

Ordered Treemap Layouts

Ben Shneiderman
Department of Computer Science,

Human-Computer Interaction Lab,

Insitute for Advanced Computer Studies &

Institute for Systems Research

University of Maryland

ben@cs.umd.edu

Martin Wattenberg
Dow Jones / SmartMoney.com

and
Digital Media Center,
Columbia University

mmw111@columbia.edu

Abstract

Treemaps, a space-filling method of visualizing large
hierarchical data sets, are receiving increasing attention.
Several algorithms have been proposed to create more
useful displays by controlling the aspect ratios of the
rectangles that make up a treemap. While these
algorithms do improve visibility of small items in a single
layout, they introduce instability over time in the display
of dynamically changing data, and fail to preserve an
ordering of the underlying data. This paper introduces the
ordered treemap, which addresses these two
shortcomings. The ordered treemap algorithm ensures
that items near each other in the given order will be near
each other in the treemap layout. Using experimental
evidence from Monte Carlo trials, we show that compared
to other layout algorithms ordered treemaps are more
stable while maintaining relatively low aspect ratios of
the constituent rectangles. A second test set uses stock
market data.

Keywords: treemaps, ordered treemaps, trees,
hierarchies, information visualization

1. Introduction

Treemaps are a space-filling visualization method
capable of representing large hierarchical collections of
quantitative data [S92]. A treemap (Figure 1) works by
dividing the display area into a nested sequence of
rectangles whose areas correspond to an attribute of the
data set, effectively combining aspects of a Venn diagram
and a pie chart. Originally designed to visualize files on a
hard drive, treemaps have been applied to a wide variety
of domains ranging from financial analysis [JT92, W98]
to sports reporting [JB97].

A key ingredient of a treemap is the algorithm used to
create the nested rectangles that make up the map. (We
refer to this set of rectangles as the layout of the treemap.)
The slice and dice algorithm of the original treemap paper

[S92] uses parallel lines to divide a rectangle representing
an item into smaller rectangles representing its children.
At each level of hierarchy the orientation of the lines -
vertical or horizontal - is switched. Though simple to
implement, the slice-and-dice layout often creates layouts
that contain many rectangles with a high aspect ratio.
Such long skinny rectangles can be hard to see, select,
compare in size, and label. [TJ92, BHW00]

Figure 1. A slice-and-dice layout. Shading indicates order,

which is preserved.

Several alternative layout algorithms have recently
been proposed to address these concerns. The
SmartMoney Map of the Market [W98] is an example of
the cluster treemap method described in [W99] which
uses a simple recursive algorithm that reduces overall
aspect ratios. Bruls, Huizing, and van Wijk [BHW00]
introduced the squarified treemap, which uses a different
algorithm to achieve the same goal. Figure 2 shows
examples of these two layouts.

Figure 2. Low aspect ratio layouts. Shading indicates order,

which is not preserved.

The new methods suffer from two drawbacks. First,
changes in the data set can cause dramatic discontinuous
changes in the layouts produced by both cluster treemaps
and squarified treemaps. (By contrast, the output of the
slice and dice algorithm varies continuously with the
input data.) These abrupt layout changes are readily
apparent to the eye; below we also describe quantitative
measurements of the phenomenon. Large layout changes
are undesirable for several reasons. If the treemap data is
updated on a second-by-second basis-e.g., in a stock
portfolio monitor-then frequent layout changes make it
hard to track or select an individual item. Rapid layout
changes also cause an unattractive flickering that draws
attention away from other aspects of the visualization.
Moreover, even occasional abrupt changes mean that it is
hard to find items on the treemap by memory, decreasing
efficacy for long-term users.

The second shortcoming of cluster and squarified
treemap layouts is that many data sets contain ordering
information that is helpful for seeing patterns or for
locating particular objects in the map. For instance, the
bond data described in [J94] is naturally ordered by date
of maturity and interest rate. In many other cases the
given order is alphabetical. The original slice-and-dice
layout preserves the given ordering of the data, but cluster
treemaps and squarified treemaps do not. Another recent
algorithm [VN00] enables control over the aspect ratios
but does not guarantee order.

This paper introduces ordered treemaps, which use
layout algorithms that change relatively smoothly under
dynamic updates and roughly preserve order, but also
produce rectangles with low aspect ratios. We discuss two
different algorithms to create ordered treemaps, each with
slightly different properties. (Dynamic demonstrations of
these algorithms have been posted on the Web, at
http://www.columbia.edu/~mmw111/treemap.)

We then report the results of Monte Carlo experiments
comparing the two ordered treemap algorithms to
squarified treemaps, cluster treemaps, and the slice-and-
dice algorithm, using natural metrics for smoothness of
updates and overall aspect ratio. The results suggest that
ordered treemaps steer a middle ground, producing
layouts with aspect ratios that are far lower than slice-
and-dice layouts, though not as quite as low as cluster or
squarified treemaps; they update significantly more
smoothly than clustered or squarified treemaps, though
not as smoothly as slice-and-dice layouts. Thus ordered
treemaps may be a good choice in situations where
legibility, usability and smooth updating all are important
concerns.

2. Algorithms for ordered treemaps

The key insight that leads to algorithms for ordered
treemaps is that it is possible to create a layout in which
items that are next to each other in the given order are

adjacent in the treemap. Although such a layout does not
follow the simple linear order of the slice-and-dice layout,
it provides useful cues for locating objects and turns out
to provide constraints on the layout that discourage large
discontinuous changes with dynamic data.

We discuss two closely related algorithms for creating
layouts that approximately preserve order. Both follow a
similar recursive process, starting with a rectangle R to be
subdivided. The input is a list of items that are ordered by
an index and have varied areas. A particular item (the
pivot) is chosen and placed at the side R as a square
(aspect ratio = 1). The remaining items in the list are
placed in three large rectangles that make up the rest of
the display area. The algorithm is then applied recursively
to each of these rectangles.

In the first algorithm, pivot-by-size, the pivot is taken to
be the item with the largest area. The motivation for this
choice is that the largest item will be the most difficult to
place, so it should be done first. The algorithm, as
illustrated in Fig. 3, can be described as follows:

Figure 3. The pivot configuration.

1. Let P, the pivot, be the item with the largest area in

the list of items.
2. If the width of R is greater than or equal to the height,

divide R into four rectangles, R1, RP, R2, and R3 as
shown in Fig. 2. (If the height is greater than the
width, use the same basic arrangement but flipped
along the line y=x.)

3. Place P in the rectangle RP, whose exact dimensions
will be determined in Step 4.

4. Divide the items in the list, other than P, into three
lists, L1, L2, and L3, to be laid out in R1, R2, and R3. L1
and L3 all may be empty lists. (Note that the contents
of these three lists completely determine the
placement of the rectangles in Figure 3.) Let L1
consist of all items whose index is less than P in the
ordering. Let L2 and L3 be such that all items in L2
have an index less than those in L3, and the aspect
ratio of P is as close to 1 as possible. We add the
proviso, to avoid degenerate layouts, that L3 cannot
contain exactly one item.

5. Recursively lay out L1, L2, and L3 (if any are non-
empty) in R1, R2, and R3 according to this algorithm.

The second ordered treemap algorithm, pivot-by-middle,
is almost identical except that the pivot is taken to be the
middle item of the list - that is, if the list has n items, the
pivot is item number n/2, rounded down. The motivation
behind this choice is that it is likely to create a balanced
layout. In addition, because the choice of pivot does not
depend on the size of the items, the layouts created by this
algorithm may not be as sensitive to changes in the data
as pivot by size. Figure 4 shows examples of the layouts
created by the two algorithms.

Figure 4. Pivot layouts. Shading indicates order, which is

roughly preserved.

Both algorithms have the property that they create layouts
that roughly preserve the ordering of the index of the
items, which will fall in a left-to-right and top-to-bottom
direction in the layout. The two algorithms are also
reasonably efficient: pivot-by-size has performance
characteristics similar to QuickSort (order n log n average
case and n2 worst case) while pivot-by-middle has order
nlog n performance in the worst case.

Although the two algorithms produce layouts with
relatively low aspect ratios (as described in the following
sections) they are not optimal in this regard. The
stipulations in step 4 of the algorithm avoid some but not
all degenerate layouts with high aspect ratios, so we
experimented with post-processing strategies designed to
improve the layout aspect ratio. For example we tried
adding a last step to the algorithm in which any rectangle
that is divided by a segment parallel to its longest side is
changed so that it is divided by a segment parallel to its
shortest side. Because this step gave only a small
improvement in layout aspect ratio while dramatically
decreasing layout stability, we did not include it in the
final algorithm.

3. Metrics for treemap layouts: aspect ratio & change

In order to compare treemap algorithms we define two
measures: the average aspect ratio of a treemap layout,
and the layout distance change function, which quantify
the visual problems created by poor layouts. The goal is
to have a low average aspect ratio and a low distance
change as data is updated.

We define the average aspect ratio of a treemap layout
as the unweighted arithmetic average of the aspect ratios
of all leaf-node rectangles. This is a natural measure,
although certainly not the only possibility. One alternative
would be a weighted average that places greater emphasis
on larger items, since they contribute more to the overall
visual impression. We choose an unweighted average
since the chief problems with high aspect ratio
rectangles—poor visibility and awkward labeling—are at
least as acute for small rectangles as large ones.

The layout distance change function is a metric on the
space of treemap layouts that allows us to measure how
much two layouts differ, and thus how quickly or slowly
the layout produced by a given algorithm changes in
response to changes in the data. To define the distance
change function, we begin by defining a simple metric on
the space of rectangles. Let a rectangle R be defined by a
4-tuple (x,y,w,h) where x and y are the coordinates of the
upper left corner and w and h are its width and height. We
use the Euclidean metric on this space, i.e. if rectangles R1
and R2 are given by (x1, y1, w1, h1) and (x2, y2, w2, h2)
respectively, then the distance between R1 and R2 is given
by

d(R1, R2)=((x1-x2)
2+(y1-y2)

2+(w1-w2)
2+(h1-h2)

2)1/2.

There are several plausible alternatives to this

definition, such as the Hausdorff metric for compact sets
in the plane or a Euclidean metric based on the
coordinates of the lower right corner instead of height and
width. These metrics differ from the one we chose by a
small bounded factor, and hence would not lead to
significantly different results.

We then define the layout distance change function as
the average distance between each pair of corresponding
rectangles in the layouts. We use an unweighted average
for the same reasons as we use an unweighted average for
aspect ratios.

4. Experimental design and results

To compare the performance of ordered treemap
layout algorithms to squarified, cluster and slice-and-dice
layouts, we ran two sets of experiments. The first
consisted of a sequence of Monte Carlo trials to simulate
continuously updating data. Our goal was to measure the
average aspect ratio and average layout distance change
produced by each of five algorithms. In the second
experiment we measured the average aspect ratio
produced by each of the algorithms for a static set of
stock market data.

4a. Monte Carlo trials
To simulate the performance of the five layout

algorithms under a variety of conditions, we performed
experiments on two types of hierarchies with two
different statistical distributions of item sizes. The first

hierarchy (“20x1”) was a collection of 20 items with one
level of hierarchy. The second (“8x3”) was a collection
with three levels of hierarchy and eight items at each level
for a total of 512 items.

For each experiment we ran 100 trials of 100 steps
each. In one experiment we began with data drawn from a
log-normal distribution created by exponentiating a
normal distribution with mean 0 and variance 1. In a
second version, we used data drawn from a Zipf
distribution with power parameter equal to 1. Both
distributions are representative of naturally occurring
positive-valued data [R97]. In each step of a trial the data
was modified by multiplying each data item by a random
variable ex, where x was drawn from a normal distribution
with variance 0.05 and mean 0. All layouts were created
for a square with side 100.

The results are shown in tables 1 through 4.

Table 1: 20x1, Log-normal initial distribution.

Algorithm Aspect Ratio Change
Slice-and-dice 56.54 0.52
Pivot-by-middle 3.47 3.06
Pivot-by-size 3.15 7.17
Cluster 1.72 11.00
Squarified 1.75 10.10

Table 2: 8x3, Log-normal initial distribution.

Algorithm Aspect Ratio Change
Slice-and-dice 26.10 0.46
Pivot-by-middle 3.97 1.08
Pivot-by-size 3.14 4.07
Cluster 1.79 7.67
Squarified 1.74 8.27

Table 3: 20x1, Zipf initial distribution.

Algorithm Aspect Ratio Change
Slice-and-dice 36.85 0.51
Pivot-by-middle 2.70 2.91
Pivot-by-size 2.58 6.86
Cluster 1.75 12.57
Squarified 1.38 11.71

Table 4: 8x3, Zipf initial distribution.

Algorithm Aspect Ratio Change
Slice-and-dice 44.58 0.61
Pivot-by-middle 4.54 1.57
Pivot-by-size 3.85 4.10
Cluster 1.78 6.19
Squarified 1.67 7.18

The results strongly suggest a tradeoff between low

aspect ratios and smooth updates. As expected, the slice-

and-dice method produces layouts with high aspect ratios,
but which change very little as the data changes. The
squarified and cluster treemaps are at the opposite end of
the spectrum, with low aspect ratios and large changes in
layouts. The two ordered treemaps fall in the middle of
the spectrum. Neither produces the lowest aspect ratios,
but they are a clear improvement over the slice-and-dice
method, with the pivot-by-largest algorithm producing
slightly better aspect ratios. At the same time, they update
more smoothly than cluster or squarified treemaps, with
the pivot-by-middle algorithm having a slight advantage
over pivot-by-largest.

4b. Static stock market data

Our second set of experiments consisted of applying each
of the five algorithms to a set of 535 publicly traded
companies used in the SmartMoney Map of the Market
[W98] with market capitalization as the size attribute. For
each algorithm we measured the aspect ratio of the layout
it produced. The results are shown in the first column of
Table 5, and the layout produced are shown in Figures 5-9
at the end of this paper. Note that although aspect ratios
are higher than in the statistical trials-partly due to
outliers in the data set-the broad pattern of results is
similar.

Table 5: Stock market data for 535 companies.
Algorithm Aspect Ratio
Slice-and-dice 369.83
Pivot-by-middle 19.30
Pivot-by-size 22.04
Cluster 3.74
Squarified 3.21

5. Conclusion and future directions

Treemaps are a popular visualization method for large
hierarchical data sets. Although researchers have recently
created several algorithms that produce create clear,
legible treemap layouts with low aspect ratios, these new
algorithms have two drawbacks: they are unstable under
updates to the data, and they scramble any natural order
on the items being mapped.

We introduced ordered treemaps, which alleviate these
problems by creating layouts that preserve order and that
update cleanly for dynamically changing data.
Experimental results show that they offer a useful
compromise between the smooth updates of the slice-and-
dice method and the low aspect ratios of cluster treemaps
and squarified treemaps.

There are several directions for future research. First,
there is doubtless room to optimize the ordered treemap
algorithms discussed in this paper, especially to improve
the overall aspect ratios they produce. It would also be

useful to optimize the algorithms used by cluster treemaps
and squarified treemaps to improve stability under
dynamic updates. Another practical area to explore would
be matching layout algorithms to particular statistical
distributions of data and changes in the data, since
different algorithms may be appropriate in different
situations.

More speculatively, since experimental results suggest
a tradeoff between aspect ratios and smoothness of layout
changes, it would be worthwhile to look for a
mathematical theorem that makes this tradeoff precise. It
might also be fruitful to explore variants of treemap
layouts that can update smoothly by using past layouts as
a guide to current ones, or by using tiles that can have
nonrectangular shapes.

Figure 5. Stock portfolio with slice-and-dice layout.

Figure 6. Stock portfolio with pivot-by-middle layout.

Figure 7. Stock portfolio with pivot-by-largest layout.

Figure 8. Stock portfolio with cluster layout.

Figure 9. Stock portfolio with squarified layout.

Acknowledgement: Thanks to Ben Bederson for
thoughtful suggestions on the draft.

6. References

[BHW00] Bruls, D.M., C. Huizing, J.J. van Wijk.
“Squarified Treemaps”. In: W. de Leeuw, R. van Liere
(eds.), Data Visualization 2000, Proceedings of the joint
Eurographics and IEEE TCVG Symposium on
Visualization, 2000, pp. 33-42.

[JB97] Jin, L. and Banks, D.C. “TennisViewer: A
Browser for Competition Trees.” IEEE Computer
Graphics and Applications, July/August, pp. 63-65, 1997.

[JS91] Johnson, B. and and Shneiderman, B. “Tree-maps:
A Space-filling Approach to the Visualization of
Hierarchical Information Structures.” Proceedings of the
IEEE Visualization ’91, pp. 284-291, October 1991.

[J94] Johnson, B. “Treemaps: Visualizing Hierarchical
and Categorical Data” Unpublished PhD dissertation,
Dept. of Computer Science, University of Maryland,
College Park, MD (UMI-94-25057), 1994.

[JT92] Jungmeister, W-A. and Turo, D. “Adapting
Treemaps to Stock Portfolio Visualization,” University of
Maryland Technical Report CS-TR-2996, 1992. Available
at http://www.cs.umd.edu/hcil/pubs/tech-reports.shtml

[R97] Sheldon, R. A First Course in Probability, Prentice
Hall 1997.

[S92] Shneiderman, B. “Tree Visualization with Tree-
Maps: 2-d Space-filling Approach.” ACM Transactions
on Graphics, 11(1), pp. 92-99, 1992.

[TJ92] Turo, D. and Johnson. B. “Improving the
Visualization of Hierarchies with Treemaps: Design
Issues and Experimentation.” Proceedings of the IEEE
Visualization 92, pp. 124-131, October 1992.

[VN00] Vernier, F. and Nigay, L. “Modifiable Treemaps
Containing Variable-Shaped Units”, Extended Abstracts
of the IEEE Information Visualization 2000. Available at
http://iihm.imag.fr/publs/2000/Visu2K_Vernier.pdf

[W98] Wattenberg, M. “Map of the Market.
“SmartMoney.com, http://smartmoney.com/marketmap,
1998.

[W99] Wattenberg, M. “Visualizing the Stock Market,”
Proceedings of ACM CHI 99, Extended Abstracts,
pp.188-189, 1999.

