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Abstract 
 

Treemaps, a space-filling method of visualizing large 
hierarchical data sets, are receiving increasing attention. 
Several algorithms have been proposed to create more 
useful displays by controlling the aspect ratios of the 
rectangles that make up a treemap. While these 
algorithms do improve visibility of small items in a single 
layout, they introduce instability over time in the display 
of dynamically changing data, and fail to preserve an 
ordering of the underlying data. This paper introduces the 
ordered treemap, which addresses these two 
shortcomings. The ordered treemap algorithm ensures 
that items near each other in the given order will be near 
each other in the treemap layout. Using experimental 
evidence from Monte Carlo trials, we show that compared 
to other layout algorithms ordered treemaps are more 
stable while maintaining relatively low aspect ratios of 
the constituent rectangles.  A second test set uses stock 
market data. 
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1. Introduction 
 

Treemaps are a space-filling visualization method 
capable of representing large hierarchical collections of 
quantitative data [S92]. A treemap (Figure 1) works by 
dividing the display area into a nested sequence of 
rectangles whose areas correspond to an attribute of the 
data set, effectively combining aspects of a Venn diagram 
and a pie chart. Originally designed to visualize files on a 
hard drive, treemaps have been applied to a wide variety 
of domains ranging from financial analysis [JT92, W98] 
to sports reporting [JB97]. 

A key ingredient of a treemap is the algorithm used to 
create the nested rectangles that make up the map. (We 
refer to this set of rectangles as the layout of the treemap.) 
The slice and dice algorithm of the original treemap paper 

[S92] uses parallel lines to divide a rectangle representing 
an item into smaller rectangles representing its children. 
At each level of hierarchy the orientation of the lines - 
vertical or horizontal - is switched. Though simple to 
implement, the slice-and-dice layout often creates layouts 
that contain many rectangles with a high aspect ratio. 
Such long skinny rectangles can be hard to see, select, 
compare in size, and label. [TJ92, BHW00] 

 
Figure 1. A slice-and-dice layout. Shading indicates order, 

which is preserved. 

Several alternative layout algorithms have recently 
been proposed to address these concerns. The 
SmartMoney Map of the Market [W98] is an example of 
the cluster treemap method described in [W99] which 
uses a simple recursive algorithm that reduces overall 
aspect ratios. Bruls, Huizing, and van Wijk [BHW00] 
introduced the squarified treemap, which uses a different 
algorithm to achieve the same goal. Figure 2 shows 
examples of these two layouts. 

 
Figure 2. Low aspect ratio layouts. Shading indicates order, 

which is not preserved. 



The new methods suffer from two drawbacks. First, 
changes in the data set can cause dramatic discontinuous 
changes in the layouts produced by both cluster treemaps 
and squarified treemaps. (By contrast, the output of the 
slice and dice algorithm varies continuously with the 
input data.) These abrupt layout changes are readily 
apparent to the eye; below we also describe quantitative 
measurements of the phenomenon. Large layout changes 
are undesirable for several reasons. If the treemap data is 
updated on a second-by-second basis-e.g., in a stock 
portfolio monitor-then frequent layout changes make it 
hard to track or select an individual item. Rapid layout 
changes also cause an unattractive flickering that draws 
attention away from other aspects of the visualization. 
Moreover, even occasional abrupt changes mean that it is 
hard to find items on the treemap by memory, decreasing 
efficacy for long-term users.  

The second shortcoming of cluster and squarified 
treemap layouts is that many data sets contain ordering 
information that is helpful for seeing patterns or for 
locating particular objects in the map. For instance, the 
bond data described in [J94] is naturally ordered by date 
of maturity and interest rate. In many other cases the 
given order is alphabetical. The original slice-and-dice 
layout preserves the given ordering of the data, but cluster 
treemaps and squarified treemaps do not.  Another recent 
algorithm [VN00] enables control over the aspect ratios 
but does not guarantee order. 

This paper introduces ordered treemaps, which use 
layout algorithms that change relatively smoothly under 
dynamic updates and roughly preserve order, but also 
produce rectangles with low aspect ratios. We discuss two 
different algorithms to create ordered treemaps, each with 
slightly different properties. (Dynamic demonstrations of 
these algorithms have been posted on the Web, at 
http://www.columbia.edu/~mmw111/treemap.) 

We then report the results of Monte Carlo experiments 
comparing the two ordered treemap algorithms to 
squarified treemaps, cluster treemaps, and the slice-and-
dice algorithm, using natural metrics for smoothness of 
updates and overall aspect ratio. The results suggest that 
ordered treemaps steer a middle ground, producing 
layouts with aspect ratios that are far lower than slice-
and-dice layouts, though not as quite as low as cluster or 
squarified treemaps; they update significantly more 
smoothly than clustered or squarified treemaps, though 
not as smoothly as slice-and-dice layouts. Thus ordered 
treemaps may be a good choice in situations where 
legibility, usability and smooth updating all are important 
concerns. 
 
2. Algorithms for ordered treemaps 
 
The key insight that leads to algorithms for ordered 
treemaps is that it is possible to create a layout in which 
items that are next to each other in the given order are 

adjacent in the treemap. Although such a layout does not 
follow the simple linear order of the slice-and-dice layout, 
it provides useful cues for locating objects and turns out 
to provide constraints on the layout that discourage large 
discontinuous changes with dynamic data. 
 
We discuss two closely related algorithms for creating 
layouts that approximately preserve order. Both follow a 
similar recursive process, starting with a rectangle R to be 
subdivided.  The input is a list of items that are ordered by 
an index and have varied areas.  A particular item (the 
pivot) is chosen and placed at the side R as a square 
(aspect ratio = 1). The remaining items in the list are 
placed in three large rectangles that make up the rest of 
the display area. The algorithm is then applied recursively 
to each of these rectangles.  
 
In the first algorithm, pivot-by-size, the pivot is taken to 
be the item with the largest area. The motivation for this 
choice is that the largest item will be the most difficult to 
place, so it should be done first. The algorithm, as 
illustrated in Fig. 3, can be described as follows: 
 

 
Figure 3. The pivot configuration. 

 
1. Let P, the pivot, be the item with the largest area in 

the list of items. 
2. If the width of R is greater than or equal to the height, 

divide R into four rectangles, R1, RP, R2, and R3 as 
shown in Fig. 2. (If the height is greater than the 
width, use the same basic arrangement but flipped 
along the line y=x.) 

3. Place P in the rectangle RP, whose exact dimensions 
will be determined in Step 4. 

4. Divide the items in the list, other than P, into three 
lists, L1, L2, and L3, to be laid out in R1, R2, and R3. L1 
and L3 all may be empty lists. (Note that the contents 
of these three lists completely determine the 
placement of the rectangles in Figure 3.) Let L1 
consist of all items whose index is less than P in the 
ordering. Let L2 and L3 be such that all items in L2 
have an index less than those in L3, and the aspect 
ratio of P is as close to 1 as possible. We add the 
proviso, to avoid degenerate layouts, that L3 cannot 
contain exactly one item. 

5. Recursively lay out L1, L2, and L3 (if any are non-
empty) in R1, R2, and R3 according to this algorithm. 

 



The second ordered treemap algorithm, pivot-by-middle, 
is almost identical except that the pivot is taken to be the 
middle item of the list - that is, if the list has n items, the 
pivot is item number n/2, rounded down. The motivation 
behind this choice is that it is likely to create a balanced 
layout. In addition, because the choice of pivot does not 
depend on the size of the items, the layouts created by this 
algorithm may not be as sensitive to changes in the data 
as pivot by size. Figure 4 shows examples of the layouts 
created by the two algorithms. 
 

 
Figure 4. Pivot layouts. Shading indicates order, which is 

roughly preserved. 

 
Both algorithms have the property that they create layouts 
that roughly preserve the ordering of the index of the 
items, which will fall in a left-to-right and top-to-bottom 
direction in the layout. The two algorithms are also 
reasonably efficient: pivot-by-size has performance 
characteristics similar to QuickSort (order n log n average 
case and n2 worst case) while pivot-by-middle has order  
nlog n performance in the worst case. 
 
Although the two algorithms produce layouts with 
relatively low aspect ratios (as described in the following 
sections) they are not optimal in this regard. The 
stipulations in step 4 of the algorithm avoid some but not 
all degenerate layouts with high aspect ratios, so we 
experimented with post-processing strategies designed to 
improve the layout aspect ratio. For example we tried 
adding a last step to the algorithm in which any rectangle 
that is divided by a segment parallel to its longest side is 
changed so that it is divided by a segment parallel to its 
shortest side. Because this step gave only a small 
improvement in layout aspect ratio while dramatically 
decreasing layout stability, we did not include it in the 
final algorithm. 
 
3. Metrics for treemap layouts: aspect ratio & change 
 

In order to compare treemap algorithms we define two 
measures: the average aspect ratio of a treemap layout, 
and the layout distance change function, which quantify 
the visual problems created by poor layouts.  The goal is 
to have a low average aspect ratio and a low distance 
change as data is updated. 

We define the average aspect ratio of a treemap layout 
as the unweighted arithmetic average of the aspect ratios 
of all leaf-node rectangles. This is a natural measure, 
although certainly not the only possibility. One alternative 
would be a weighted average that places greater emphasis 
on larger items, since they contribute more to the overall 
visual impression. We choose an unweighted average 
since the chief problems with high aspect ratio 
rectangles—poor visibility and awkward labeling—are at 
least as acute for small rectangles as large ones.  

The layout distance change function is a metric on the 
space of treemap layouts that allows us to measure how 
much two layouts differ, and thus how quickly or slowly 
the layout produced by a given algorithm changes in 
response to changes in the data. To define the distance  
change function, we begin by defining a simple metric on 
the space of rectangles. Let a rectangle R be defined by a 
4-tuple (x,y,w,h) where x and y are the coordinates of the 
upper left corner and w and h are its width and height. We 
use the Euclidean metric on this space, i.e. if rectangles R1 
and R2 are given by (x1, y1, w1, h1) and (x2, y2, w2, h2) 
respectively, then the distance between R1 and R2 is given 
by  

d(R1, R2)=((x1-x2)
2+(y1-y2)

2+(w1-w2)
2+(h1-h2)

2)1/2. 
 
There are several plausible alternatives to this 

definition, such as the Hausdorff metric for compact sets 
in the plane or a Euclidean metric based on the 
coordinates of the lower right corner instead of height and 
width. These metrics differ from the one we chose by a 
small bounded factor, and hence would not lead to 
significantly different results. 

We then define the layout distance change function as 
the average distance between each pair of corresponding 
rectangles in the layouts. We use an unweighted average 
for the same reasons as we use an unweighted average for 
aspect ratios. 
 
4. Experimental design and results 
 

To compare the performance of ordered treemap 
layout algorithms to squarified, cluster and slice-and-dice 
layouts, we ran two sets of experiments. The first 
consisted of a sequence of Monte Carlo trials to simulate 
continuously updating data. Our goal was to measure the 
average aspect ratio and average layout distance change 
produced by each of five algorithms. In the second 
experiment we measured the average aspect ratio 
produced by each of the algorithms for a static set of 
stock market data. 

 
4a. Monte Carlo trials 
To simulate the performance of the five layout 

algorithms under a variety of conditions, we performed 
experiments on two types of hierarchies with two 
different statistical distributions of item sizes. The first 



hierarchy (“20x1”) was a collection of 20 items with one 
level of hierarchy. The second (“8x3”) was a collection 
with three levels of hierarchy and eight items at each level 
for a total of 512 items.  

For each experiment we ran 100 trials of 100 steps 
each. In one experiment we began with data drawn from a 
log-normal distribution created by exponentiating a 
normal distribution with mean 0 and variance 1. In a 
second version, we used data drawn from a Zipf 
distribution with power parameter equal to 1. Both 
distributions are representative of naturally occurring 
positive-valued data [R97]. In each step of a trial the data 
was modified by multiplying each data item by a random 
variable ex, where x was drawn from a normal distribution 
with variance 0.05 and mean 0. All layouts were created 
for a square with side 100. 

The results are shown in tables 1 through 4. 
 

Table 1: 20x1, Log-normal initial distribution. 

Algorithm Aspect Ratio Change 
Slice-and-dice 56.54   0.52 
Pivot-by-middle   3.47   3.06 
Pivot-by-size   3.15   7.17 
Cluster   1.72 11.00 
Squarified   1.75 10.10 

 
Table 2: 8x3, Log-normal initial distribution. 

Algorithm Aspect Ratio Change 
Slice-and-dice 26.10 0.46 
Pivot-by-middle   3.97 1.08 
Pivot-by-size   3.14 4.07 
Cluster   1.79 7.67 
Squarified   1.74 8.27 

 
 

Table 3: 20x1, Zipf initial distribution. 

Algorithm Aspect Ratio Change 
Slice-and-dice 36.85   0.51 
Pivot-by-middle   2.70   2.91 
Pivot-by-size   2.58   6.86 
Cluster   1.75 12.57 
Squarified   1.38 11.71 

 
Table 4: 8x3, Zipf initial distribution. 

Algorithm Aspect Ratio Change 
Slice-and-dice 44.58 0.61 
Pivot-by-middle   4.54 1.57 
Pivot-by-size   3.85 4.10 
Cluster   1.78 6.19 
Squarified   1.67 7.18 

 
The results strongly suggest a tradeoff between low 

aspect ratios and smooth updates. As expected, the slice-

and-dice method produces layouts with high aspect ratios, 
but which change very little as the data changes. The 
squarified and cluster treemaps are at the opposite end of 
the spectrum, with low aspect ratios and large changes in 
layouts. The two ordered treemaps fall in the middle of 
the spectrum. Neither produces the lowest aspect ratios, 
but they are a clear improvement over the slice-and-dice 
method, with the pivot-by-largest algorithm producing 
slightly better aspect ratios. At the same time, they update 
more smoothly than cluster or squarified treemaps, with 
the pivot-by-middle algorithm having a slight advantage 
over pivot-by-largest.  
 
4b. Static stock market data 
 
Our second set of experiments consisted of applying each 
of the five algorithms to a set of 535 publicly traded 
companies used in the SmartMoney Map of the Market 
[W98] with market capitalization as the size attribute. For 
each algorithm we measured the aspect ratio of the layout 
it produced. The results are shown in the first column of 
Table 5, and the layout produced are shown in Figures 5-9 
at the end of this paper. Note that although aspect ratios 
are higher than in the statistical trials-partly due to 
outliers in the data set-the broad pattern of results is 
similar. 
 
Table 5: Stock market data for 535 companies. 
Algorithm Aspect Ratio 
Slice-and-dice 369.83 
Pivot-by-middle   19.30 
Pivot-by-size   22.04 
Cluster     3.74 
Squarified     3.21 
 
 
5. Conclusion and future directions 
 

Treemaps are a popular visualization method for large 
hierarchical data sets. Although researchers have recently 
created several algorithms that produce create clear, 
legible treemap layouts with low aspect ratios, these new 
algorithms have two drawbacks: they are unstable under 
updates to the data, and they scramble any natural order 
on the items being mapped.  

We introduced ordered treemaps, which alleviate these 
problems by creating layouts that preserve order and that 
update cleanly for dynamically changing data. 
Experimental results show that they offer a useful 
compromise between the smooth updates of the slice-and-
dice method and the low aspect ratios of cluster treemaps 
and squarified treemaps. 

There are several directions for future research. First, 
there is doubtless room to optimize the ordered treemap 
algorithms discussed in this paper, especially to improve 
the overall aspect ratios they produce. It would also be 



useful to optimize the algorithms used by cluster treemaps 
and squarified treemaps to improve stability under 
dynamic updates. Another practical area to explore would 
be matching layout algorithms to particular statistical 
distributions of data and changes in the data, since 
different algorithms may be appropriate in different 
situations. 

More speculatively, since experimental results suggest 
a tradeoff between aspect ratios and smoothness of layout 
changes, it would be worthwhile to look for a 
mathematical theorem that makes this tradeoff precise. It 
might also be fruitful to explore variants of treemap 
layouts that can update smoothly by using past layouts as 
a guide to current ones, or by using tiles that can have 
nonrectangular shapes. 

 
 
 

 
Figure 5. Stock portfolio with slice-and-dice layout. 

 
 

 
Figure 6. Stock portfolio with pivot-by-middle layout. 

 

 
Figure 7. Stock portfolio with pivot-by-largest layout. 

 
 
 
 
 

 
Figure 8. Stock portfolio with cluster layout. 

 
 

 
Figure 9. Stock portfolio with squarified layout. 
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