 0.3

view MainView

move thinblackline 0.5 0.5

b

delay 15

comment Now, let’s move them separately.
moverelative thinblackline -0.2 -0.2

view SecondView

moverelative redrectangle 0.2 0.2

comment Let’s put in a polygon in SecondView.
polygon greenpoly 4 green solid 0.0 0.0 0.5 0.5 0.7 0.5 0.5 0.1 0.0 0.0
comment Let’s alter the fill for the rectangle.

fill redrectangle solid

comment Let’s get rid of that polygon.

delete greenpoly

view MainView

comment Let’s make that thin line thick.

width thinblackline thick

view SecondView

text boxlabel 0.6 0.6 1 black Rectangle

comment Let’s make the rectangle and its label a set.
set boxset 2 redrectangle boxlabel

comment Now we can move the set around like a single object.
moverelative boxset 0.5 0.5



